首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Feedlot and carcass characteristics of 276 steers from five closed lines of Hereford cattle and reciprocal crosses among these lines were studied. The traits studied were initial weight, final weight, 224-d gain, days on test, hot carcass weight, marbling score, longissimus muscle area, fat thickness, yield grade, dressing percentage and shear force. Year of record was a significant source of variation for most traits. Age of dam was a significant source of variation for growth traits but not carcass traits. Line of sire affected initial weight, final weight, 224-d gain, days on test, marbling score and dressing percentage. Significant heterosis was observed only for hot carcass weight. Heterosis estimates were 1.9% for initial weight, 2.2% for final weight, 2.5% for 224-d gain, -2.1% for days on test, .6% for hot carcass weight, -.6% for marbling score, 0 for carcass grade, .6% for longissimus muscle area, 2.3% for backfat thickness, .9% for yield grade, -.9% for dressing percent and -10.9% for shear force. Initial age on test affected only hot carcass weight. Hot carcass weight, dressing percentage, marbling score, longissimus muscle area and fat thickness were affected by slaughter weight. Slaughter age affected dressing percent and marbling score.  相似文献   

3.
Data were collected from intact males, castrated males and ewe lambs to investigate the effect of presence or absence of testosterone prenatally and during the postweaning period on postweaning growth, feed intake and carcass chemical composition. Half the lambs from each sex were the progeny of dams that had received five injections of testosterone cyprionate from d 32 through d 87 of gestation. Linear contrasts were used to detect differences. Postweaning daily gain of intact males was greater (P less than .01) than that of male castrates. Ewe lambs from treated dams had approximately 12% greater rate of growth (P less than .04) than ewe lambs from control dams. Ewe lambs from dams that had been treated were 28% more efficient (P less than .01) in the conversion of food to weight than those from untreated dams. Ewe lambs from treated dams had heavier livers (P less than .07). Carcass protein for intact males was greater (P less than .11) than for castrates, and extractable fat was less (P less than .05). Masculinization of growth characteristics of ewe lambs affected the quantity of carcass fat relative to control ewes (7.59 vs 8.92 kg). These ewe lambs also had more water in the carcass than did the control ewes (13.93 vs 12.29 kg). Administration of exogenous testosterone to pregnant ewes over an interval of time approximating time of sexual differentiation in the fetus enhances postweaning growth rate, feed conversion efficiency and chemical composition of genetic females.  相似文献   

4.
Genetic improvement in reproductive efficiency through selection is difficult because many reproductive traits are binomial and have low heritabilities. Before genetic markers can be generated for fertility in cows, greater characterization of reproductive phenotypes is needed to understand the components of the trait. The current study tested the hypotheses that: 1) breeds vary in postpartum interval to estrus (PPIE) and estrous cycle length, 2) a longer estrous cycle immediately before breeding increased pregnancy rates, and 3) a greater number of cycles before breeding increased conception rates. The postpartum interval to estrus, estrous cycle length, and number of cycles before breeding were examined in F1 cows (n = 519) obtained from mating Hereford, Angus, and MARC III cows to Hereford, Angus, Simmental, Limousin, Charolais, Gelbvieh, and Red Angus sires. Cows were classified as having 0, 1, 2, or 3 observed estrous cycles before breeding. All traits analyzed were adjusted to constant BCS. Sire breed of the cow influenced length of the PPIE and number of cycles before the start of breeding (P <0.001). Simmental-sired cows had the shortest PPIE and greatest number of cycles before breeding, whereas Limousin-sired cows had the longest PPIE and least number of cycles before breeding. Cows with a greater number of cycles before breeding did not have greater conception rates than cows that had not exhibited standing estrus before breeding (P = 0.87). In cows that cycled before breeding, the length of the estrous cycle immediately before breeding was influenced by dam breed and BCS (P <0.01). Cows out of Hereford dams had shorter estrous cycles than cows out of MARC III or Angus dams, and estrous cycle length increased as BCS increased. Conception rate decreased as length of the estrous cycle immediately before breeding increased (P = 0.05, -2.2% per d of cycle length). Therefore, previously anestrous cows were just as likely to conceive as cows that had cycled before breeding, and an increased number of observed estrous cycles before breeding did not increase conception rates. There may be an influence of the length of estrous cycle immediately before breeding on conception rates, possibly because a longer estrous cycle results in a persistent follicle with greater potential for a lower quality oocyte. Breed differences in PPIE and estrous cycle length suggest that there are genetic components to these traits.  相似文献   

