首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has been hypothesized that increased crop density and spatial uniformity can increase weed suppression and thereby play a role in weed management. Field experiments were performed over 2 years to investigate the effects of the density and spatial arrangement of spring wheat (Triticum aestivum) on weed biomass and wheat yield in weed-infested fields. We used three crop spatial patterns (normal rows, random and uniform) and three densities (204, 449 and 721 seeds m−2), plus a fourth density (1000 seeds m−2) in the random pattern. Increased crop density reduced weed biomass in all three patterns. Weed biomass was lower and crop biomass higher in wheat sown in the random and uniform patterns than in normal rows in both years. At 449 seeds m−2, weed biomass was 38% lower in the uniform and 27% lower in the random pattern than in rows. There was evidence of decreasing grain yield due to intraspecific competition only at 1000 seeds m−2. The results not only confirm that increasing density and increasing crop spatial uniformity increase the suppression of weeds, but also suggest that a very high degree of spatial uniformity may not be necessary to achieve a major increase in weed suppression by cereal crops. Rows represent a very high degree of spatial aggregation. Decreasing this aggregation increased weed suppression almost as much as sowing the crop in a highly uniform spatial pattern. While the random pattern produced as much crop biomass and suppressed weeds almost as well as the uniform pattern, the uniform pattern gave the highest yield.  相似文献   

2.
C Marín  J Weiner 《Weed Research》2014,54(5):467-474
We tested the hypothesis that improved weed suppression by maize can be achieved through increased crop density and spatial uniformity. Field experiments on three varieties of maize sown at three densities (5, 7 and 10.5 seeds m?2) and in two spatial patterns (grid pattern and rows) under very high weed pressure from Brachiaria brizantha were performed in 2012 and 2013. We measured weed biomass 1 month after sowing and at harvest, and grain yield at harvest. Density, variety and sowing pattern all had strong and significant effects on both weed biomass and yield. On average, weed biomass was reduced (by 72% in the first year and 58% in the second year), and grain yield was increased (by 48% and 44%) at the highest density in the grid pattern compared with standard sowing practices (medium density, row pattern). There was a significant density × variety interaction, which is evidence for genetic differences in the response of the varieties to density in characteristics that influence weed suppression. The variety that suppressed weeds best at high density had the lowest variation in the angle of insertion of the oldest living leaf at harvest (leaf 6), supporting the hypothesis that reduced phenotypic plasticity may be advantageous for weed suppression under high density and spatial uniformity. Increased density and uniformity can contribute to weed management in maize in many cases, potentially reducing the need for herbicides or mechanical weed control.  相似文献   

3.
Weed competition and nutrient scarcity often restrict organic cereal production, especially where the availability of livestock manure is limited. While harrowing of annual weeds and legume cover crops can be used, these methods are both executed in early spring and may hinder each other. Two cycles of a 2‐year crop rotation were carried out in south‐east Norway (60°42′N, 10°51′E, altitude 250 m) with weed harrowing and undersown cover crops (WHCC) at two fertiliser rates (40 and 100 kg nitrogen ha?1). The effect of the WHCC treatments was measured by weed density and species, weed biomass, changes in weed seedbank and grain yield. The weed density depended on the interaction between WHCC, fertiliser and year. On average, pre‐emergence weed harrowing reduced weed density by 32% and weed biomass by 49%, while pre‐ and post‐emergence weed harrowing reduced weed density by 59% and weed biomass by 67% compared with the untreated control. Spergula arvensis became more abundant at low rather than at high fertiliser rates. On average, white clover cover crop sown after pre‐emergence weed harrowing resulted in the highest yields for both oat (+12.1%) and wheat (+16.4%) compared with the untreated control. Despite differences in weed population density and biomass among WHCC treatments within years, the weed biomass, weed density and seedbank increased for all WHCC treatments over the 4‐year period. More research is required into improving the efficacy of mechanical and cultural weed suppression methods that organic systems rely on.  相似文献   

