首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By application of aroma extract dilution analysis (AEDA) on the volatile fraction isolated by solvent extraction and solvent-assisted flavor evaporation (SAFE) from unifloral rape honey harvested in July 2009, 28 odor-active areas could be detected within a flavor dilution factor (FD) range of 4-2048. The highest FD factors were found for (E)-β-damascenone (cooked apple-like), phenylacetic acid (honey-like), 4-methoxybenzaldehyde (aniseed-like), 3-phenylpropanoic acid (flowery, waxy), and 2-methoxy-4-vinylphenol (clove-like). Twenty-three odorants were then quantitated by application of stable isotope dilution assays, and their odor activity values (OAV, ratio of concentration to odor threshold) were calculated on the basis of newly determined odor thresholds in an aqueous fructose-glucose solution. The highest OAVs were calculated for (E)-β-damascenone, 3-phenylpropanoic acid, phenylacetic acid, dimethyl trisulfide, and phenylacetaldehyde. Quantitative measurements on a rape honey produced in 2011 confirmed the results. A model mixture containing the 12 odorants showing an OAV ≥ 1 at the same concentrations as they occurred in the rape honey was able to mimick the aroma impression of the original honey. The characterization of the key odorants in rape flowers from the same field suggested 3-phenylpropanoic acid, phenylacetic acid, and three further odorants to be transferred via the bees into the honey.  相似文献   

2.
Application of aroma extract dilution analysis (AEDA) to the volatiles isolated from a commercial Japanese soy sauce revealed 30 odor-active compounds in the flavor dilution (FD) factor range of 8-4096, among which 2-phenylethanol showed the highest FD factor of 4096, followed by 3-(methylsulfanyl)propanal (methional), the tautomers 4-hydroxy-5-ethyl-2-methyl- and 4-hydroxy-2-ethyl-5-methyl-3(2H)-furanone (4-HEMF), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (4-HDF), and 3-hydroxy-4,5-dimethyl-2(5H)-furanone (sotolone), all showing FD factors of 1024. Thirteen odorants were quantified by stable isotope dilution assays, and their odor activity values (OAVs) were calculated as ratio of their concentrations and odor thresholds in water. Among them, 3-methylbutanal (malty), sotolone (seasoning-like), 4-HEMF (caramel-like), 2-methylbutanal (malty), methional (cooked potato), ethanol (alcoholic), and ethyl 2-methylpropanoate (fruity) showed the highest OAVs (>200). An aqueous model aroma mixture containing 13 odorants, which had been identified with the highest OAVs, in concentrations that occur in the soy sauce showed a good similarity with the overall aroma of the soy sauce itself. Heat treatment of the soy sauce resulted in a clear change of the overall aroma. Quantitation of selected odorants revealed a significant decrease in sotolone and, in particular, increases in 2-acetyl-1-pyrroline, 4-HDMF, and 4-HEMF induced by heating.  相似文献   

3.
The unique flavor of Oscypek, a Polish ewe's milk smoked cheese, is described as slightly sour, piquant, salted, and smoked. In this paper with the application of gas chromatography-olfactometry (GC-O) and combination of aroma extract dilution analysis (AEDA) 20 potent odorants of this cheese have been identified within the flavor dilution factor (FD) range of 4-2048. Among them, 2-methoxyphenol, 2-methoxy-4-methylphenol, 4-methylphenol, and butanoic acid showed the highest FD factors. Quantification results based on labeled standard addition followed by calculation of odor activity values (OAV) of 13 compounds with the highest FD factors revealed that 11 compounds were present at concentrations above their odor threshold values and therefore mostly contribute to the overall aroma of smoked ewe's milk cheese. Six of those compounds were represented by phenolic derivatives, with the highest OAV for 2-methoxyphenol (1280). Analysis of key odorants of an unsmoked cheese sample showed that the smoking process had a fundamental influence on Oscypek aroma formation.  相似文献   