5.
Genotype X environment interactions for postweaning performance traits of bulls produced by different lines of Hereford cattle were investigated in the contrasting environments of Miles City, Montana and Brooksville, Florida. During Phase 1 of the study (1966 to 1973), the performance of bull progeny from two unrelated lines (M1 and F6 previously developed in Montana and Florida, respectively) was compared at each of the two experimental sites. During Phase 2 (1967 to 1974), performance of bulls from two related lines (M1 of Montana origin and F4 derived from an M1 foundation through selection in Florida) was compared at each of the two locations. The line X location interaction effect in Phase 1 was highly significant for weaning weights and average daily gain during the postweaning test, and for end-of-test weight, conformation score, condition score and forecannon circumference. The interaction effect in Phase 2 was highly significant for 205-d and end-of-test weights and significant for all other traits except end-of-test conformation score. These results, consistent with results for traits covered in other papers of the same series (reproductive traits, birth-to-weaning traits of bull and heifer calves combined, and postweaning traits of heifers), indicated the existence of economically important genotype X environment interactions in beef cattle. Results from the series of papers indicated that adaptation to local environment should receive consideration in planning breeding programs, performance tests and interregional transfers of beef cattle.  相似文献   

6.
Carcass (n = 854) and longissimus thoracis palatability (n = 802) traits from F1 steers obtained from mating Hereford, Angus, and MARC III cows to Hereford or Angus (HA), Tuli (Tu), Boran (Bo), Brahman (Br), Piedmontese (Pm), or Belgian Blue (BB) sires were compared. Data were adjusted to constant age (444 d), carcass weight (333 kg), fat thickness (1.0 cm), fat trim percentage (21%), and marbling (Small00) end points. Results presented in this abstract are for age-constant data. Carcasses from BB- and HA-sired steers were heaviest (P < 0.05) and carcasses from Bo- and Tu-sired steers were lightest (P < 0.05). Adjusted fat thickness was greatest (P < 0.05) on carcasses from HA-sired steers and least (P < 0.05) on carcasses from BB- and Pm-sired steers. Numerical USDA yield grades were lowest (P < 0.05) for carcasses from Pm- and BB-sired steers and highest (P < 0.05) for carcasses from HA- and Br-sired steers. Marbling scores were highest (P < 0.05) for carcasses from HA- and Tu-sired steers and lowest (P < 0.05) for carcasses from Br-, BB-, and Pm-sired steers. Longissimus thoracis from carcasses of HA-, Pm-, and Tu-sired steers had the lowest (P < 0.05) 14-d postmortem Warner-Bratzler shear force values. Carcasses from HA-sired steers had longissimus thoracis with the highest (P < 0.05) tenderness ratings at 7 d postmortem. Longissimus thoracis from carcasses of Br- and Bo-sired steers had the highest (P < 0.05) Warner-Bratzler shear forces and the lowest (P < 0.05) tenderness ratings at 7 d postmortem. Adjustment of traits to various slaughter end points resulted in some changes in sire breed differences for carcass traits but had little effect on palatability traits. Carcasses from BB- and Pm-sired steers provided the most desirable combination of yield grade and longissimus palatability, but carcasses from HA-cross steers provided the most desirable combination of quality grade and longissimus palatability. Tuli, a breed shown to be heat-tolerant, had longissimus tenderness similar to that of the non-heat-tolerant breeds and more tender longissimus than the heat-tolerant breeds in this study.  相似文献   

7.
Two unselected herds of purebred Hereford and Angus cattle were created and their progeny evaluated during a 4-yr period (1964 to 1967) for 168-d postweaning gain when they were fed either a high- or medium-energy diet. Birth weight and 200-d adjusted weaning weight also were measured and the importance of sire x diet interactions for postweaning gain examined. Year effects were significant (P less than .001) for all traits in Herefords and for postweaning gain in Angus. Postweaning gain of both breeds increased in successive years, but no trend was observed for birth and 200-d weights. Bulls were heavier than heifers (P less than .05) for all three traits in both breeds. Hereford and Angus calves receiving the high-energy diet gained more (P less than .001) than their contemporaries fed the medium-energy diet. Sire differences were significant for birth weight in Herefords and for all three traits in Angus. Sire x diet interactions were not significant for postweaning gain in either breed. Genetic correlations were calculated by two methods: the two-way ANOVA approach using sire and sire x diet interaction variance components and the one-way ANOVA approach in which gains by progeny of each sire on each diet were considered to be two distinct traits. The genetic correlations for gain in Herefords could not be estimated by either method because of negative sire variance component estimates. The genetic correlations for gain in Angus were 1.08 for the two-way ANOVA method and 1.43 +/- .64 for the one-way ANOVA method. These results indicate that sires ranked the same based on progeny performance when fed either diet.  相似文献   