4.
The effects of timing of N fertilization (early, standard or late) on competition between two sugarbeet cultivars (Ritmo, semi-prostrate; and Rizor, erect) and two weeds ( Sinapis arvensis and Chenopodium album ) were studied over 2 years at Viterbo. In both years, time of N fertilization did not influence biomass, yield and yield quality of the weed-free crop, but early N fertilization gave higher crop biomass reduction in the presence of S. arvensis and lower crop biomass reduction in the presence of C. album . Root and sucrose yield responded to competition in the same way as biomass. However, percentage reductions were higher, as both weeds affected harvest index. The two cultivars showed the same response to competition. At the weed densities studied, crop competitive ability was favoured by late N fertilization in the presence of S. arvensis and by early N fertilization in the presence of C. album . Crop competition only reduced seed production by C. album but lowered seed germination of both weeds.  相似文献   

5.
Cover crops and under-sown crops have often been reported to have a positive impact on soil structure, soil living organisms and soil fertility. In many studies it was shown that they suppress weed populations. However, the percentage of winter annual cereals in European cropping system has strongly increased, which consequently reduced the time for growing cover crops. In this study, it was investigated if cover crops and under-sown have the capacity to reduce weed infestations also in rotations with a high percentage of winter annual cereals. Three field trials were conducted using at the University of Hohenheim from 2008 until 2010. Trifolium repens and Lolium perenne reduced weed density and weed biomass in Triticum aestivum and Triticum spelta, when they were sown as under-sown crops. Both under-sown crops had no negative effect on grain yield. Until 14 days after harvest, the under-sown crops developed a dense plant canopy. In the third experiment, Sinapis alba, Phacelia tanacetifolia, Avena strigosa and a mixture of Trifolium alexandrinum, Vicia sativa, Fagopyrum tataricum and Guizotia abyssinica were sown directly after harvest of winter wheat. Most of the cover crops emerged after few days and significantly reduced the density and biomass of emerging weeds. Sinapis alba resulted in a 93% reduction of above-ground weed biomass. Avena strigosa reduced root-biomass of weed by 97% and weed density by 90%. In order to achieve a significant weed suppression, cover crops need to emerged quickly and grow rapidly until the soil has been covered. The results of this study underline the potential of under-sown crops and cover-crops to support a sustainable and environmental friendly cropping system.  相似文献   

6.
Summary The effectiveness of crop competition for better weed control and reducing herbicide rates was determined for Avena ludoviciana and Phalaris paradoxa . Four experiments, previously broadcast with seeds of the two weeds in separate plots, were sown with three wheat densities, and emerged weeds were treated with four herbicide doses (0–100% of recommended rate). The measured crop and weed traits were first analysed across experiments for treatment effects. Grain yield and weed seed production data were then analysed using cubic smoothing splines to model the response surfaces. Although herbicide rate for both weeds and crop density for P. paradoxa had significant linear effects on yield, there was a significant non-linearity of the response surface. Similarly, herbicide rate and crop density had significant linear effects on weed seed production, and there was significant non-linearity of the response surface that differed for the weed species. Maximum crop yield and reduction in seed production of P. paradoxa was achieved with approximately 80 wheat plants m−2 and weeds treated with 100% herbicide rate. For A. ludoviciana , this was 130 wheat plants m−2 applied with 75% herbicide rate. Alternatively, these benefits were achieved by increasing crop density to 150 plants m−2 applied with 50% herbicide rate. At high crop density, application of the 100% herbicide rate tended to reduce yield, particularly with the A. ludoviciana herbicide, and this impacted adversely on the suppression of weed seed production. Thus, more competitive wheat crops have the potential for improving weed control and reducing herbicide rates.  相似文献   