4.
Changes in the aroma of sake during aging were investigated by aroma extract dilution analysis (AEDA) and quantitative analysis using the stir bar sorptive extraction method. In AEDA, more odor zones were detected in aged sake than in fresh sake. The dilution factors of aldehydes, polysulfides, and some esters were greater in the aged sake, and their increase during aging was confirmed through a quantitative analysis of sake stored for 0-35 years. Among these compounds, 3-methylbutanal, methional, and dimethyltrisulfide (DMTS) were present in aged sake at concentrations exceeding their odor thresholds, and the highest odor active value was observed for DMTS. Sensory tests showed that supplementation with DMTS contributed to both the total odor intensity and the sulfury odor of aged sake aroma.  相似文献   

5.
Application of aroma extract dilution analysis on the volatiles isolated from a Bavarian Pilsner-type beer revealed 40 odor-active constituents in the flavor dilution (FD) factor range of 16-2048, among which ethyl octanoate, (E)-beta-damascenone, 2- and 3-methylbutanoic acid, and 4-hydroxy-2,5-dimethyl-3(2H)-furanone showed the highest FD factor of 2048. After quantitation of the 26 odorants showing FD factors > or =128 by stable isotope dilution analysis and determination of their odor thresholds in water, odor acitivity values (OAVs) were calculated. The results indicated ethanol, (E)-beta-damascenone, (R)-linalool, acetaldehyde, and ethyl butanoate with the highest OAVs, followed by ethyl 2-methylpropanoate and ethyl 4-methylpentanoate, which was previously unknown in beer. Finally, the overall aroma of the beer could be mimicked for the first time by recombining 22 reference odorants in the same concentrations as they occurred in the beer using ethanol/water as the matrix.  相似文献   

6.
The volatile components of Hyuganatsu (Citrus tamurana Hort. ex Tanaka) peel oil, isolated by cold-pressing, were investigated by chemical and sensory analyses. According to chemical analysis by GC and GC-MS, limonene (84.0%) was the most abundant compound, followed by gamma-terpinene (6.9%), myrcene (2.2%), alpha-pinene (1.2%), and linalool (1.0%). Monoterpene hydrocarbons were predominant in Hyuganatsu peel oil. The odor-active volatiles in Hyuganatsu flavor were studied by GC-olfactometry and omission tests. The characteristic flavor was present in the oxygenated fraction. Flavor dilution (FD) factors of the volatile flavor components of the Hyuganatsu cold-pressed oil were determined by aroma extraction dilution analysis (AEDA). Furthermore, relative flavor activity was investigated by means of FD factor and weight percent. Ten kinds of odor compounds having Hyuganatsu-like aroma were detected by AEDA: limonene, linalool, octanol, neral, neryl acetate, tridecanal, trans-carveol, cis-nerolidol, trans,trans-farnesyl acetate, and trans,trans-farnesol. Linalool and octanol were regarded as the most odor-active or key compounds of Hyuganatsu aroma. Diluted solutions of linalool and octanol of approximately 2 ppm gave a fresh and fruity aroma note similar to Hyuganatsu flavor.  相似文献   

7.
To identify the compounds evoking the characteristic cereal-like, sweet aroma of oat flakes, an aroma extract dilution analysis (AEDA) was applied to a distillate prepared by solvent extraction/vacuum distillation from commercial oat flakes. Among the nine aroma-active compounds detected by gas chromatography-olfactometry and AEDA in the flavor dilution (FD) factor range of 4-1024, eight odorants, for example, (E)-beta-damascenone, (Z)-3-hexenal, and butanoic acid, showed only low FD factors. However, one odorant eliciting the typical cereal, sweet aroma of the flakes was detected with the highest FD factor of 1024. By mass spectrometry and nuclear magnetic resonance measurements followed by a synthesis, (E,E,Z)-2,4,6-nonatrienal, exhibiting an intense oat flake-like odor at the extremely low odor threshold of 0.0002 ng/L in air, was identified as the key odorant of the flakes. By means of a newly developed stable isotope dilution analysis using synthesized, carbon-13-labeled nonatrienal as the internal standard, a concentration of 13 mug of (E,E,Z)-2,4,6-nonatrienal per kilogram of the flakes was measured. Model studies suggested linolenic acid as the precursor of nonatrienal in oats.  相似文献   