8.
This study was conducted to determine the optimum test duration and the effect of missing data on accuracy of measuring feed efficiency and its 4 related traits ADG, DMI, feed conversion ratio, and residual feed intake in beef cattle using data from 456 steers with 5,397 weekly averaged feed intakes and BW repeated measurements taken over 91 d. Data were collected using the GrowSafe System at the University of Alberta Kinsella Research Station. The changes and relative changes in phenotypic residual variances and correlations (Pearson and Spearman) among data from shortened test durations (7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, or 84 d) and a 91-d test were used to determine the optimum test duration for the 4 traits. The traits were fitted to a mixed model with repeated measures using SAS. Test durations for ADG, DMI, feed conversion ratio, and residual feed intake could be shortened to 63, 35, 42, and 63 d, respectively, without significantly reducing the accuracy of the tests when BW was measured weekly. The accuracy of the test was not compromised when up to 30% of the records were randomly removed after the first 35 d on test. These results have valuable and practical implications for performance and feed efficiency testing in beef cattle.  相似文献   

9.
Carcass (n = 568) and longissimus thoracis palatability (n = 460) traits from F1 steers obtained from mating Hereford (H), Angus (A), and U.S. Meat Animal Research Center (MARC) III cows to H, A, Norwegian Red (NR), Swedish Red and White (RW), Friesian (F), or Wagyu (W) sires were compared. Data were adjusted to constant age (471 d), carcass weight (356 kg), fat thickness (1.0 cm), percentage of fat trim (24%), and marbling (Small35) end points. For Warner-Bratzler shear force and trained sensory panel traits, data were obtained on longissimus thoracis steaks stored at 2 degrees C for 14 d postmortem. The following comparisons were from the age-constant end point. Carcasses from H- and A-sired steers (377 and 374 kg, respectively) were the heaviest (P < 0.05) and carcasses from W-sired steers (334 kg) were the lightest (P < 0.05). A greater (P < 0.05) percentage of carcasses from A- and W-sired steers graded USDA Choice (88 and 85%, respectively) than carcasses from other sire breeds (52 to 71%). Adjusted fat thickness for carcasses from A-sired steers (1.3 cm) was highest (P < 0.05), followed by H-sired steers (1.1 cm) and W- and F-sired steers (0.9 cm); NR- and RW-sired steers (0.8 cm) had the lowest (P < 0.05) adjusted fat thickness. Longissimus thoracis area was not different (P > 0.05) among sire breeds (mean = 80.6 cm2). Carcass yield of boneless, totally trimmed retail product was least (P < 0.05) for A-sired steers (60.1%), intermediate for H-sired steers (61.5%), and similar (P > 0.05) for all other sire breeds (62.5 to 62.8%). Longissimus thoracis steaks from carcasses of A- (3.7 kg) and W-sired (3.7 kg) steers had lower (P < 0.05) shear force values than longissimus thoracis steaks from other sire breeds (4.1 to 4.2 kg). Trained sensory panel tenderness, juiciness, or beef flavor intensity ratings for longissimus thoracis steaks did not differ (P > 0.05) among the sire breeds. Sire breed comparisons were affected by adjusting data to other end points. Heritability estimates for various carcass, yield, and palatability traits ranged from very low (h2 = 0.06 for percentage of kidney, pelvic, and heart fat) to relatively high (h2 = 0.71 for percentage of retail product yield). Relative to the other sire breeds, W-sired steers had the highest percentage of USDA Choice, Yield grade 1 and 2 carcasses, but their carcasses were the lightest.  相似文献   

