首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To develop a live vaccine for equine herpesvirus type 1 (EHV-1), two EHV-1 mutants containing no heterogeneous DNA, DeltagI and DeltagE, were constructed with deletions in the open reading frame of either glycoprotein I (gI) or E (gE), respectively. In equine cell culture, deletion mutants formed smaller plaques than the parental and revertant viruses, but the one-step growth patterns of the deletion mutants and the parental strain were approximately the same. These results suggest that both gI and gE contribute to the ability of EHV-1 to spread directly from cell-to-cell, but that these glycoproteins are not required for viral growth in vitro. Mice and hamsters inoculated intranasally with these mutants showed no clinical signs, and continued to gain weight, whereas those inoculated with the parental virus exhibited a reduction in mean body weight. Furthermore, nervous manifestations were observed in hamsters inoculated with the parental virus. These results suggest that gI and gE have an important role in EHV-1 virulence including neurovirulence in experimental animal models. On the other hand, serum neutralizing antibodies were detected in mice immunized with DeltagI or DeltagE at two weeks after inoculation. Following challenge with the parental virus, DeltagI- or DeltagE-immunized mice were able to clear parental virus from their lungs faster than mock-immunized mice. These results suggest that the EHV-1 mutants defective in gI and in gE are attenuated but have ability to elicit immune responses in inoculated mice that contribute to virus clearance.  相似文献   

2.
In this study the role of different genes located in the unique short region of the genome of Aujeszky's disease virus was examined. Inactivation of the genes encoding the protein kinase (PK), gp63, and gI reduced virulence of the virus for pigs, in contrast to inactivation of the genes encoding the 28 kDa protein, and gX. There was no correlation between virulence and virus multiplication in vitro or in the oropharynx in vivo. The morphogenesis of the PK mutant was altered. The gI mutant replicated to normal titres in the oropharynx and could be recovered from the trigeminal ganglia but not from other parts of the central nervous system, suggesting that gI facilitates the spread of the virus from neuron to neuron. All mutants induced neutralizing antibody and complete or partial protection against a challenge infection. PK and gp63 were required for the induction of complete protection, although these proteins are reportedly not targets for neutralizing antibody or cytotoxic T cells.  相似文献   

3.
In this work, a role for the genes encoding glycoproteins I (gI) and E (gE) and the US9 protein of bovine herpesvirus type 5 (BHV-5) in neuropathogenicity and reactivation of latent infections was examined. Calves infected intranasally with a gI/gE/US9 deleted recombinant shed up to 10(2.85) TCID50/ml infectious virus in nasal secretions. Calves infected with the wild type BHV-5 parental virus shed up to 10(5) TCID50/ml virus. No signs of disease were observed in calves infected with the recombinant virus, whereas those infected with wild type virus displayed respiratory and neurological signs. The recombinant was only able to reach the basal portions of the central nervous system. In contrast, wild type virus was found widespread within the brain. Reactivation with dexamethasone 60 days post-infection resulted in reactivation of wild type virus, whereas the recombinant virus could not be reactivated. These studies demonstrate that genes gI, gE and US9 of BHV-5 are important for its neuropathogenicity and its ability to reactive from latency.  相似文献   

4.
In this study, we examined the functional role of bovine herpesvirus type 1 (BHV-1) Us9 acidic domain residues 83-90 in the anterograde axonal transport of the virus in calves (natural host), rabbits, and in cultured neurons. A mutant virus strain lacking Us9 residues 83-90 (BHV-1 Us9 Δ83-90) and the rescued virus (BHV-1 Us9 R83-90) replicated efficiently in the nasal and ocular epithelium during primary infection and established latency in the trigeminal ganglia (TG). However, upon reactivation from latency, only the BHV-1 Us9 R83-90 virus was detected in nasal and ocular swabs of animals. In compartmentalized, rabbit primary dorsal root ganglia (DRG) neuron cultures, the Us9-deleted BHV-1, BHV-1 Us9 Δ83-90 and BHV-1 Us9 R83-90 viruses were transported efficiently in the retrograde direction. However, only the BHV-1 Us9 R83-90 virus was transported in an anterograde direction. These studies suggested that the Us9 acidic domain residues located between 83 and 90 were required for axonal anterograde transport.  相似文献   