8.
The flavor of the Miyabi variety of Japanese muskmelon was extracted according to the Porapak Q column method (PQM) and evaluated by using aroma extract dilution analysis (AEDA) method. The overall odor of the PQM extracts was perceived as having a natural muskmelon-like odor, suggesting that the PQM was able to extract volatile compounds in muskmelon fruit without degradation of original flavor. Forty-six odorant compounds [Kovats index (KI), 961 < or = KI < or = 2605] were found by GC-sniffing in PQM extracts, confirming the effectiveness of PQM in trapping a wide range of volatile compounds in muskmelon flavor. The 46 odorants could be divided into three groups on the basis of their odor attributes: fruity note (KI < 1300); green, grassy, or cucumber-like note (1300 < KI < 2020); and sweet note (KI > 2020). When the original extracts were diluted in AEDA analysis, seven odorants could still be detected by GC-sniffing at a flavor diluation (FD) factor of 128 or above: one had a fruity note (compound 3); four had a cucumber-like, green, or grassy note (compounds 12, 17, 21, and 23); and two had a sweet note (caramel-like or yakitori-like) (compounds 32 and 34).  相似文献   

9.
Four Spanish aged red wines made in different wine-making areas have been extracted, and the extracts and their 1:5, 1:50, and 1:500 dilutions have been analyzed by a gas chromatography-olfactometry (GC-O) approach in which three judges evaluated odor intensity on a four-point scale. Sixty-nine different odor regions were detected in the GC-O profiles of wines, 63 of which could be identified. GC-O data have been processed to calculate averaged flavor dilution factors (FD). Different ANOVA strategies have been further applied on FD and on intensity data to check for significant differences among wines and to assess the effects of dilution and the judge. Data show that FD and the average intensity of the odorants are strongly correlated (r(2) = 0.892). However, the measurement of intensity represents a quantitative advantage in terms of detecting differences. For some odorants, dilution exerts a critical role in the detection of differences. Significant differences among wines have been found in 30 of the 69 odorants detected in the experiment. Most of these differences are introduced by grape compounds such as methyl benzoate and terpenols, by compounds released by the wood, such as furfural, (Z)-whiskey lactone, Furaneol, 4-propylguaiacol, eugenol, 4-ethylphenol, 2,6-dimethoxyphenol, isoeugenol, and ethyl vanillate, by compounds formed by lactic acid bacteria, such as 2,3-butanedione and acetoine, or by compounds formed during the oxidative storage of wines, such as methional, sotolon, o-aminoacetophenone, and phenylacetic acid. The most important differences from a quantitative point of view are due to 2-methyl-3-mercaptofuran, 4-propylguaiacol, 2,6-dimethoxyphenol, and isoeugenol.  相似文献   

10.
To identify the character impact odorant of high-heat skim milk powder (HHSMP), a comparative study using ultrahigh-temperature (UHT) milk was performed. Aroma concentrate was prepared by column adsorption combined with simultaneous distillation-extraction. Aroma extract dilution analysis (AEDA) revealed 58 aroma peaks with flavor dilution (FD) factors ranging from 10 to 3000; from these, 41 compounds were identified and 7 compounds were tentatively identified (FD factor > or = 300). Among these HHSMP and UHT milk components, methyl 2-methyl-3-furyl disulfide and bis(2-methyl-3-furyl) disulfide, which appeared to be generated during the processing of each product, were identified. When the results of the AEDA of both samples were compared, it was considered that the characteristic aroma of HHSMP was not explained by a single compound but instead formed from a mixture of several types of compounds contained in common with the UHT milk. The contribution of these compounds to the aroma of HHSMP was confirmed by an aroma simulation experiment.  相似文献   

