首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxidase from turnip roots (TP) was isolated followed by modification with methoxypolyethylene glycol (MPEG). The catalytic activity of the modified TP (MTP) on ABTS increased 2.5 times after 80 min of reaction. MTP showed a KM similar value to that of TP, but a significantly greater kcat for ABTS oxidation, in aqueous buffer. Chemical modification produced an enhanced stability in organic solvents and increased thermal stability of about 4 times that of TP, in aqueous buffer at 70 degrees C. Circular dichroism showed that MPEG modification decreased TP alpha-helical structure from 26 to 16% and increased beta-turns from 26 to 34%, resulting in an enhanced conformational stability. The temperature at the midpoint of thermal denaturation (melting temperature) increased from 57 to 63 degrees C after modification. MTP was immobilized in alginate beads (IMTP) and tested for oxidative polymerization of concentrated phenolic synthetic solutions, achieving 17 effective contact cycles removing >65% phenols. IMTP may be useful for the development of an enzymatic process for wastewater effluent treatment.  相似文献   

2.
Stability of folic acid and 5-methyltetrahydrofolic acid in phosphate buffer (0.2 M; pH 7) toward thermal (above 65 degrees C) and combined high pressure (up to 800 MPa)/thermal (20 up to 65 degrees C) treatments was studied on a kinetic basis. Residual folate concentration after thermal and high pressure/thermal treatments was measured using reverse phase liquid chromatography. The degradation of both folates followed first-order reaction kinetics. At ambient pressure, the estimated Arrhenius activation energy (E(a)) values of folic acid and 5-methyltetrahydrofolic acid thermal degradation were 51.66 and 79.98 kJ mol(-1), respectively. It was noticed that the stability of folic acid toward thermal and combined high pressure thermal treatments was much higher than 5-methyltetrahydrofolic acid. High-pressure treatments at room temperature or higher (up to 60 degrees C) had no or little effect on folic acid. In the whole P/T area studied, the rate constant of 5-methyltetrahydrofolic acid degradation was enhanced by increasing pressure, and a remarkable synergistic effect of pressure and temperature on 5-methyltetrahydrofolic acid degradation occurred at temperatures above 40 degrees C. A model to describe the combined pressure and temperature effect on the 5-methyltetrahydrofolic acid degradation rate constant is presented.  相似文献   

3.
Malted cereals are rich sources of alpha-amylase, which catalyzes the random hydrolysis of internal alpha-(1-4)-glycosidic bonds of starch, leading to liquefaction. Amylases play a role in the predigestion of starch, leading to a reduction in the water absorption capacity of the cereal. Among the three cereal amylases (barley, ragi, and jowar), jowar amylase is found to be the most thermostable. The major amylase from malted jowar, a 47 kDa alpha-amylase, purified to homogeneity, is rich in beta structure ( approximately 60%) like other cereal amylases. T(m), the midpoint of thermal inactivation, is found to be 69.6 +/- 0.3 degrees C. Thermal inactivation is found to follow first-order kinetics at pH 4.8, the pH optimum of the enzyme. Activation energy, E(a), is found to be 45.3 +/- 0.2 kcal mol(-)(1). The activation enthalpy (DeltaH), entropy (DeltaS*), and free energy change (DeltaG) are calculated to be 44.6 +/- 0.2 kcal mol(-)(1), 57.1 +/- 0.3 cal mol(-)(1) K(-)(1), and 25.2 +/- 0.2 kcal mol(-)(1), respectively. The thermal stability of the enzyme in the presence of the commonly used food additives NaCl and sucrose has been studied. T(m) is found to decrease to 66.3 +/- 0.3, 58.1 +/- 0.2, and 48.1 +/- 0.5 degrees C, corresponding to the presence of 0.1, 0.5, and 1 M NaCl, respectively. Sucrose acts as a stabilizer; the T(m) value is found to be 77.3 +/- 0.3 degrees C compared to 69.6 +/- 0.3 degrees C in the control.  相似文献   