10.
The objective of this experiment was to provide a current evaluation of the seven most prominent beef breeds in the United States and to determine the relative changes that have occurred in these breeds since they were evaluated with samples of sires born 25 to 30 yr earlier. Carcass (n = 649), yield (n = 569), and longissimus thoracis palatability (n = 569) traits from F(1) steers obtained from mating Hereford, Angus, and MARC III cows to Hereford (H), Angus (A), Red Angus (RA), Charolais (C), Limousin (L), Simmental (S), or Gelbvieh (G) sires were compared. Data were adjusted to constant age (445 d), carcass weight (363 kg), fat thickness (1.1 cm), fat trim percent (25%), and marbling (Small(35)) endpoints. For Warner-Bratzler shear force and trained sensory panel traits, data were obtained on LM from steaks stored at 2 degrees C for 14 d postmortem. The following comparisons were from the age-constant endpoint. Carcasses from L-, G-, and H-sired steers (361, 363, and 364 kg, respectively) were lighter (P < 0.05) than carcasses from steers from all other sire breeds. Adjusted fat thickness for carcasses from A-, RA-, and H-sired steers (1.5, 1.4, and 1.3 cm, respectively) was higher (P < 0.05) than for carcasses from steers from all other sire breeds (0.9 cm). Longissimus muscle areas were largest (P < 0.05) for carcasses from L-, C-, S-, and G-sired steers (89.9, 88.7, 87.6, and 86.5 cm(2), respectively) and smallest for carcasses from H- and RA-sired steers (79.5 and 78.4 cm(2)). A greater (P < 0.05) percentage of carcasses from RA- and A-sired steers graded USDA Choice (90 and 88%, respectively) than from carcasses from other sire breeds (57 to 66%). Carcass yield of boneless, totally trimmed retail product was least (P < 0.05) for RA- and A-sired steers (59.1 and 59.2%, respectively) and greatest (P < 0.05) for G, L-, C-, and S-sired steers (63.0 to 63.8%). Longissimus muscle from carcasses of A-sired steers (4.0 kg) had lower (P < 0.05) Warner-Bratzler shear force values than LM from carcasses of G- and C-sired steers (4.5 to 4.3 kg, respectively). Trained sensory panel tenderness and beef flavor intensity ratings for LM did not differ (P < 0.05) among the sire breeds. Continental European breeds (C, L, S, and G) were still leaner, more heavily muscled, and had higher-yielding carcasses than did British breeds (H, A, and RA), with less marbling than A or RA, although British breeds have caught up in growth rate.  相似文献   

11.
Feed intake and feed efficiency are economically important traits in beef cattle because feed is the greatest variable cost in production. Feed efficiency can be measured as feed conversion ratio (FCR, intake per unit gain) or residual feed intake (RFI, measured as DMI corrected for BW and growth rate, and sometimes a measure of body composition, usually carcass fatness, RFI(bf)). The goal of this study was to fine map QTL for these traits in beef cattle using 2,194 markers on 24 autosomes. The animals used were from 20 half-sib families originating from Angus, Charolais, and University of Alberta Hybrid bulls. A mixed model with random sire and fixed QTL effect nested within sire was used to test each location (cM) along the chromosomes. Threshold levels were determined at the chromosome and genome levels using 20,000 permutations. In total, 4 QTL exceeded the genome-wise threshold of P < 0.001, 3 exceeded at P < 0.01, 17 at P < 0.05, and 30 achieved significance at the chromosome-wise threshold level (at least P < 0.05). No QTL were detected on BTA 8, 16, and 27 above the 5% chromosome-wise significance threshold for any of the traits. Nineteen chromosomes contained RFI QTL significant at the chromosome-wise level. The RFI(bf) QTL results were generally similar to those of RFI, the positions being similar, but occasionally differing in the level of significance. Compared with RFI, fewer QTL were detected for both FCR and DMI, 12 and 4 QTL, respectively, at the genome-wise thresholds. Some chromosomes contained FCR QTL, but not RFI QTL, but all DMI QTL were on chromosomes where RFI QTL were detected. The most significant QTL for RFI was located on BTA 3 at 82 cM (P = 7.60 x 10(-5)), for FCR on BTA 24 at 59 cM (P = 0.0002), and for DMI on BTA 7 at 54 cM (P = 1.38 x 10(-5)). The RFI QTL that showed the most consistent results with previous RFI QTL mapping studies were on BTA 1, 7, 18, and 19. The identification of these QTL provides a starting point to identify genes affecting feed intake and efficiency for use in marker-assisted selection and management.  相似文献   

12.