11.
An investigation of the volatile fraction of a freshly prepared sourdough rye bread crumb by means of the aroma extract dilution analysis (AEDA), followed by identification experiments, revealed 22 flavor compounds in the flavor dilution (FD) factor range of 128 to 2048. Quantitations performed by stable isotope dilution assays (SIDA) and a calculation of odor activity values (OAV; ratio of concentration to odor threshold) revealed the following as contributors to the overall crumb flavor: 3-methylbutanal (malty), (E)-2-nonenal (green, fatty), (E,E)-2,4-decadienal (fatty, waxy), hexanal (green), acetic acid (sour, pungent), phenylacetaldehyde (honey-like), methional (boiled potato-like), vanillin (vanilla-like), 2,3-butandione (buttery), 3-hydroxy-4,5-dimethyl-2(5H)-furanone (spicy), and 2- and 3-methylbutanoic acid (sweaty). Using either citrate buffer, starch, or deodorized crumb as model matrixes, the typical malty and sour rye bread crumb flavor was reproduced by adding a mixture of 20 reference odorants in the "natural" concentrations as quantitatively determined in the fresh crumb.  相似文献   

12.
Aroma and aroma-active compounds of wild grey mullet ( Mugil cephalus ) were analyzed by gas chromatography-mass spectrometry-olfactometry (GC-MS-O). According to sensory analysis, the aromatic extract obtained by simultaneous distillation and extraction (SDE) was representative of grey mullet odor. A total of 50 aroma compounds were identified and quantified in grey mullet. Aldehydes were qualitatively and quantitatively the most dominant volatiles in grey mullet. Aroma extract dilution analysis (AEDA) was used for the determination of aroma-active compounds of fish sample. A total of 29 aroma-active compounds were detected in aromatic extract of grey mullet, of which 24 were identified. On the basis of the flavor dilution (FD) factor, the most powerful aroma active compounds identified in the extract were (Z)-4-heptenal and nonanal, which were described as the strong cooked fish and green-fruity odor, respectively.  相似文献   

13.
Three forms of Thai fried chili pastes (CP) were prepared, consisting of an unheated CP (UH-CP), a CP heated at 100 degrees C for 25 min (H25-CP, typical product), and a CP excessively heated for 50 min (H50-CP). The potent odorants in the CPs were investigated by two gas chromatography-olfactometry methods: dynamic headspace dilution analysis (DHDA) and aroma extract dilution analysis (AEDA). DHDA revealed that the predominant odorants in heated CPs were mainly sulfur-containing compounds, followed by lipid-derived compounds, Strecker aldehydes, and Maillard reaction products. Dimethyl sulfide, allyl mercaptan, 2- (or 3-) methylbutanal, ally methyl sulfide, 2,3-butanedione, 3,3'-thiobis(1-propene), and methyl propyl disulfide were among the most potent headspace odorants detected by DHDA. By AEDA, 2-vinyl-4 H-1,3-dithiin and diallyl trisulfide had the highest FD factors in H25-CP. On the basis of their high FD factors by both GCO methods, the predominant odorants in H25-CP were 3-vinyl-4 H-1,2-dithiin, allyl methyl disulfide, and allyl methyl trisulfide. Furthermore, dimethyl trisulfide and diallyl disulfide had the highest odor activity values in H25-CP, suggesting that these were also potent odorants in CP. In addition, methional, 3-methylbutanoic acid, 4-hydroxy-2,5-dimethyl-3-(2 H)-furanone, and 3-hydroxy-4,5-dimethyl-2( 5H)-furanone (sotolon) were indicated as potent thermally derived odorants of H25-CP.  相似文献   

14.
Application of aroma extract dilution analysis (AEDA) on the volatile components of low-, medium-, and high-heat-treated nonfat dry milks (NDM) revealed aroma-active compounds in the log(3) flavor dilution (log(3) FD) factor range of 1 to 6. The following compounds contributed the highest log(3) FD factors to overall NDM flavor: 2,5-dimethyl-4-hydroxy-3(2H)-furanone [(Furaneol), burnt sugar-like]; butanoic acid (rancid); 3-(methylthio)propanal [(methional), boiled potato-like]; o-aminoacetophenone (grape-like); delta-decalactone (sweet); (E)-4,5-epoxy-(E)-2-decenal (metallic); pentanoic acid (sweaty); 4,5-dimethyl-3-hydroxy-2(5H)-furanone [(sotolon), curry]; 3-methoxy-4-hydroxybenzaldehyde [(vanillin), vanilla]; 2-acetyl-1-pyrroline and 2-acetyl-2-thiazoline (popcorn-like); hexanoic acid (vinegar-like); phenylacetic acid (rose-like); octanoic acid (waxy); nonanal (fatty); and 1-octen-3-one (mushroom-like). The odor intensities of Furaneol, butanoic acid, methional, o-aminoacetophenone, sotolon, vanillin, (E)-4,5-epoxy-(E)-2-decenal, and phenylacetic acid were higher in high-heat-treated samples than others. However, the odor intensities of lactones, 2-acetyl-1-pyrroline, and 2-acetyl-2-thiazoline were not affected by heat treatment. Sensory evaluation results also revealed that heat-generated flavors have a major impact on the flavor profile of NDM.  相似文献   

