首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant viruses can change the phenotypes and defense pathways of the host plants and the performance of their vectors to facilitate their transmission. Cucurbit chlorotic yellows virus (CCYV) (Crinivirus), a newly reported virus occurring on cucurbit plants and many other plant species, is transmitted specifically by Bemisia tabaci MEAM1 (B biotype) and MED (Q biotype) cryptic species in a semipersistent manner. This study evaluated the impacts of CCYV on B. tabaci to better understand the plant-virus-vector interactions. By using CCYV-B. tabaci MED-cucumber as the model, we investigated whether or how a semipersistent plant virus impacts the biology of its whitefly vector. CCYV mRNAs were detectable in nymphs from first to fourth instars and adults of B. tabaci with different titers. Nymph instar durations and adult longevity of female whiteflies greatly extended on CCYV-infected plants, but nymph instar durations and adult longevity of male whiteflies were not significantly influenced. In addition, the body length and oviposition increased in adults feeding on CCYV-infected plants, but the hatching rates of eggs and survival rates of different stages were not affected. Most interestingly, the sex ratio (male:female) significantly reduced to 0.5:1 in whitefly populations on CCYV-infected plants, while the ratio remained about 1:1 on healthy plants. These results indicated that CCYV can significantly impact the biological characteristics of its vector B. tabaci. It is speculated that CCYV and B. tabaci have established a typical mutualist relationship mediated by host plants.  相似文献   

2.
In the late 1970s the whitefly Bemisia tabaci (Gennadius) became the primary cotton pest in the Sudan, superseding the American bollworm Heliothis armigera (Hübner). DDT and a DDT/dimethoate combination were used to control the bollworm and, simultaneously, jassids and whiteflies. B. tabaci, a secondary pest at first, became resistant to dimethoate by frequent selections from 1964 onwards. At the same time, fertility stimulation occurred due to DDT residues on cotton plants. Finally, resistance reached a level so that the whitefly were not controlled by dimethoate, monocrotophos or other organophosphorus insecticides, and stimulation by DDT could exert its full effect. The consequence of this was a tremendous flare-up of the whitefly by 1980/81. This train of events was concluded from laboratory and field studies of the resistance patterns, as well as the acceleration effects from DDT residues on plants to the whitefly. A current hypothesis claiming that the problems arose from the elimination of beneficial insects through insecticide applications is reviewed in the light of experimental evidence and practical experience.  相似文献   

3.
Yellow mosaic disease (YMD) caused by whitefly (Bemisia tabaci) transmitted mungbean yellow mosaic India virus (MYMIV) is an important constraint of mungbean in Pakistan. One hundred sixty-two mungbean genotypes from eight different geographic regions were evaluated for resistance to MYMIV and its whitefly vector B. tabaci. Resistance levels were assessed by visual scoring of symptoms in the field under natural conditions, in net-house by artificial transmission through whitefly and in greenhouse using graft inoculation for two consecutive years in 2008 and 2009. None of the tested genotypes was found to be disease free, while considerable variation in responses was observed among the genotypes and testing methods. All genotypes were found to be systemically infected in the field. In 2008, 32 genotypes were found to be resistant and 67 were moderately resistant with severity index (SI) values ranging from 1.0 to 1.4 and from 1.5 to 2.4, respectively. In 2009 34 genotypes were found to be resistant and 38 were moderately resistant with the same SI value ranges as in 2008, and the remaining genotypes were moderately susceptible to highly susceptible. However, only 35 genotypes were found to be moderately resistant with SI values of 1.5-2.4 and latent periods (LP) of 17-21 days when evaluated using artificial transmission through whiteflies. Similar results were obtained when these genotypes were evaluated using graft inoculation. Significant differences in adult whitefly densities among tested genotypes were also observed during both years but no correlation between the number of whiteflies and disease severity was observed. The results indicated that these genotypes did not have a high level of resistance against MYMIV, however, they may provide sources of partial resistance which can be exploited in the breeding programmes to develop mungbean genotypes resistant to MYMD or they can be used directly as varieties to manage MYMD after evaluation for acceptable agronomic characteristics, adaptation and stability in various regions.  相似文献   

4.
The whitefly Bemisia tabaci (biotype B) is a worldwide pest of vegetables and field crops. We tested the efficacy of imidacloprid (IM) with a root fertilizer ‘Root Feed (RF)’ (9% N, 7% Ca, 1.5% Mg and 0.1% B) sub-irrigated in the growing medium against the whitefly on tomato. Tomato seedlings (3–4 true leaves) were treated with 0, 3, 6 or 12 mg active ingredient (a.i.) seedling−1 of IM and with RF (0, 0.02, 0.04 or 0.08 ml seedling−1). The efficacy of 12 mg IM seedling−1 was further evaluated in the greenhouse for 60 days. The survival of B. tabaci adults, nymphs, and egg production were negatively affected by the treatments in a dosage-dependent manner. Treatment of 12 mg IM seedling−1 caused >60% adult and nymph mortality 50 days after treatment (DAT). The active ingredient of IM in tomato leaves also increased with the increase of IM dosage. The RF exhibited a limited effect on B. tabaci. However, the mortality of whitefly adults and nymphs treated with RF (0.02 or 0.04 ml seedling−1) positively interacted with IM, and was greater than IM alone. In the greenhouse, 12 mg IM seedling−1 greatly reduced the number of whitefly adults and increased the dry weight of the tomato plants at 30 DAT. In conclusion, application of 12 mg IM seedling−1 on tomato seedlings before transplanting effectively controled B. tabaci for up to 50 days, and the efficacy of IM combined with 0.02 ml RF seedling−1 performed even better. This could be a cost-effective method for managing B. tabaci on tomato and other vegetables.  相似文献   