4.
3-Aminopropionamide (3-APA) has recently been suggested as a transient intermediate in acrylamide (AA) formation during thermal degradation of asparagine initiated by reducing carbohydrates or aldehydes, respectively. 3-APA may also be formed in foods by an enzymatic decarboxylation of asparagine. Using a newly developed method to quantify 3-APA based on liquid chromatography/tandem mass spectrometry, it could be shown that the biogenic amine was present in several potato cultivars in different amounts. Further experiments indicated that 3-APA is formed during storage of intact potatoes (20 or 35 degrees C) or after crushing of the cells. The heating of 3-APA under aqueous or low water conditions at temperatures between 100 and 180 degrees C in model systems always generated more AA than in the same reaction of asparagine, thereby pointing to 3-APA as a very effective precursor of AA. While the highest yields measured were about 28 mol % in the presence of carbohydrates (170 degrees C; aqueous buffer), in the absence of carbohydrates, 3-APA was even converted by about 63 mol % into AA upon heating at 170 degrees C under aqueous conditions. Propanoic acid amides bearing an amino or hydroxy group in the alpha-position, such as 2-hydroxypropionamide and l-alaninamide, were ineffective in AA generation indicating that elimination occurs only from the beta-position.  相似文献   

5.
The aim of the present study was to evaluate the impact of thermal drying of immobilized Lactobacillus delbrueckii subsp. bulgaricus on apple pieces on the use of the derived biocatalyst in whey fermentation. The thermally dried immobilized biocatalyst was compared to wet and freeze-dried immobilized cells, in respect to maintenance of cell viability and fermentation efficiency. The thermal drying process appeared to be more efficient on survival rate as an 84% of the cells used for immobilization survived the process, while the freeze-drying process led to a 78% rate. The thermally dried immobilized biocatalyst was used in 12 repeated batch fermentations of synthetic lactose medium and whey at 37, 45, and 50 degrees C in order to evaluate its metabolic activity. The high number of repeated batch fermentations showed a tendency for high operational stability. Fermentations continued for up to 2 months without any significant loss of metabolic activity. SPME GC/MS analysis of aroma-related compounds revealed the distinctive character of fermented whey produced by the thermally dried immobilized bacterium cells. The effect of storage at 4-6 degrees C for up to 165 days of the biocatalyst, held directly after drying and after repeated batch fermentations, on fermentation activity was also studied. After storage, reactivation in whey was immediate, and the immobilized biocatalyst was able to produce up to 51.7 g/L lactic acid at 37 degrees C. The potential of thermally dried immobilized L. delbrueckii as a starter culture for food production was subsequently evaluated.  相似文献   

6.
The thermal dependency and stability of enzymes producing reducing sugar (RS) were examined in bran, the exterior 13% part (outer endosperm), and the remaining inner endosperm of rice grains. RS-producing enzymes in the inner endosperm showed a higher optimum temperature than those in other parts of the rice grain. Diethylaminoethyl-Sephacel chromatography of crude extracts revealed two peaks of RS-producing activity with different optimum temperatures (60 and 37 degrees C) in all three parts. alpha-Glucosidase (EC 3.2.1.20) and alpha-amylase (EC 3.2.1.1) isoform G were thought to be major components of the RS-producing activities with high and low optimum temperatures, respectively. The peak with a high optimum temperature was a more abundant component in the inner endosperm, compared with other parts of the rice grain. Thus, different parts of rice were found to have distinct enzyme sets having different thermal dependency and to be involved in starch degradation to various sugars.  相似文献   