5.
鸭瘟病毒的分子生物学研究进展   总被引:6,自引:0,他引:6  
鸭瘟病毒属疱疹病毒科、α-疱疹病毒亚科。其核酸结构为线状双股 DNA,衣壳为二十面体对称 ,有囊膜。鸭瘟病毒的 DNA具典型的疱疹病毒 DNA的特征 ,大小约为 1 50 kb,两端为末端重复序列 ,中间有内部重复序列。囊膜蛋白为疱疹病毒的主要保护性抗原 ,它在介导病毒进入细胞 ,以及病毒的成熟与释放中均起重要的作用。疱疹病毒的囊膜蛋白主要有糖蛋白 B( Glycoprotein B,g B)、g C、g D、g E、g I等。其他蛋白如 Ul3 6、Ul3 7等在病毒的成熟与释放中也起重要的作用。国内外已有多人建立起鸭瘟的PCR检测方法 ,而其基因工程疫苗的研究报道较少。但参考其他疱疹病毒特别是伪狂犬病的基因工程疫苗的研究 ,可以推测鸭瘟的基因工程疫苗研究也大有可为。  相似文献   

6.
A panel of seven monoclonal antibodies (MAbs) directed against the bovine herpesvirus-1 (BHV-1) glycoprotein E (gE) was obtained. For that purpose, mice were either tolerized to BHV-1 gE-negative virus and then immunized with wild type BHV-1 or immunized with plasmid DNA expressing the gE and gI glycoproteins. The MAbs were characterized by their reactivity with the gE protein or the gE/gI complex and by competition experiments. Results showed that the MAbs were directed against three antigenic domains, two located on the gE glycoprotein and one on the gE/gI complex. Blocking experiments were performed with sera from experimentally vaccinated and infected cattle. A competition was observed between gE-positive bovine sera and six of the seven MAbs. The bovine sera thus recognized two of the three antigenic sites. Field sera were then tested in blocking enzyme-linked immunosorbent assay using one horseradish peroxidase-conjugated MAb. A specificity of 98.2% and a sensitivity of 98.2% compared to the commercially available test were observed.  相似文献   

7.
为获得具有生物活性的伪狂犬病病毒(Pseudorabies virus,PRV)gE/gI蛋白,建立PRV抗体快速检测方法。将含有PRV gE、gI基因的质粒pFastBacdual-GP67-gE/gI转化至宿主菌,经位点特异性重组和蓝白斑筛选后获得重组杆粒rBacmid-gE/gI,转染Sf9细胞,获得重组杆状病毒。采用悬浮的Sf9细胞进行发酵并纯化产物,SDS-PAGE和Western blot分析镍柱纯化后的重组蛋白。结果显示,重组杆粒在4800 bp处克隆出预期大小的条带,表示重组杆粒构建成功。SDS-PAGE和Western blot表明,在50 ku和65 ku处出现预期大小的条带,能与PRV标准阳性血清特异性反应,不与PRV gE/gI缺失疫苗免疫血清反应。结果表明gE/gI重组蛋白具有良好的反应原性,为PRV抗体快速检测及区分PRV野毒感染和疫苗免疫奠定了基础。  相似文献   