7.
K Rasmussen 《Weed Research》2002,42(4):287-298
Summary Injection of liquid manure (slurry) into the soil is an alternative to the traditional surface application. By the injection method, it is possible to place nutrients closer to the crop sown, thus offering the crop a competitive advantage over weeds. This study compares the response in crop yield, weed density and weed biomass to injection vs. surface application of liquid manure through three growing seasons in barley and oats. The manure applications were combined with treatments of weed harrowing or herbicide spraying or no treatment at all. The levels of weed control and crop yield obtained by harrowing and herbicides were larger when slurry was injected compared with surface application. Without any weed control treatments, the injection method decreased the final weed biomass in barley. The influence of nutrient injection on yield and weed control seemed to be modulated by the time of emergence and the early growth rate of the crop relative to weeds. Thus, because of its early root growth and development, barley responded more quickly to the injection treatment than oats. Consequently, barley became a more competitive crop.  相似文献   

8.
In Northern Europe, inter-row hoeing has become a popular tactic for controlling weeds in organic cereals. Hoeing is highly effective and can be implemented from crop emergence until stem elongation to maintain a nearly weed-free inter-row zone. However, hoeing has a lesser effect on weeds growing in the intra-row zone, where crop–weed proximity results in heightened competition. In the hoed cereal system, it is investigated whether tall-growing, competitive, cruciferous weeds in the intra-row zone affect crop biomass, yield and thousand kernel weight (TKW). An additive experimental design is employed to enable the fitting of rectangular hyperbolas, describing and quantifying the effects of increasing intra-row surrogate weed density on crop growth parameters. Regressions were studied under the influence of crop (spring barley and spring wheat), row spacing (narrow [12.5 or 15.0 cm] and wide [25.0 cm]) and nitrogen rate (50 and 100 kg NH4-N/ha). Cruciferous surrogate weeds were found to impact crop yield and quality severely. For example, ten intra-row plants/m2 of surrogate weed Sinapis alba reduced grains yields by 7%–14% in spring barley and by 7%–32% in spring wheat with yield losses becoming markedly greater in wheat compared to barley as weed density increases. Compared to wheat, barley limited yield and quality losses and suppressed intra-row weed growth more. Row spacing did not have a consistent effect on crop or weed parameters; in one of six experiments, the 25 cm row spacing reduced yields and increased intra-row weed biomass in wheat. Nitrogen rate did not affect crop or weed parameters. Results warrant the implementation of additional tactics to control intra-row weeds and limit crop losses.  相似文献   

9.
This study was conducted in the Mediterranean environment of Central Italy from 2011 to 2013 with the aim of evaluating the effects of winter cover crops and their residues on weed composition in a cover crop‐tomato sequence. Treatments consisted of five soil managements (three cover crop species ‐ hairy vetch, phacelia, white mustard, winter fallow mulched with barley straw before tomato transplanting and conventionally tilled soil), two nitrogen fertilisation levels (0 and 100 kg N ha?1) and two weed management levels (weed free and weedy) on tomato. Cover crop residues were arranged in strips on the soil surface and then used as beds for transplanting the tomato seedlings in paired rows. Rotary hoeing was performed in the bare strips between paired tomato rows. At tomato harvesting, the weed aboveground biomass and density was higher in nitrogen‐fertilised tomato than unfertilised tomato, except in hairy vetch and barley straw that showed similar values. Hairy vetch used as a cover crop and dead mulch was the most suppressive species with the highest production of residues, while phacelia and mustard were not suitable for controlling weeds. The tomato yield was high in nitrogen fertilised and weed‐free treatments, except in barley straw mulch, which showed similar values among the weed management treatments. The mulch strips caused variations in weed species composition that was mainly composed of perennial ruderal weeds, while in tilled soil, the weed flora was dominated by annual photoblastic weeds.  相似文献   