7.
Food proteins were phosphorylated by heating in a dry state in the presence of phosphate. When casein, whey protein isolate (WPI), and egg white proteins (EWP), which were lyophilized from their solutions in a phosphate buffer, were dry-heated at various temperatures and pH levels for 1-5 days, EWP was more highly phosphorylated than casein and WPI. Phosphorylation of EWP was promoted with a decrease of pH from 7.0 to 3.0 when the incubation temperature was raised from 55 to 100 degrees C. The phosphorus content of EWP increased from 0.08 to 0.64% by dry-heating at pH 3.0 and 85 degrees C for 5 days in the presence of phosphate. The electrophoretic mobility of EWP increased with an increase in the phosphorylation level. The heat-induced polymerization of EWP by dry-heating was not affected by the presence of phosphate. Although the solubility of EWP decreased by dry-heating at pH 3.0-5.5, the phosphorylation depressed the insolubilization at low pH. The phosphate bonds in phosphorylated EWP (P-EWP) were stable at pH 2.0-10.0 and were more acid-labile and base-stable than phosphoesters of egg riboflavin-binding protein (RfBP). (31)P NMR spectral data suggested that besides phosphoesters, phosphodiester and polyphosphate bonds were introduced in P-EWP. Heat stability of EWP was improved, and calcium phosphate-solubilizing ability of EWP was enhanced by phosphorylation.  相似文献   

8.
Thermal denaturation, rheological, and microstructural properties of gels prepared from native beta-lactoglobulin (beta-LG) and preheated or heat-denatured beta-LG (HDLG) aggregates were compared. The HDLG was prepared by heating solutions of 4% beta-LG in deionized water, pH 7.0, at 80 degrees C for 30 min and then diluted to the desired concentration in 0.6 M NaCl and 0.05 M phosphate buffer at pH 6.0, 6.5, and 7.0. When reheated to 71 degrees C, HDLG formed a gel at a concentration of 2% protein. At pH 7.0, 3% HDLG gelled at 52.5 degrees C and had a storage modulus (G') of 2200 Pa after cooling. beta-LG (3%) in 0.6 M NaCl and 0.05 M phosphate buffer, pH 7.0, did not gel when heated to 71 degrees C. The gel point of 3% HDLG decreased by 10.5 degrees C and the G' did not change when the pH was decreased to 6.0. The HDLG gel microstructure was composed of strands and clumps of small globular aggregates in contrast to beta-LG gels, which contained a particulate network of compacted globules. The HDLG formed a gel at a lower concentration and lower temperature than beta-LG in the high-salt buffer, suggesting an application in meat systems or other food products prepared with salt and processed at temperatures of < or =71 degrees C.  相似文献   

9.
Zearalenone is an endocrine disruptor with estrogenic activity, produced primarily by Fusarium graminearum, a common cause of corn ear rot and Fusarium head blight or scab in wheat. Zearalenone can be a contaminant of both corn and wheat and may survive thermal food processes. This study was done to determine the heat stability of zearalenone. Reduction of zearalenone was measured during heating at different temperatures (100, 125, 150, 175, 200, and 225 degrees C) in an aqueous buffer solution at different pH values. The rate and extent of zearalenone reduction increased with processing temperature. Less than 23% of zearalenone was lost when heated to /=175 degrees C, and complete reduction of zearalenone was observed in less than 30 min at 225 degrees C, regardless of pH. Overall, zearalenone was most stable at pH 7 followed by that at pH 4 and 10, and the greatest losses occurred above 175 degrees C.  相似文献   

10.
The effect of heat treatment on the denaturation of alpha-lactalbumin was studied, under different conditions, over a temperature range of 78-94 degrees C. The concentration of the residual immunoreactive protein after different treatments was determined by kinetic analysis, obtaining D and Z values. Thermodynamic parameters were also calculated. Denaturation of alpha-lactalbumin, measured by the loss of immunoreactivity, could be described as an order of reaction of n = 1.5. Results obtained indicated that alpha-lactalbumin was more heat-sensitive when treated in milk than in phosphate buffer. The protein was also denatured more rapidly in the apo form than in the calcium-saturated form. Besides, the thermal stability of apo-alpha-lactalbumin decreased with the binding of oleic acid.  相似文献   

