首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature is an unavoidable environmental cue that affects the metabolism and behavior of any creature on Earth, yet how animals perceive temperature is poorly understood. The nematode Caenorhabditis elegans "memorizes" temperatures, and this stored information modifies its subsequent migration along a temperature gradient. We show that the olfactory neuron designated AWC senses temperature. Calcium imaging revealed that AWC responds to temperature changes and that response thresholds differ depending on the temperature to which the animal was previously exposed. In the mutant with impaired heterotrimeric guanine nucleotide-binding protein (G protein)-mediated signaling, AWC was hyperresponsive to temperature, whereas the AIY interneuron (which is postsynaptic to AWC) was hyporesponsive to temperature. Thus, temperature sensation exhibits a robust influence on a neural circuit controlling a memory-regulated behavior.  相似文献   

2.
Ceramide engagement in apoptotic pathways has been a topic of controversy. To address this controversy, we tested loss-of-function (lf) mutants of conserved genes of sphingolipid metabolism in Caenorhabditis elegans. Although somatic (developmental) apoptosis was unaffected, ionizing radiation-induced apoptosis of germ cells was obliterated upon inactivation of ceramide synthase and restored upon microinjection of long-chain natural ceramide. Radiation-induced increase in the concentration of ceramide localized to mitochondria and was required for BH3-domain protein EGL-1-mediated displacement of CED-4 (an APAF-1-like protein) from the CED-9 (a Bcl-2 family member)/CED-4 complex, an obligate step in activation of the CED-3 caspase. These studies define CEP-1 (the worm homolog of the tumor suppressor p53)-mediated accumulation of EGL-1 and ceramide synthase-mediated generation of ceramide through parallel pathways that integrate at mitochondrial membranes to regulate stress-induced apoptosis.  相似文献   

3.
Fong Y  Bender L  Wang W  Strome S 《Science (New York, N.Y.)》2002,296(5576):2235-2238
The Maternal-Effect Sterile (MES) proteins are essential for germline viability in Caenorhabditis elegans. Here, we report that MES-4, a SET-domain protein, binds to the autosomes but not to the X chromosomes. MES-2, MES-3, and MES-6 are required to exclude MES-4 and markers of active chromatin from the X chromosomes. These findings strengthen the emerging view that in the C. elegans germ line, the X chromosomes differ in chromatin state from the autosomes and are generally silenced. We propose that all four MES proteins participate in X-chromosome silencing, and that the role of MES-4 is to exclude repressors from the autosomes, thus enabling efficient repression of the Xs.  相似文献   

4.
Fat metabolism, reproduction, and aging are intertwined regulatory axes; however, the mechanism by which they are coupled remains poorly understood. We found that germline stem cells (GSCs) actively modulate lipid hydrolysis in Caenorhabditis elegans, which in turn regulates longevity. GSC arrest promotes systemic lipolysis via induction of a specific fat lipase. Subsequently, fat mobilization is promoted and life span is prolonged. Constitutive expression of this lipase in fat storage tissue generates lean and long-lived animals. This lipase is a key factor in the lipid hydrolysis and increased longevity that are induced by decreased insulin signaling. These results suggest a link between C. elegans fat metabolism and longevity.  相似文献   

5.
C. elegans as a model   总被引:1,自引:0,他引:1  
  相似文献   

6.
采用酶消化法分离鸡胚原始生殖细胞(PGCs),纯化后进行体外培养,传至5~6代时,通过对阶段特异性胚胎抗原-1(SSEA-1)免疫荧光标记、碱性磷酸酶检测等方法联合鉴定其基本生物学特性,同时以RT-PCR方法检测其特异基因的表达。结果表明:体外培养的PGCs维持未分化状态,碱性磷酸酶阳性、免疫荧光检测其特异标志物SSEA-1阳性。鸡胚PGCs表达减数分裂前标志基因Dazl、Nanog和GDF3,生殖细胞分化后期基因CVH,原始生殖细胞标志基因Blimp-1以及干细胞多能性相关基因Oct-4,不表达减数分裂启动基因Stra8。提示所获得的鸡胚PGCs,其生物学特性稳定,表达相关特异基因,为鸡胚PGCs的体外培养及鉴定提供理论依据。  相似文献   