Background

The provision of feed is a major cost in beef production. Therefore, the improvement of feed efficiency is warranted. The direct assessment of feed efficiency has limitations and alternatives are needed. Small intestine micro-architecture is associated with function and may be related to feed efficiency. The objective was to verify the potential histomorphological differences in the small intestine of animals with divergent feed efficiency.

Methods

From a population of 45 feedlot steers, 12 were selected with low-RFI (superior feed efficiency) and 12 with high-RFI (inferior feed efficiency) at the end of the finishing period. The animals were processed at 13.79 ± 1.21 months of age. Within 1.5 h of slaughter the gastrointestinal tract was collected and segments from duodenum and ileum were harvested. Tissue fragments were processed, sectioned and stained with hematoxylin and eosin. Photomicroscopy images were taken under 1000x magnification. For each animal 100 intestinal crypts were imaged, in a cross section view, from each of the two intestinal segments. Images were analyzed using the software ImageJ®. The measurements taken were: crypt area, crypt perimeter, crypt lumen area, nuclei number and the cell size was indirectly calculated. Data were analyzed using general linear model and correlation procedures of SAS®.

Results

Efficient beef steers (low-RFI) have a greater cellularity (indicated by nuclei number) in the small intestinal crypts, both in duodenum and ileum, than less efficient beef steers (high-RFI) (P < 0.05). The mean values for the nuclei number of the low-RFI and high-RFI groups were 33.16 and 30.30 in the duodenum and 37.21 and 33.65 in the ileum, respectively. The average size of the cells did not differ between feed efficiency groups in both segments (P ≥ 0.10). A trend was observed (P ≤ 0.10) for greater crypt area and crypt perimeter in the ileum for cattle with improved feed efficiency.

Conclusion

Improved feed efficiency is associated with greater cellularity and no differences on average cell size in the crypts of the small intestine in the bovine. These observations are likely to lead to an increase in the energy demand by the small intestine regardless of the more desirable feed efficiency.  相似文献   

13.
The objectives were to conduct a genetic evaluation of residual feed intake (RFI) and residual feed intake adjusted for fat (RFIFat) and to analyse the effect of selection for these traits on growth, carcass and reproductive traits. Data from 945 Nellore bulls in seven feed efficiency tests in a feedlot were analysed. Genetic evaluation was performed using an animal model in which the feed efficiency test and age of the animal at the beginning of the test were considered as a systematic effect. Direct additive genetic and residual effects were considered as random effects. Correlations and genetic gains were estimated by two‐trait analysis between feed efficiency measures (RFI and RFIFat) and other traits. Feed conversion showed low heritability (0.06), but dry matter intake (DMI), average daily gain, RFI, RFIFat, metabolic body weight and scrotal circumference measured at 450 days of age (SC450) showed moderate to high heritability (0.49, 0.28, 0.33, 0.36, 0.38 and 0.80, respectively). Similarly, ribeye area, backfat thickness, rump cap fat thickness, marbling score and subcutaneous fat thickness also had high heritability values (0.46, 0.37, 0.57, 0.51 and 0.47, respectively). Genetic correlations between RFI and SC450 were null, and between RFIFat and SC450 were strongly positive. Genetic and phenotypic correlations of RFI and RFIFat with carcass traits were not different from zero, as correlated responses for carcass traits were also not different from zero. The Nellore selection for feed efficiency by RFI or RFIFat allows the recognition of feed efficient animals, with DMI reduction and without significant changes in growth and carcass traits. However, because of the observed results between RFIFat and SC450, selection of animals should be analysed with caution and a preselection for reproductive traits is necessary to avoid reproductive impairments in the herd.  相似文献   