11.
The recombinant invertase (re-INVB) from Zymomonas mobilis was immobilized by adsorption onto the totally cinnamoylated derivative of D-sorbitol. The polymerization and cross-linking of the derivative initially obtained was achieved by irradiation in the ultraviolet region, where this prepolymer shows maximum sensitivity. Immobilization of re-INVB on this support involves a process of physical adsorption and intense hydrophobic interactions between the cinnamoyl groups of the support and related groups of the enzyme. Enzyme concentration, immobilization time, and irradiation time were important parameters affecting the immobilization efficiency. The optimum reaction pH of immobilized enzyme was 5, and the optimal reaction temperature was 40 degrees C. The apparent Michaelis constant and the apparent catalytic constant of re-INVB immobilized on the SOTCN derivative acting on sucrose was 78+/-5 mM and 5x10(4)+/-3x10(2) s(-1), respectively, while for the free enzyme, it was 98.0+/-4 mM and 1.2x10(4)+/-2.5x10(2) s(-1), respectively, suggesting a better apparent affinity of the enzyme for the substrate and a better hydrolysis rate when immobilized than when in solution. Immobilized re-INVB also showed good thermal stability and good operational stability (40% of the initial activity remaining after 45 cyles of 1 min duration and 90.6 mg of sucrose being hydrolyzed in 45 min per 2.5 mg of immobilized protein). The results showed that cinnamic carbohydrate esters of D-sorbitol are an appropriate support for re-INVB immobilization and the production of invert sugar.  相似文献   

12.
Potato amylopectin with phosphate groups was immobilized on a quartz crystal microbalance with dissipation monitoring (QCMD) using the attractive interaction between opposite charges, and enzymatic starch hydrolysis was monitored directly. Poly( L-lysine) (PLL) proved to be an appropriate cationic linker between the QCMD silica sensor and potato amylopectin. Increased mass and dissipation were observed when amylopectin was adsorbed onto the PLL layer and reversed when alpha-amylase was added. The effect of chitosan with cationic property on the hydrolysis of amylopectin was studied. Chitosan was observed to be adsorbed onto the amylopectin surface and to suppress hydrolysis by alpha-amylase. The formation of alternating layers of amylopectin and chitosan was monitored by QCMD. Amylopectin-chitosan trilayers increased resistance to digestion by alpha-amylase compared to one layer and to control without chitosan.  相似文献   

13.
To assess the effects of Fusarium infection on the polysaccharides of winter wheat grain (Triticum aestivum L.), grain samples obtained from plants artificially inoculated with Fusarium culmorum were analyzed. Microscopy revealed obvious damage to the starch granules in the seriously infected samples. The Fusarium infection had no analytically detectable influence on the starch and total insoluble dietary fiber content of the wheat grain. There were significantly positive relationships between alpha-amylase activity, cellulase activity, total soluble dietary fiber content, pentosan content, and degree of infection quantified by an enzyme-linked immunosorbant assay, which would indicate the importance of fungal enzymes. A distinct higher Hagberg falling number (FN) was determined in the seriously infected samples, while the viscosity and sucrose content of the flour decreased. However, the addition of a liquid medium contaminated with F. culmorum led to a significant decrease in the FN. Depending on the type of buffer used, the alpha-amylase of F. culmorum demonstrated its maximum activity between pH 5.5 and pH 7.0 at 30-50 degrees C. Remarkably, this fungal alpha-amylase showed a thermostable characteristic and was active over a wide range of temperatures, from 10 to 100 degrees C. This type of thermostability suggests that the alpha-amylase of F. culmorum may damage starch granules throughout the processing of wheat flour, thereby inducing weak dough properties and unsatisfactory bread quality.  相似文献   