15.
Application of aroma extract dilution analysis (AEDA) on a flavor extract isolated from a freshly prepared, enzyme-inactivated peach juice using solvent extraction and high-vacuum distillation (extract I) revealed 24 odor-active regions in the gas chromatogram. Flavor dilution (FD) factors ranged from 4 to 512. The highest FD factors were determined for beta-damascenone (cooked-apple-like) and gamma-decalactone (peach-like). Cooking of peaches for 2 h in an apparatus equipped for simultaneous steam distillation/extraction (extract II) yielded an overall more intense aroma extract (extract II). By AEDA, 30 odorants were detected in the FD-factor region of 4-16384 and were subsequently identified. The results revealed that in extract II, besides the two above-mentioned aroma compounds, both had FD factors of 16 384; delta-decalactone, gamma-dodecalactone additionally, and 6-dodeceno-gamma-lactone contributed with very high FD factors (FD 8192) to the overall aroma. In general, the thermal treatment led to the formation of 15 new odorants which were not detected in I. Furthermore, the lactones and beta-damascenone were significantly increased in II, thereby indicating their generation from precursors in the fresh juice.  相似文献   

16.
By application of aroma extract dilution analysis (AEDA) on the volatile fraction isolated from a Dornfelder red wine, 31 odor-active compounds were identified by means of HRGC-MS and comparison with reference compounds. A total of 27 odorants, judged with high FD factors by means of AEDA, was quantitated by means of stable isotope dilution assays, and acetaldehyde was determined enzymatically. In addition, 36 taste-active compounds were analyzed by means of HPLC-UV, HPLC-MS/MS, and ion chromatography. The quantitative data obtained for the identified aroma and taste compounds enabled for the first time the reconstruction of the overall flavor of the red wine. Sensory evaluation of both the aroma and taste profiles of the authentic red wine and the recombinate revealed that Dornfelder red wine was closely mimicked. Moreover, it was demonstrated that the high molecular weight fraction of red wine is essential for its astringent taste impression. By comparison of the overall odor of the aroma recombinate in ethanol with that of the total flavor recombinate containing all tastants, it was shown for the first time that the nonvolatile tastants had a strong influence on the intensity of certain aroma qualities.  相似文献   

17.
The volatiles of fresh leaves, buds, flowers, and fruits from bay (Laurus nolilis L.) were isolated by solvent extraction and analyzed by capillary gas chromatography-mass spectrometry. Their odor quality was characterized by gas chomatography-olfactometry-mass spectrometry (HRGC-O-MS) and aroma extract dilution analysis (AEDA). In fresh bay leaves 1,8-cineole was the major component, together with alpha-terpinyl acetate, sabinene, alpha-pinene, beta-pinene, beta-elemene, alpha-terpineol, linalool, and eugenol. Besides 1,8-cineole and the pinenes, the main components in flowers were alpha-eudesmol, beta-elemene, and beta-caryophyllene, in fruits (E)-beta-ocimene and biclyclogermacrene, and in buds (E)-beta-ocimene and germacrene D. The aliphatic ocimenes and farnesenes were absent in leaves. By using HRGC-O-MS 21 odor compounds were identified in fresh leaves. Application of AEDA revealed (Z)-3-hexenal (fresh green), 1,8-cineole (eucalyptus), linalool (flowery), eugenol (clove), (E)-isoeugenol (flowery), and an unidentified compound (black pepper) with the highest flavor dilution factors. Differences between buds, flowers, fruits, and leaves with regard to the identified odor compounds are presented.  相似文献   