14.
Feed intake and efficiency of growth are economically important traits of beef cattle. This study determined the relationships of daily DMI, feed:gain ratio [F:G, which is the reciprocal of the efficiency of gain (G:F) and therefore increases as the efficiency of gain decreases and vice versa, residual feed intake (RFI), and partial efficiency of growth (efficiency of ADG, PEG) with growth and carcass merit of beef cattle. Residual feed intake was calculated from phenotypic regression (RFIp) or genetic regression (RFIg) of ADG and metabolic BW on DMI. An F1 half-sib pedigree file containing 28 sires, 321 dams, and 464 progeny produced from crosses between Alberta Hybrid cows and Angus, Charolais, or Alberta Hybrid bulls was used. Families averaged 20 progeny per sire (range = 3 to 56). Performance, ultrasound, and DMI data was available on all progeny, of which 381 had carcass data. Phenotypic and genetic parameters were obtained using SAS and ASREML software, respectively. Differences in RFIp and RFIg, respectively, between the most and least efficient steers (i.e., steers with the lowest PEG) were 5.59 and 6.84 kg of DM/d. Heritabilities for DMI, F:G, PEG, RFIp, and RFIg were 0.54 +/- 0.15, 0.41 +/- 0.15, 0.56 +/- 0.16, 0.21 +/- 0.12, and 0.42 +/- 0.15, respectively. The genetic (r = 0.92) and phenotypic (r = 0.97) correlations between RFIp and RFIg indicated that the 2 indices are very similar. Both indices of RFI were favorably correlated phenotypically (P < 0.001) and genetically with DMI, F:G, and PEG. Residual feed intake was tendentiously genetically correlated with ADG (r = 0.46 +/- 0.45) and metabolic BW (r = 0.27 +/- 0.33), albeit with high SE. Genetically, RFIg was independent of ADG and BW but showed a phenotypic correlation with ADG (r = -0.21; P < 0.05). Daily DMI was correlated genetically (r = 0.28) and phenotypically (r = 0.30) with F:G. Both DMI and F:G were strongly correlated with ADG (r > 0.50), but only DMI had strong genetic (r = 0.87 +/- 0.10) and phenotypic (r = 0.65) correlations with metabolic BW. Generally, the phenotypic and genetic correlations of RFI with carcass merit were not different from zero, except genetic correlations of RFI with ultrasound and carcass LM area and carcass lean yield and phenotypic correlations of RFI with backfat thickness (P < 0.01). Daily DMI had moderate to high phenotypic (P < 0.01) and genetic correlations with all the ultrasound and carcass traits. Depending on how RFI technology is applied, adjustment for body composition in addition to growth may be required to minimize the potential for correlated responses to selection in cattle.  相似文献   

15.
Postweaning data on 643 rabbits from 122 litters representing four breed types, New Zealand White (NZW) and Californian (CAL) purebreds, CAL X NZW (CXN), and Flemish Giant (FG) crossbreds (the latter group was a collection of FG X CAL, FG X Champagne D'Argent [CHA], and 1/2 FG X 1/4 CAL X 1/4 CHA), were gathered over five seasons and compared for growth, feed efficiency, and survival-related performance traits. Evaluation criteria included litter size and weight at weaning (28 d); 28- to 70-d litter feed intake, weight gain, feed efficiency, and mortality rate; and litter and average market weight (70 d). The least squares model included main effects of breed type, season of birth of the litter and parity of dam, litter size at weaning as a linear covariate, and the random error. Breed-type differences were not detected for litter size and weight at weaning and feed efficiency. Purebred NZW and CAL litter trait performances were comparable (P greater than .05). Purebred NZW litters consumed less feed than CXN and FG crosses, gained weight less rapidly than FG crosses, and weighed less per fryer at 70 d than CXN and FG crosses (P less than .05). Feed intake was lower and average market weight was lighter for CAL purebred litters than for CXN and FG crossbred litters (P less than .05). The CXN and FG crossbreds only differed (P less than .05) for average market weight (2,078 vs 2,192 g). Mortality rate was lower (P less than .05) in CXN crossbred litters than in CAL purebred litters.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Improvement in the utilization of feed in livestock is an important target of breeding and nutritional programs. Recent evidence indicates a potential association between feed efficiency and fecal cortisol metabolites, which could eventually be used as an indirect assessment of this trait. This evidence is more comprehensively evaluated in here with samples for plasma cortisol (PC; ng/ml) and fecal cortisol metabolites (FCM; ng/ml) collected more often during the entire finishing phase in beef steers. Individual daily feed intake of 112 steers fed a high-moisture corn-based and haylage diet was measured over 168 d. Body weight, blood and fecal samples were collected every 14 d and ultrasound measures of backfat thickness and longissimus muscle area were taken every 28 d. Four productive performance traits were calculated: daily dry matter intake (DMI), average daily gain (ADG), feed to gain ratio (F:G) and residual feed intake (RFI). At the end of the feedlot phase, steers were ranked according to RFI and samples were analyzed for PC and FCM from the 32 steers with greatest and 32 steers with lowest feed efficiency. In addition, a sub-group of 12 steers from each of these two groups with divergent feed efficiency were subjected to hourly blood sampling for 24 h. Less efficient steers had greater DMI, F:G and consumed 1.5 kg/d more DMI (P<0.05) than steers with improved feed efficiency. No differences (P>0.10) in PC over the 12 biweekly sampling periods between steers with divergent feed efficiency were observed. However, a trend toward significance between 19:00 and 02:00 h over the hourly sampling evaluation was noticed, with the sub-group of more feed efficient steers presenting higher levels of PC in this period of the day (P=0.08). On the other hand, FCM levels displayed a distinct pattern between RFI groups over the biweekly sampling period, with more efficient cattle presenting greater levels of these metabolites (P<0.05). This study reinforces the positive association between improved feed efficiency and FCM levels over the finishing phase; and the lack of association between feed efficiency and PC when single samples are collected every two weeks through a single jugular venipuncture performed after handling the cattle for sampling. Further studies to develop sampling protocols for assessing FCM as an indicator trait for feed efficiency are warranted, as well as, studies to understand the role of endogenous glucocorticoids in the performance of the bovine.  相似文献   