8.
The purpose of the study was to evaluate the role which non-essential envelope glycoproteins play in the neuroinvasion and neural spread of ADV. The invasion and spread in the trigeminal nervous pathway with the Ka strain of ADV and its single deletion mutants Ka gI, Ka gp63 and Ka gIII were examined after intranasal inoculation in neonatal pigs by virus isolation and immunocytochemistry. Evaluation was performed in the nasal mucosa, trigeminal ganglion (1st neuronal level), pons-medulla (2nd neuronal level) and thalamus-cerebellum (3rd neuronal level). The Ka gIII mutant invaded up to the 3rd neuronal level of the trigeminal pathway and spread in a similar way to the parental Ka strain. The Ka gp63 mutant invaded up to the 3rd neuronal level but the spread of this mutant was impaired at all the neuronal levels. The Ka gI mutant was least neuroinvasive and reached only up to the 2nd neuronal level. The results showed that glycoproteins gI and gp63 play a role in the invasion and spread of ADV in the nervous system. However, the gI glycoprotein appears to be the most important for neuroinvasion and neural spread of ADV in pigs. Therefore, gI deleted vaccines may be considered to be safer with respect to the neuroinvasion than vaccines carrying single deletions of other non-essential envelope glycoproteins.  相似文献   

9.
According to published gE and gI gene sequences of pseudorabies virus (PRV) in GenBank, we designed two pairs of primers for PCR amplification of gE and gI genes of PRV NP isolate, after PCR products recycling, cloning and sequencing, the sequencing results were consistent with expectations of PRV gE and gI genes.Homology comparison analysis results revealed that compared with the domestic PRV strains, the homologies of gE and gI amino acids of PRV NP isolate were 95.7% to 99.8% and 89.9% to 99.5%, respectively.Phyogenetic tree analysis and amino acid sequence alignment results found that the gE amino acid sequence site changes of PRV NP isolate were the same with the PRV strains which were isolated from domestic in 2012, thus we could speculate that PRV NP isolate had mutanted.This study had laid the foundation for the epidemiological investigation and analysis of PRV, also provided the scientific basis for the development of scientific, effective and new pseudorabies vaccine.  相似文献   

10.
近年来,α疱疹病毒的囊膜糖蛋白gE在病毒细胞间传递、神经系统入侵、免疫逃避等方面的研究取得新的进展。gE能促进合胞体形成,影响病毒的顺行、逆行神经传导,也是第一个报道可以抑制浆细胞样树突状细胞产生Ⅰ型干扰素的病毒蛋白。本文对α疱疹病毒囊膜糖蛋白gE与毒力之间的关系进行阐述,以期为α疱疹病毒gE的功能研究提供参考。  相似文献   

11.
伪狂犬病病毒上海株gE和gI基因的克隆及序列分析   总被引:2,自引:0,他引:2  
参考Genebank发表的伪犬病病毒(Pseudorabies Virus,PRV)的gI和gE基因序列,自行设计并合成了两对引物,对PRV上海株(PRV-SH)进行PCR扩增,产物经琼脂糖电泳分析,均呈现一条约960bp和1740bp的条带,将其克隆入pGEM-T-easy载体中,进行了序旬测定,将PRV-SH株的gI基因与Rice株gI基因比较发现,核苷酸的同源性为94.7%,氨基酸的同源性为91.3%,证实为gI基因,将PRV-SH gE基因序列与Ea株、Ruce株gE基因序列进行比较,结果显示,该序列与PRV Ea株、Rice株gE基因的同源性分别为98.5%、97.5%;的氨基酸序列与Ea株,Rice株和I型单纯疱疹病毒(HSV-1)17株gE的同源性分别为97.2%、94.8%和15.6%。  相似文献   

12.
根据GenBank中已发表的猪伪狂犬病病毒(PRV) gE、gI基因的序列设计了2对引物,对PRV NP株的gE、gI基因进行了PCR扩增、回收、克隆、测序,测序结果与预期的PRV gE、gI基因片段相符。同源性比对分析结果显示,PRV NP株gE、gI基因推导的氨基酸序列与国内分离的PRV毒株的同源性分别为95.7%~99.8%、89.9%~99.5%。遗传进化树分析和氨基酸序列比对结果发现PRV NP株的gE氨基酸序列发生变化的位点与2012年国内分离到的PRV流行株相同,从而推测NP株为PRV变异毒株,本研究为PRV的流行病学调查分析奠定了基础,也为开发科学、有效的新型猪伪狂犬病(PR)疫苗提供科学依据。  相似文献   