10.
Predicting the growth and competitive effects of annual weeds in wheat   总被引:1,自引:0,他引:1  
The growth and competitiveness of 12 annual weed species were studied in crops of winter wheat, in which weeds were sown to give a wide range of plant densities. Weed growth patterns were identified; early species which senesced in mid-summer were less competitive than those with a growth pattern similar to that of the crop. Most species had little effect on crop yield in 1987, and this was attributed to a high crop den sity. Crop yield-weed density relationships for all species in 1988 and for Galium aparine in 1987 were well described by a rectangular hyperbola. Species were listed in the following competitive order based on the percentage yield loss per weed m?2: Avena fatua > Matricaria perforata > Galium aparine > Myosotis arvenis > Poa trivialis > Alopecurus myosuroides > Stellaria media > Papaver rhoeas > Lamiumpur-pureum > Veronica persica > Veronica hederi-folia > Viola arvensis. Prediction of yield loss is discussed. The assumptions inherent in using Crop Equivalents (based on relative weights of weed and crop plants), are challenged; with intense competition, weed biomass at harvest failed to replace lost crop biomass, and harvest index was reduced. It is concluded that a competi tive index, derived from yield density relation ships, and expressed as the percentage yield loss per weed m?2, is more likely to reflect the com petitive ability of a species than an index obtained from plant weights in the growing crop.  相似文献   

11.
Field studies were conducted at two locations in southern Queensland, Australia during the 2003–2004 and 2004–2005 growing seasons to determine the differential competitiveness of sorghum (Sorghum bicolor L. Moench) cultivars and crop densities against weeds and the sorghum yield loss due to weeds. Weed competition was investigated by growing sorghum in the presence or absence of a model grass weed, Japanese millet (Echinochloa esculenta). The correlation analyses showed that the early growth traits (height, shoot biomass, and daily growth rate of the shoot biomass) of sorghum adversely affected the height, biomass, and seed production of millet, as measured at maturity. “MR Goldrush” and “Bonus MR” were the most competitive cultivars, resulting in reduced weed biomass, weed density, and weed seed production. The density of sorghum also had a significant effect on the crop's ability to compete with millet. When compared to the density of 4.5 plants per m2, sorghum that was planted at 7.5 plants per m2 suppressed the density, biomass, and seed production of millet by 22%, 27% and 38%, respectively. Millet caused a significant yield loss in comparison with the weed‐free plots. The combined weed‐suppressive effects of the competitive cultivars, such as MR Goldrush, and high crop densities minimized the yield losses from the weeds. These results indicate that sorghum competition against grass weeds can be improved by choosing competitive cultivars and by using a high crop density of >7.5 plants per m2. These non‐chemical options should be included in an integrated weed management program for better weed management, particularly where the control options are limited by the evolution of herbicide resistance.  相似文献   

12.
Cover crops have been shown to be important integrated weed management tools. In addition to directly competing with weeds, cover crops can provide weed suppressive effects following incorporation through release of allelopathic compounds and/or changes to nutrient availability. Incorporation of a cover crop mixture may provide a synergistic or antagonistic effect on weed suppression by further altering nutrient dynamics. To investigate this phenomenon, we evaluated the suppressive effects following incorporation of annual ryegrass, buckwheat, brown mustard, and phacelia sown with and without field pea on germination and growth of several pernicious weed species. Further, we used the additive partitioning model to determine if pea synergistically improved biomass production and weed suppression of cover crops. Our results demonstrate that following incorporation, cover crop residues suppress weed germination and weed biomass production. According to the additive partitioning model, the addition of pea had an antagonistic effect on buckwheat and brown mustard biomass production and decreased buckwheat weed suppression by 8%. In contrast, the addition of field pea greatly enhanced biomass production of phacelia at a reduced seeding rate suggesting a positive biodiversity effect. Limited evidence was found for changes to nutrient availability following cover crop incorporation, however, a dose-dependent effect of cover crop residue on weed suppression suggests allelopathy and/or nutrient availability may have a role on weed seed germination success. Together, our results support the use of incorporated cover crop residues as an integrated weed management tool.  相似文献   