7.
To obtain a global view of functional interactions among genes in a metazoan genome, we computationally integrated interactome data, gene expression data, phenotype data, and functional annotation data from three model organisms-Saccharomyces cerevisiae, Caenorhabditis elegans, and Drosophila melanogaster-and predicted genome-wide genetic interactions in C. elegans. The resulting genetic interaction network (consisting of 18,183 interactions) provides a framework for system-level understanding of gene functions. We experimentally tested the predicted interactions for two human disease-related genes and identified 14 new modifiers.  相似文献   

8.
9.
10.
In Caenorhabditis elegans, the introduction of double-stranded RNA triggers sequence-specific genetic interference (RNAi) that is transmitted to offspring. The inheritance properties associated with this phenomenon were examined. Transmission of the interference effect occurred through a dominant extragenic agent. The wild-type activities of the RNAi pathway genes rde-1 and rde-4 were required for the formation of this interfering agent but were not needed for interference thereafter. In contrast, the rde-2 and mut-7 genes were required downstream for interference. These findings provide evidence for germ line transmission of an extragenic sequence-specific silencing factor and implicate rde-1 and rde-4 in the formation of the inherited agent.  相似文献   

11.
12.
RNA interference (RNAi) of target genes is triggered by double-stranded RNAs (dsRNAs) processed by conserved nucleases and accessory factors. To identify the genetic components required for RNAi, we performed a genome-wide screen using an engineered RNAi sensor strain of Caenorhabditis elegans. The RNAi screen identified 90 genes. These included Piwi/PAZ proteins, DEAH helicases, RNA binding/processing factors, chromatin-associated factors, DNA recombination proteins, nuclear import/export factors, and 11 known components of the RNAi machinery. We demonstrate that some of these genes are also required for germline and somatic transgene silencing. Moreover, the physical interactions among these potential RNAi factors suggest links to other RNA-dependent gene regulatory pathways.  相似文献   

13.
The eggs of Caenorhabditis elegans and Drosophila bear little similarity to each other, yet both depend on the par genes for control of anterior-posterior polarity. Here we explore possible common roles for the par genes (pars) in converting transient asymmetries into stably polarized axes. Although clear mechanistic parallels remain to be established, par-dependent regulation of microtubule dynamics and protein stability emerge as common themes.  相似文献   

14.
The synaptic adhesion molecules neurexin and neuroligin alter the development and function of synapses and are linked to autism in humans. Here, we found that Caenorhabditis elegans neurexin (NRX-1) and neuroligin (NLG-1) mediated a retrograde synaptic signal that inhibited neurotransmitter release at neuromuscular junctions. Retrograde signaling was induced in mutants lacking a muscle microRNA (miR-1) and was blocked in mutants lacking NLG-1 or NRX-1. Release was rapid and abbreviated when the retrograde signal was on, whereas release was slow and prolonged when retrograde signaling was blocked. The retrograde signal adjusted release kinetics by inhibiting exocytosis of synaptic vesicles (SVs) that are distal to the site of calcium entry. Inhibition of release was mediated by increased presynaptic levels of tomosyn, an inhibitor of SV fusion.  相似文献   

15.
DAF-2, an insulin receptor-like protein, regulates metabolism, development, and aging in Caenorhabditis elegans. In a quantitative proteomic study, we identified 86 proteins that were more or less abundant in long-lived daf-2 mutant worms than in wild-type worms. Genetic studies on a subset of these proteins indicated that they act in one or more processes regulated by DAF-2, including entry into the dauer developmental stage and aging. In particular, we discovered a compensatory mechanism activated in response to reduced DAF-2 signaling, which involves the protein phosphatase calcineurin.  相似文献   