13.
Vaccination of pigs is widely practised to control Aujeszky's disease (AD). Molecular biological research revealed that several conventionally attenuated virus vaccines harbour deletions in their genomes. The deleted genes are nonessential for virus replication and can be involved in the expression of virulence. These findings have prompted several groups to construct well-characterized deletion mutants of AD virus that do not express either glycoprotein gI, gX or gIII. These mutants have also been rendered thymidine kinase negative. Although data on vaccine efficacy and safety have been published, widely varying test conditions have made it impossible to identify the most efficacious deletion mutant vaccine(s). Vaccination enhances the amount of virus required for infection and reduces, but does not prevent, the shedding of virulent virus and the establishment of latency in pigs infected with virulent AD virus. Therefore, while a vaccination programme will reduce the circulation of virus in the field, it will not eliminate AD virus from pig populations. To eradicate AD, the ability to differentiate infected from vaccinated pigs is crucial. The use of marker vaccines enables us to identify infected pigs in vaccinated populations by detecting antibodies against the protein whose gene is deleted from vaccine strains. The antibody response to gI appears to persist for more than 2 years, and all of about 300 field strains tested so far express gI. The use of vaccines lacking gI in combination with an enzyme linked immunosorbent assay to detect antibodies to gI and culling of gI-seropositive pigs, may help to eradicate AD in countries where vaccination is widely practised.  相似文献   

14.
The herpesvirus family contains several important human pathogens. Human herpesviruses include herpes simplex virus type 1 and 2, varicella-zoster virus, human cytomegalovirus, Epstein-Barr virus and human T-cell lymphotropic virus. The general property of herpesviruses is their ability to establish latency and to be periodically reactivated. All human herpesviruses contain a subset of genes encoding viral glycoproteins that are clearly homologous, and their similarity is significantly greater among members of the same subfamily. Membrane glycoproteins specified by human herpesviruses are important determinants of viral pathogenicity. They are exposed on the viral envelope and on the surface of infected cells. They mediate entry of the virus into cells and cell-to-cell spread of infection and also influence tissue tropism and host range. Viral membrane glycoproteins are also the most important elicitors of protective immune response and are therefore the best candidates for subunit vaccines.  相似文献   

15.
Herpes virions are complex particles that consist of more than 30 different virally encoded proteins. The molecular basis of how this complicated structure is assembled is only recently beginning to emerge. After replication in the host cell nucleus viral DNA is incorporated into preformed capsids which leave the nucleus by budding at the inner nuclear membrane resulting in the formation of primary enveloped virions in the perinuclear space. The primary envelope then fuses with the outer leaflet of the nuclear membrane, thereby releasing nucleocapsids into the cytoplasm. Final envelopment including the acquisition of more than 15 tegument and more than 10 envelope (glyco)proteins occurs by budding into Golgi-derived vesicles. Mature virions are released after fusion of the vesicle membrane with the plasma membrane of the cell. Thus, herpesvirus morphogenesis requires a sequence of envelopment--de-envelopment--re-envelopment processes which are distinct not only in the subcellular compartments in which they occur but also in the viral proteins involved. This review summarizes recent advances in our understanding of the complex protein-protein interactions involved in herpesvirus assembly and egress.  相似文献   

16.
During and after their synthesis, the envelope proteins of influenza viruses are extensively modified by glycosylation, disulfide-bond formation, oligomerisation and proteolytical cleavage. These modifications have an enormous impact on folding and transport of the proteins to the plasma membrane and are also crucial for the infectivity and pathogenicity of the resulting virus particles. Here we summarize the results of 25 years of research on the linkage of fatty acids to proteins (palmitoylation), a modification we discovered with viral glycoproteins including the influenza virus spike proteins. The fundamental biochemistry of the attachment of fatty acids to the hemagglutinin (HA) and to the ion-channel M2 is described which has been instrumental in revealing similar modifications in cellular proteins. Finally, the functional consequences of palmitoylation for entry of viruses into target cells by HA-mediated membrane fusion and for assembly and release of virus particles from infected cells are discussed.  相似文献   