13.
The objective of this study is to offer a new framework for exploring and modelling the spatial variation in crop biomass – weed density relationships, adapting geographically weighted regression (GWR) to include a non‐linear regression model. The relationship between crop biomass and weed density is usually modelled by non‐linear regression models, in which the spatial heterogeneity of the relationship is ignored, although the effect of weeds on crop can differ in relation to topographic and edaphic variability. GWR attempts to capture spatial variability by calibrating a regression model to each location in space. We show the application of the method in different cereal cropping systems, with one or two weed species. The results indicate that GWR can significantly improve model fitting over non‐linear least squares (NLS) in some situations. Furthermore, the parameter estimates can be mapped to illustrate local spatial variations in the regression relationship under study and eventually to relate the spatial variability of the model to the environmental heterogeneity. We discuss the value of the GWR for analysing the observed spatial variability and for improving model development and our understanding of spatial processes.  相似文献   

14.
Α three‐year, non‐irrigated field study was conducted in 1998, 1999, and 2000 at the Southern Weed Science Research Unit farm, Stoneville, MS to study the effects of rye cover crop residue, soybean planting systems, and herbicide application programs on the control, density and biomass of several weed species and soybean yield. The soybean planting systems comprised 19 cm rows with high plant density, 57 cm rows with medium plant density, and 95 cm rows with low plant density. The herbicide programs evaluated were pre‐emergence, postemergence, pre‐emergence followed by postemergence, and no herbicide. Flumetsulam and metolachlor were applied pre‐emergence, and acifluorfen, bentazon, and clethodim were applied postemergence. The presence or absence of rye cover crop residue and a soybean planting system did not affect weed control of the species evaluated (browntop millet, barnyard grass, broadleaf signal grass, pitted morningglory, yellow nutsedge, Palmer amaranth and hyssop spurge), when herbicides were applied, regardless of the application program. In addition, rye cover crop residue was not an effective weed management tool when no herbicide was applied, because density and biomass of most weeds evaluated were higher than a no cover crop residue system. Among soybean planting systems, narrow with high plant density soybeans reduced density of grasses, broadleaf weeds and yellow nutsedge by 24–83% and total weed biomass by 38%, compared to wide with low plant density soybeans. Although weed pressure was reduced by narrow with high plant density soybeans, herbicide applications had the most impact on weed control, weed density and biomass. All herbicide programs controlled all weed species 81–100% at two weeks after postemergence herbicide applications, in comparison to no‐herbicide. Density of grasses and all broadleaf weeds as well as total weed biomass was lower with the pre‐emergence followed by postemergence program than these programs alone. Soybean yields were higher in the pre‐emergence followed by postemergence, and postemergence only programs than the pre‐emergence alone program. Planting crops in narrow rows is one cultural method of reducing weed pressure. However, even with the use of this cultural practice, prevalent weed pressure often requires management with herbicides.  相似文献   

15.
发展化学除草重视综合治理   总被引:4,自引:0,他引:4  
我国农田杂草有250多种,全国农田受草害面积4300多万hm2,平均受草害减产13.4%,每年减产粮食1750万t,皮棉25.5万t和大豆50万t。传统农业生产采用机械作业及人力等除草。随着农村经济的发展,化学除草面积迅速扩大,全国农田化学除草面积从1975年的170万hm2增加到1995年的4133万hm2。但是,长期化学除草也带来了除草剂土壤残留对后茬作物药害、农田杂草种群更替和产生抗药性等新问题。必须重视农田杂草综合治理,通过采用各种有效的农业技术措施,为农作物保持良好的生态条件,结合化学除草才是最有效的防除杂草方法  相似文献   