14.
The effects of Trichoderma reesei tyrosinase-catalyzed cross-linking of isolated chicken breast myofibril proteins as a simplified model system were studied with special emphasis on the thermal stability and gel formation of myofibrillar proteins. In addition, tyrosinase-catalyzed cross-linking was utilized to modify the firmness, water-holding capacity (WHC), and microstructure of cooked chicken breast meat homogenate gels. According to SDS-PAGE, the myosin heavy chain (MHC) and troponin T were the most sensitive proteins to the action of tyrosinase, whereas actin was not affected to the same extent. Calorimetric enthalpy (DeltaH) of the major thermal transition associated with myosin denaturation was reduced and with actin denaturation increased in the presence of tyrosinase. Low-amplitude viscoelastic measurements at constant temperatures of 25 degrees C and 40 degrees C showed that tyrosinase substantially increased the storage modulus (G') of the 4% myofibrillar protein suspension in the 0.35 M NaCl concentration. The effect was the most pronounced with high-enzyme dosages and at 40 degrees C. Without tyrosinase, the G' increase was low. Tyrosinase increased the firmness of the cooked phosphate-free and low-meat chicken breast meat homogenate gels compared to the corresponding controls. Tyrosinase maintained gel firmness at the control level of the low-salt homogenate gel and weakened it when both salt and phosphate levels were low. Tyrosinase improved the WHC of the low-meat and low-salt homogenate gels and maintained it at the level of the corresponding controls of phosphate-free and low-salt/low-phosphate homogenate gels. Microstructural characterization showed that a collagen network was formed in the presence of tyrosinase. Keywords: Chicken myofibrillar proteins; protein modification; cross-linking; tyrosinase; gelation; thermal stability; texture; water-holding capacity; microstructure.  相似文献   

15.
Lentil flour was extruded at die temperatures of 135, 160, and 175 degrees C. The soluble protein content in the extrudates decreased by 40.1% in the extracting buffer (1% sodium dodecyl sulfate in 50 mM sodium phosphate buffer, pH 6.9) as the extrusion die temperature was increased to 175 degrees C. The most insoluble proteins in the extrudates extruded at die temperatures of up to 175 degrees C could be resolubilized by using sonication. The total disulfide content and sulfhydryl content in the extrudates decreased. The SDS-PAGEs showed that the molecular weight distribution of proteins in the lentil flour changed little before and after extrusion as well as during reduction. The results from this study show that the extrusion temperature had less effect on the solubility and molecular weight of the lentil proteins, which contain a lower level of cysteine residues than wheat proteins.  相似文献   

16.
Pectinmethylesterase of navel oranges shows two fractions greatly differing in thermostability. The most thermostable fraction accounts for approximately 10% of total activity. The thermal inactivation of this fraction follows first-order kinetics both in 5 mM, pH 3.5, citrate buffer and in orange juice at the same pH, showing a z value of 5.1 degrees C and an activation energy (E(a)) of 435 kJ mol(-)(1) K(-)(1). The heat resistance of the enzyme is approximately 25-fold higher in the juice than in citrate buffer. When ascorbic acid, sucrose, glucose, and fructose are added to the citrate buffer at the concentrations found in orange juice, the heat resistance of the enzyme increases 3-fold. The addition of pectin at 0.01% concentration multiplies it by a factor of 50. Manothermosonication (MTS), the simultaneous application of heat and ultrasound under moderate pressure (200 kPa), at 72 degrees C, increases the inactivation rate 25 times in buffer and >400 times in orange juice. MTS inactivation shows a higher z value (35.7 degrees C) and lower E(a) (56.9 kJ mol(-)(1) K(-)(1)) than simple heating.  相似文献   