18.
Application of the aroma extract dilution analysis (AEDA) on the volatile fraction carefully isolated from an American Bourbon whisky revealed 45 odor-active areas in the flavor dilution (FD) factor range of 32-4096 among which (E)-beta-damascenone and delta-nonalactone showed the highest FD factors of 4096 and 2048, respectively. With FD factors of 1024, (3S,4S)-cis-whiskylactone, gamma-decalactone, 4-allyl-2-methoxyphenol (eugenol), and 4-hydroxy-3-methoxy-benzaldehyde (vanillin) additionally contributed to the overall vanilla-like, fruity, and smoky aroma note of the spirit. Application of GC-Olfactometry on the headspace above the whisky revealed 23 aroma-active odorants among which 3-methylbutanal, ethanol, and 2-methylbutanal were identified as additional important aroma compounds. Compared to published data on volatile constituents in whisky, besides ranking the whisky odorants on the basis of their odor potency, 13 aroma compounds were newly identified in this study: ethyl (S)-2-methylbutanoate, (E)-2-heptenal, (E,E)-2,4-nonadienal, (E)-2-decenal, (E,E)-2,4-decadienal, 2-isopropyl-3-methoxypyrazine, ethyl phenylacetate, 4-methyl acetophenone, alpha-damascone, 2-phenylethyl propanoate, 3-hydroxy-4,5-dimethyl-2(5H)-furanone, trans-ethyl cinnamate, and (Z)-6-dodeceno-gamma-lactone.  相似文献   

19.
Application of the aroma extract dilution analysis on a flavor distillate prepared from freshly ground rye flour (type 1150) revealed 1-octen-3-one (mushroom-like), methional (cooked potato), and (E)-2-nonenal (fatty, green) with the highest flavor dilution (FD) factors among the 26 odor-active volatiles identified. Quantitative measurements performed by stable isotope dilution assays and a comparison to the odor thresholds of selected odorants in starch suggested methional, (E)-2-nonenal, and hexanal as contributors to the flour aroma, because their concentrations exceeded their odor thresholds by factors >100. Application of the same approach on a rye sourdough prepared from the same batch of flour revealed 3-methylbutanal, vanillin, 3-methylbutanoic acid, methional, (E,E)-2,4-decadienal, 2,3-butanedione, and acetic acid as important odorants; their concentrations exceeded their odor thresholds in water and starch by factors >100. A comparison of the concentrations of 20 odorants in rye flour and the sourdough made therefrom indicated that flour, besides the fermentation process, is an important source of aroma compounds in dough. However, 3-methylbutanol, acetic acid, and 2,3-butanedione were much increased during fermentation, whereas (E,E)-2,4-decadienal and 2-methylbutanal were decreased. Similar results were obtained for five different flours and sourdoughs, respectively, although the amounts of some odorants in the flour and the sourdough differed significantly within batches.  相似文献   

20.
The aroma compounds present in cooked brown rice of the three varieties Improved Malagkit Sungsong (IMS), Basmati 370 (B 370), and Khaskhani (KK), and of the variety Indica (German supermarket sample), were identified on the basis of aroma extract dilution analyses (AEDA). A total of 41 odor-active compounds were identified, of which eleven are reported for the first time as rice constituents. 2-Amino acetophenone (medicinal, phenolic), which was up to now unknown in rice aroma, exhibited the highest flavor dilution (FD) factor among the 30 to 39 odor-active compounds detected in all four varieties. 2-Acetyl-1-pyrroline, exhibiting an intense popcorn-like aroma-note, was confirmed as a further key aroma constituent in IMS, B 370, and KK, but was not important in Indica. Differences in the FD factors between the varieties were found for the previously unknown rice aroma compound 3-hydroxy-4,5-dimethyl-2(5H)-furanone (Sotolon; seasoning-like), which was higher in B 370 than in IMS and KK. In IMS, a yet unknown, spicy smelling component with a very high FD factor could be detected, which contributed with lower FD factors to the overall aromas of B 370 and KK, and was not present in Indica. The latter variety, which was available on the German market, differed most in its overall aroma from the three Asian brown rices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号