16.
Critical periods of weed competition in cotton in Greece   总被引:1,自引:0,他引:1  
Four experiments were conducted in central Greece during 1997 and 1998 to determine the late-season presence of weeds in cotton (Gossypium hirsutum L.) and the critical times for removing weeds. Experiments were conducted in natural, heavily infested cropland. The presence of weeds for more than 3 weeks after crop emergence caused significant reductions in crop growth and lint yields. However, weeds that emerged 11 weeks or more after crop emergence did not adversely impact yields. Total weed biomass increased with increasing time prior to weed removal. A weed-free period of 11 weeks after crop emergence was needed to prevent significant reductions in cotton height, biomass, number of squares, and yield. These results indicated that postemergence herbicides or other control measures should be initiated within 2 weeks after crop emergence to avoid significant yield reduction. For greater efficiency, soil-applied herbicides in cotton should provide effective weed control for at least 11 weeks. Curvilinear regression equations were derived to describe the relationship between critical periods of weed presence and cotton growth and fruit development.  相似文献   

17.
The management of crop fertilization may be an important component of integrated weed management systems. A field study was conducted to determine the effect of various application methods of nitrogen (N) fertilizer on weed growth and winter wheat yield in a zero-tillage production system. Nitrogen fertilizer was applied at 50 kg ha−1 at the time of planting winter wheat over four consecutive years to determine the annual and cumulative effects. The nitrogen treatments consisted of granular ammonium nitrate applied broadcast on the soil surface, banded 10 cm deep between every crop row, banded 10 cm deep between every second crop row, and point-injected liquid ammonium nitrate placed between every second crop row at 20 cm intervals and 10 cm depth. An unfertilized control was also included. Density, shoot N concentration and the biomass of weeds was often lower with subsurface banded or point-injected N than with broadcast N. The winter wheat density was similar with all N fertilizer application methods but wheat shoot N concentration and yield were consistently higher with banded or point-injected N compared with broadcast N. In several instances, the surface broadcast N did not increase the weed-infested wheat yield above that of the unfertilized control, indicating that it was the least preferred N application method. Depending on the weed species, the weed seedbank at the conclusion of the 4 year study was reduced by 29–62% with point-injected N compared with broadcast N. Information gained from this study will be used to develop more integrated weed management programs for winter wheat.  相似文献   

18.
杂草密度与作物产量损失的预测模型   总被引:23,自引:0,他引:23  
通过对国内外多个用于杂草密度和作物产量损失关系的经验模型比较分析,并对10组不同来源的杂草与作物竞争资料进行模拟,证明模型/(bd)具有实际的生物学意义,能确地描述多种杂草和多种作物间的竞争关系,预测杂草竞争对作物可能造成的危害和损失。  相似文献   

19.
杂草常伴随麻类作物滋生,与其争光争肥争水,严重影响其生长、降低产量和品质。因此,有效防除麻田杂草尤为必要。文章概述了我国麻类作物生产现状,主要麻类作物田杂草危害、杂草种类及防除技术。  相似文献   

20.
Growing chick‐pea in sustainable systems requires the use and development of more competitive genotypes which can complement the effects of reduced input weed control. A 2‐year study assessed the competitive ability of 13 genotypes grown in either the presence or absence of weeds, in a split‐plot design including the weeds in pure stands. Crop and weed density, phenology, relative biomass of crop (RBc) and weeds (RBw), crop yield characters, crop biometric traits in the absence of weeds, relative biomass total of mixtures (RBT) and crop competitive ability (Cb = ln RBc/RBw) were recorded. Lines C136, C120, C101 and C106, and cultivars Pascià, Visir and Sultano gave the best seed yield in the absence of weeds (1.8–2.0 t ha?1 DM). Weeds reduced yield by 75% and 83% in C136 and C133 and by 87–97% in the other genotypes. Weed biomass in mixture (mainly Chenopodium album) averaged 4.42 t ha?1 DM. Chick‐pea genotypes C136 and C133 were the most competitive, but weeds were more competitive than any of the chick‐peas. Cb was correlated directly to the height of first fertile pod (r2 = 0.84) and inversely to the insertion angle of primary branches to the vertical (r2 = 0.77). Intergenotypic variation for competitive ability could be exploited in integrated weed control using more competitive genotypes, or used in breeding programmes aimed to develop highly competitive cultivars on the basis of easily screenable characters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号