17.
The objectives of this research were to develop a rapid method for extracting proteins from mashed and nonmashed sorghum meal using sonication (ultrasound), and to determine the relationships between the levels of extractable proteins and ethanol fermentation properties. Nine grain sorghum hybrids with a broad range of ethanol fermentation efficiencies were used. Proteins were extracted in an alkaline borate buffer using sonication and characterized and quantified by size‐exclusion HPLC. A 30‐sec sonication treatment extracted a lower level of proteins from nonmashed sorghum meal than extracting the proteins for 24 hr with buffer only (no sonication). However, more protein was extracted by sonication from the mashed samples than from the buffer‐only 24‐hr extraction. In addition, sonication extracted more polymeric proteins from both the mashed and nonmashed samples compared with the buffer‐only extraction method. Confocal laser‐scanning microscopy images showed that the web‐like protein microstructures were disrupted during sonication. The results showed that there were strong relationships between extractable proteins and fermentation parameters. Ethanol yield increased and conversion efficiency improved significantly as the amount of extractable proteins from sonication of mashed samples increased. The absolute amount of polymeric proteins extracted through sonication were also highly related to ethanol fermentation. Thus, the SE‐HPLC area of proteins extracted from mashed sorghum using sonication could be used as an indicator for predicting fermentation quality of sorghum.  相似文献   

18.
Pigment production from anthocyanin-rich purple corncobs generates a deeply colored waste precipitate. Our objectives were to characterize this anthocyanin-rich waste (ARW) and to find a suitable application in a food matrix. Composition and solubility characteristics of ARW were evaluated. Color (CIELAB) and pigment (monomeric anthocyanin and HPLC profiles) stability of ARW in milk (35 mg/100 mL) were evaluated using an accelerated test at 70 degrees C and phosphate buffer as a control. ARW provided milk an attractive purple hue (324-347 degrees ). Monomeric anthocyanin degradation followed zero-order kinetics in skim and whole milk and second-order kinetics in the control, with half-lives of 173, 223, and 44 min at 70 degrees C, respectively. ARW shows potential as a natural colorant for a pH range unusual for anthocyanin applications. A protective effect of matrix constituents on the stability of anthocyanins was evident. Anthocyanins may interact with different compounds in biological systems when the pH values are close to neutral.  相似文献   

19.
The association behavior, critical micellization concentration (CMC), and enthalpy of demicellization (DeltaHdemic) of bovine beta-casein were studied, for the first time by isothermal titration calorimetry, in a pH 7.0 phosphate buffer with 0.1 ionic strength and in pure water. In the buffer solutions, the CMC decreased asymptotically from 0.15 to 0.006 mM as the temperature was raised from 16 to 45 degrees C. DeltaHdemic decreased with increasing temperature between 16 and 28 degrees C but increased from 28 to 45 degrees C. Thermodynamic analysis below 30 degrees C is consistent with the Kegeles shell model, which suggests a stepwise association process. At higher temperatures, this model exhibits limitations, and the micellization becomes much more cooperative. The CMC values in water, measured between 17 and 28 degrees C, decreased with increasing temperature and, expectedly, were higher than those found in the buffer solutions. beta-Casein micelles were visualized and characterized, for the first time in their hydrated state, using advanced digital-imaging cryogenic transmission electron microscopy. The images revealed small, oblate micelles, about approximately 13 nm in diameter. The micelles shape and dimensions remained nearly constant in the temperature range of 24-35 degrees C.  相似文献   

20.
This investigation announces the use of potato pieces as a suitable support for cell immobilization resulting in extremely low temperature wine making. The results showed an increase of the total esters by immobilized cells and reduction of higher alcohols. Likewise, percentages of total esters on total volatiles were increased by the drop in temperature, while percentages of higher alcohols were reduced in wines. Kinetics experiments at different temperatures allowed the calculation of activation energy (Ea) and showed reduction in the case of immobilized cells as compared with free cells. These results may lead to the conclusion that the increased productivities that are obtained by immobilized cells, can be attributed to the catalytic activity by the support to enzymes, which are involved in the process. Biocatalysts were prepared by immobilization of Saccharomyces cerevisiae, strain AXAZ-1, on whole potatoes and potato pieces, and their efficiency for alcoholic repeated batch fermentations of glucose and grape must in the range 2-30 degrees C was examined. To study the operational stability of biocatalyst, 35 repeated batch fermentations of grape must were performed without any significant reduction of the fermentation activity. Wines were analyzed for volatile byproducts determination by GC and GC-MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号