17.
A horse with neurological signs and severe meningoencephalitis caused by Aujeszky's disease is described. The diagnosis was established by immunohistochemistry, DNA-in situ hybridization and serological tests. Aujeszky's disease virus antigen and Aujeszky's disease viral DNA were detected in neurons of the cerebrum. In the serum of the horse antibodies against Aujeszky's disease virus were detected in a virus neutralization test, in a blocking ELISA which specifically detects antibodies against the glycoprotein I (Ig) of the virus, in an indirect double sandwich ELISA and with colloidal gold immunoelectron microscopy which detects antibodies directed against the envelope and nucleocapsid of the virus. Intranasal infection of two points with a high dose of Aujeszky's disease virus caused very wild and transient signs. Although the experimental infection induced virus neutralizing antibodies, it failed to induce gI specific antibodies.  相似文献   

18.
对含伪狂犬病病毒(Pseudorabies Virus,PrV)Ea株gD基因部分编码序列,gI、gE和11k基因全序列、28k基因部分序列的质粒pSKB4.5进行亚克隆,构建了只含完整gE基因(长1.78kb)的重组质粒pSDM1.78 ,并采用双脱氧末终止法对全序列进行了分析,发现同国外标准毒株Rice株相比较,在核苷酸和氨基酸水平均存在一定程度的差异。进一步将gE基因克隆到高效真核表达载体pcNDA3.1 的Kpn1和BamH1位点之间,构建了gE基因的真核表达质粒pcDNA-gE。体外转染IBRS-2细胞,经间接免疫荧光法检测证实了gE基因在IBRS-2细胞中得到了表达,表达的蛋白具有生物学活性。  相似文献   

19.
Marek’s disease virus type 1 (MDV-1) shows a strict dependency on the direct cell-to-cell spread for its propagation in cell culture. As MDV-1 shows an impaired nuclear egress in cell culture, we wished to address the characterization of capsid/tegument genes which may intervene in the maturation of intranuclear capsids. Orthologs of UL17 are present in all herpesviruses and, in all reported case, were shown to be essential for viral growth, playing a role in capsid maturation and DNA packaging. As only HSV-1 and PrV UL17 proteins have been characterized so far, we wished to examine the role of MDV-1 pUL17 in virus replication. To analyze MDV-1 UL17 gene function, we created deletion mutants or point mutated the open reading frame (ORF) to interrupt its coding phase. We established that a functional ORF UL17 is indispensable for MDV-1 growth. We chose to characterize the virally encoded protein by tagging the 729 amino-acid long protein with a repeat of the HA peptide that was fused to its C-terminus. Protein pUL17 was identified in infected cell extracts as an 82 kDa protein which localized to the nucleus, colocalizing with VP5, the major capsid protein, and VP13/14, a major tegument protein. By using green fluorescent protein fusion and HA tagged proteins expressed under the cytomegalovirus IE gene enhancer/promoter (PCMV IE), we showed that MDV-1 pUL17 nuclear distribution in infected cells is not an intrinsic property. Although our results strongly suggest that another viral protein retains (or relocate) pUL17 to the nucleus, we report that none of the tegument protein tested so far were able to mediate pUL17 relocation to the nucleus.  相似文献   

20.
Intracellular antigens of strain DN-599 bovine herpesvirus were detected in the cytoplasm and the nucleus of infected bovine embryonic kidney cells by the indirect immunoferritin (IF) technique. Specific tagging was observed in viral envelope and capsids. Aggregates of viral particles heavily coated with antibody were seen by immune electron microscopy (IEM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号