17.
Relationships of gain, intake, feed efficiency and severity of liver abscesses were evaluated in 12 experiments involving 566 head of individually fed cattle. Concentrate level in the diets ranged from 64 to 95%. In all experiments, livers were scored as unabscessed (0), one or two small abscesses (A-), two to four small active abscesses (A) or one or more large, active abscesses (A+). Based on homogeneity of variances, nine of the experiments were divided into two groups. In one group (four experiments) the incidence of liver abscesses was 32.1% and no significant (P greater than .25) effects of liver abscess severity score on feedlot performance variables were found. In the second group (five experiments), the incidence of liver abscesses was 77.7%. In the second group, liver abscess severity score affected final live weight (P less than .10), hot carcass weight (P less than .0001), dry matter intake (P less than .10), daily gain based on live weight recorded 24 h prior to slaughter (P less than .10), daily gain based on live weight estimated from hot carcass weight with a 62% dressing percentage (P less than .0001), feed efficiency using final live weight estimated from hot carcass weight (P less than .0001) and dressing percentage (P less than .01). In all cases, performance means for cattle with A+ liver scores were the only ones that differed significantly from those of non-abscessed cattle.  相似文献   

18.
The effects of individual SNP and the variation explained by sets of SNP associated with DMI, metabolic midtest BW, BW gain, and feed efficiency, expressed as phenotypic and genetic residual feed intake, were estimated from BW and the individual feed intake of 1,159 steers on dry lot offered a 3.0 Mcal/kg ration for at least 119 d before slaughter. Parents of these F(1) × F(1) (F(1)(2)) steers were AI-sired F(1) progeny of Angus, Charolais, Gelbvieh, Hereford, Limousin, Red Angus, and Simmental bulls mated to US Meat Animal Research Center Angus, Hereford, and MARC III composite females. Steers were genotyped with the BovineSNP50 BeadChip assay (Illumina Inc., San Diego, CA). Effects of 44,163 SNP having minor allele frequencies >0.05 in the F(1)(2) generation were estimated with a mixed model that included genotype, breed composition, heterosis, age of dam, and slaughter date contemporary groups as fixed effects, and a random additive genetic effect with recorded pedigree relationships among animals. Variance in this population attributable to sets of SNP was estimated with models that partitioned the additive genetic effect into a polygenic component attributable to pedigree relationships and a genotypic component attributable to genotypic relationships. The sets of SNP evaluated were the full set of 44,163 SNP and subsets containing 6 to 40,000 SNP selected according to association with phenotype. Ninety SNP were strongly associated (P < 0.0001) with at least 1 efficiency or component trait; these 90 accounted for 28 to 46% of the total additive genetic variance of each trait. Trait-specific sets containing 96 SNP having the strongest associations with each trait explained 50 to 87% of additive variance for that trait. Expected accuracy of steer breeding values predicted with pedigree and genotypic relationships exceeded the accuracy of their sires predicted without genotypic information, although gains in accuracy were not sufficient to encourage that performance testing be replaced by genotyping and genomic evaluations.  相似文献   