16.
Natural selection is expected to eliminate genetic incompatibilities from interbreeding populations. We have discovered a globally distributed incompatibility in the primarily selfing species Caenorhabditis elegans that has been maintained despite its negative consequences for fitness. Embryos homozygous for a naturally occurring deletion of the zygotically acting gene zeel-1 arrest if their sperm parent carries an incompatible allele of a second, paternal-effect locus, peel-1. The two interacting loci are tightly linked, with incompatible alleles occurring in linkage disequilibrium in two common haplotypes. These haplotypes exhibit elevated sequence divergence, and population genetic analyses of this region indicate that natural selection is preserving both haplotypes in the population. Our data suggest that long-term maintenance of a balanced polymorphism has permitted the incompatibility to persist despite gene flow across the rest of the genome.  相似文献   

17.
Sensory organs are composed of neurons, which convert environmental stimuli to electrical signals, and glia-like cells, whose functions are not well understood. To decipher glial roles in sensory organs, we ablated the sheath glial cell of the major sensory organ of Caenorhabditis elegans. We found that glia-ablated animals exhibit profound sensory deficits and that glia provide activities that affect neuronal morphology, behavior generation, and neuronal uptake of lipophilic dyes. To understand the molecular bases of these activities, we identified 298 genes whose messenger RNAs are glia-enriched. One gene, fig-1, encodes a labile protein with conserved thrombospondin TSP1 domains. FIG-1 protein functions extracellularly, is essential for neuronal dye uptake, and also affects behavior. Our results suggest that glia are required for multiple aspects of sensory organ function.  相似文献   

18.
Animals alter their behavioral patterns in an experience-dependent manner. Olfactory imprinting is a process in which the exposure of animals to olfactory cues during specific and restricted time windows leaves a permanent memory ("olfactory imprint") that shapes the animal's behavior upon encountering the olfactory cues at later times. We found that Caenorhabditis elegans displays olfactory imprinting behavior that is mediated by a single pair of interneurons. To function in olfactory imprinting, this interneuron pair must express a G protein-coupled chemoreceptor family member encoded by the sra-11 gene. Our study provides insights into the cellular and molecular basis of olfactory imprinting and reveals a function for a chemosensory receptor family member in interneurons.  相似文献   

19.
Sato M  Sato K 《Science (New York, N.Y.)》2011,334(6059):1141-1144
The mitochondrial genome is believed to be maternally inherited in many eukaryotes. Sperm-derived paternal mitochondria enter the oocyte cytoplasm upon fertilization and then normally disappear during early embryogenesis. However, the mechanism responsible for this clearance has been unknown. Here, we show that autophagy, which delivers cytosolic components to lysosomes for degradation, is required for the elimination of paternal mitochondria in Caenorhabditis elegans. Immediately after fertilization, sperm-derived components trigger the localized induction of autophagy around sperm mitochondria. Autophagosomes engulf paternal mitochondria, resulting in their lysosomal degradation during early embryogenesis. In autophagy-defective zygotes, paternal mitochondria and their genome remain even in the first larval stage. Thus, fertilization-triggered autophagy is required for selective degradation of paternal mitochondria and thereby maternal inheritance of mitochondrial DNA.  相似文献   

20.
In Caenorhabditis elegans the two sexes, hermaphrodites and males, are thought to be irreversibly determined at fertilization by the ratio of X chromosomes to sets of autosomes: XX embryos develop as hermaphrodites and XO embryos as males. We show instead that both sex and genotype of C. elegans can be altered postembryonically and that this flexibility requires sexual reproduction. When grown in specific bacterial metabolites, some XX larvae generated by mating males and hermaphrodites develop as males and lose one X chromosome. However, XX larvae produced by hermaphrodite self-fertilization show no such changes. We propose that sexual reproduction increases developmental flexibility of progeny, allowing for better adaptation to changing environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号