19.
Feed intake and feed efficiency of beef cattle are economically relevant traits. The study was conducted to identify QTL for feed intake and feed efficiency of beef cattle by using genotype information from 100 microsatellite markers and 355 SNP genotyped across 400 progeny of 20 Angus, Charolais, or Alberta Hybrid bulls. Traits analyzed include feedlot ADG, daily DMI, feed-to-gain ratio [F:G, which is the reciprocal of the efficiency of gain (G:F)], and residual feed intake (RFI). A mixed model with sire as random and QTL effects as fixed was used to generate an F-statistic profile across and within families for each trait along each chromosome, followed by empirical permutation tests to determine significance thresholds for QTL detection. Putative QTL for ADG (chromosome-wise P < 0.05) were detected across families on chromosomes 5 (130 cM), 6 (42 cM), 7 (84 cM), 11 (20 cM), 14 (74 cM), 16 (22 cM), 17 (9 cM), 18 (46 cM), 19 (53 cM), and 28 (23 cM). For DMI, putative QTL that exceeded the chromosome-wise P < 0.05 threshold were detected on chromosomes 1 (93 cM), 3 (123 cM), 15 (31 cM), 17 (81 cM), 18 (49 cM), 20 (56 cM), and 26 (69 cM) in the across-family analyses. Putative across-family QTL influencing F:G that exceeded the chromosome-wise P < 0.05 threshold were detected on chromosomes 3 (62 cM), 5 (129 cM), 7 (27 cM), 11 (16 cM), 16 (30 cM), 17 (81 cM), 22 (72 cM), 24 (55 cM), and 28 (24 cM). Putative QTL influencing RFI that exceeded the chromosome-wise P < 0.05 threshold were detected on chromosomes 1 (90 cM), 5 (129 cM), 7 (22 cM), 8 (80 cM), 12 (89 cM), 16 (41 cM), 17 (19 cM), and 26 (48 cM) in the across-family analyses. In addition, a total of 4, 6, 1, and 8 chromosomes showed suggestive evidence (chromosome-wise, P < 0.10) for putative ADG, DMI, F:G, and RFI QTL, respectively. Most of the QTL detected across families were also detected within families, although the locations across families were not necessarily the locations within families, which is likely because of differences among families in marker informativeness for the different linkage groups. The locations and direction of some of the QTL effects reported in this study suggest potentially favorable pleiotropic effects for the underlying genes. Further studies will be required to confirm these QTL in other populations so that they can be fine-mapped for potential applications in marker-assisted selection and management of beef cattle.  相似文献   

20.
The objectives of this study were to determine the fraction of additive genetic variance explained by the SNP from the Illumina Bovine3K chip; to compare the ranking of animals evaluated with genomic-polygenic, genomic, and polygenic models; and to assess trends in predicted values from these 3 models for residual feed intake (RFI), daily feed intake (DFI), feed conversion ratio (FCR), and postweaning BW gain (PWG) in a multibreed Angus-Brahman cattle population under subtropical conditions. Data consisted of phenotypes and genotypes from 620 bulls, steers, and heifers ranging from 100% Angus to 100% Brahman. Phenotypes were collected in a GrowSafe automated feeding facility (GrowSafe Systems, Ltd., Airdrie, Alberta, Canada) from 2006 to 2010. Variance components were estimated using single-trait genomic-polygenic mixed models with option VCE (Markov chain Monte Carlo) of the program GS3. Fixed effects were contemporary group (year-pen), age of dam, sex of calf, age of calf, Brahman fraction of calf, and heterozygosity of calf. Random effects were additive SNP, animal polygenic, and residual effects. Genomic predictions were computed using a model without polygenic effects and polygenic predictions with a model that excluded additive SNP effects. Heritabilities were 0.20 for RFI, 0.31 for DFI, 0.21 for FCR, and 0.36 for PWG. The fraction of the additive genetic variance explained by SNP in the Illumina 3K chip was 15% for RFI, 11% for DFI, 25% for FCR, and 15% for PWG. These fractions will likely differ in other multibreed populations. Rank correlations between genomic-polygenic and polygenic predictions were high (0.95 to 0.99; P < 0.0001), whereas those between genomic-polygenic and genomic predictions were low (0.65 to 0.74; P < 0.0001). Genomic-polygenic, genomic, and polygenic predictions for all traits tended to decrease as Brahman fraction increased, indicating that calves with greater Brahman fraction were more efficient but grew more slowly than calves with greater Angus fraction. Predicted SNP values were small for all traits, and those above and below 0.2 SNP SD were in multiple chromosomes, supporting the contention that quantitative traits are determined by large numbers of alleles with small effects located throughout the genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号