5.
The Bemisia tabaci whitefly is an important pest of many agricultural crops. Direct feeding by this pest can cause physiological plant symptoms including irregular ripening in tomatoes and silverleaf disorder in squash. In addition, B. tabaci can transmit more than 100 plant viruses that cause severe diseases that affect crop yield and quality. Insecticides are often applied to control this pest and they may be applied to the foliage and/or to the soil. Insecticides that kill quickly or cause feeding cessation reduce the damage caused by B. tabaci on the host plant most effectively. In this study fluorescence was used to assess B. tabaci feeding and to determine the effect of systemically applied insecticides on feeding by the pest. Cyantraniliprole (Verimark™) and imidacloprid (AdmirePro®) produced a rapid reduction in B. tabaci feeding. At 24 h after a systemic application, the percentage of whitefly nymphs still feeding in plants treated with cyantraniliprole (anthranilic diamide) and imidacloprid (neonicotinoid) were 19% and 33%, respectively. Both products showed a good reduction in insect feeding and since they have different modes of action they should be considered as rotational partners for B. tabaci control in areas where there is no resistance to neonicotinoid insecticides. While the fluorescein sodium salt cannot be used to trace the uptake of insecticides, it has been shown to reliably demonstrate feeding cessation of whitefly nymphs after foliar and systemic applications of insecticides.  相似文献   

6.
The sweetpotato whitefly, Bemisia tabaci (Gennadius), has become a major threat to agriculture worldwide. The development of insecticide resistance in B. tabaci has necessitated the exploration of new management tactics. The toxicity of imidacloprid and buprofezin to various life stages of B. tabaci was determined in the laboratory. Also, the sublethal effects of both insecticides were studied on demographic and biological parameters of B. tabaci. Both insecticides were very toxic against first stage larvae of the pest with LC50 values of 1.0 and 19.3 ppm for buprofezin and imidacloprid, respectively. Toxicities decreased between successive stages (LC50 values ranging from 1.0 to 2854.0 ppm). The LC50 values of imidacloprid for adult males, females and eggs were 11.8, 71.6 and 151.0 ppm, respectively. Buprofezin had no significant effect on adults and eggs. The sublethal concentration of imidacloprid had no significant effect on demographic and biological parameters of B. tabaci but the maximal value for the mean generation time (T) (18.8 day) was observed in imidacloprid treatment. Buprofezin significantly decreased stable population and biological parameters of B. tabaci except it did not decrease the rate of population increase or the sex ratio of offspring.  相似文献   

7.
Data on seasonal population abundance of Bemisia tabaci biotype B (silverleaf whitefly (SLW)) in Australian cotton fields collected over four consecutive growing seasons (2002/2003–2005/2006) were used to develop and validate a multiple-threshold-based management and sampling plan. Non-linear growth trajectories estimated from the field sampling data were used as benchmarks to classify adult SLW field populations into six density-based management zones with associated control recommendations in the context of peak flowering and open boll crop growth stages. Control options based on application of insect growth regulators (IGRs) are recommended for high-density populations (>2 adults/leaf) whereas conventional (non-IGR) products are recommended for the control of low to moderate population densities. A computerised re-sampling program was used to develop and test a binomial sampling plan. Binomial models with thresholds of T=1, 2 and 3 adults/leaf were tested using the field abundance data. A binomial plan based on a tally threshold of T=2 adults/leaf and a minimum sample of 20 leaves at nodes 3, 4 or 5 below the terminal is recommended as the most parsimonious and practical sampling protocol for Australian cotton fields. A decision support guide with management zone boundaries expressed as binomial counts and control options appropriate for various SLW density situations is presented. Appropriate use of chemical insecticides and tactics for successful field control of whiteflies are discussed.  相似文献   

8.
The incidence of Sweet potato leaf curl virus (SPLCV), a Begomovirus, on sweetpotato, Ipomoea batatas (L.) Lam. (Convolvulaceae), in South Carolina, U.S.A. has increased rapidly in recent years. This is likely due to the use of infected propagating materials and the increasing population of its vector, the sweetpotato whitefly, Bemisia tabaci (Gennadius). In this study, we demonstrated in field experiments that SPLCV infection reduced the yields of most heirloom sweetpotato lines relative to the yields of non-infected plants. Real-time polymerase chain reaction (PCR) technology specific to several common sweetpotato viruses was used to determine the virus infection status in 69 selected accessions of heirloom sweetpotato lines. Meristem tip culture technology was used to regenerate virus-free plants from these materials. To ensure the virus-free status, each mericlone was evaluated using real-time PCR and graft bio-indexing on the indicator species, Ipomoea setosa Ker Gawl. Mericlones of 27 cultivars were found to be free of the viruses. The 27 cultivars were included in a field test to determine the effect of SPLCV infection on yield. Yields of virus-free plants of the cultivars ranged from 10 to 80% greater than the yields of SPLCV-infected plants. However, the yield differences between virus-free and infected plants were diminished in the second year of the field experiment due to a rapid re-infection by SPLCV. These results demonstrate the importance of using certified, virus-tested seed roots or cuttings. The rapid re-infection of the virus-tested sweetpotato plants with SPLCV observed in these studies suggests that management of the whitefly population should be a critical element in control of this important virus.  相似文献   

9.
Dispersion of invasive biotypes of the tobacco whitefly, Bemisia tabaci, has led to protracted crop protection constraints in numerous countries over recent decades. These polyphagous, highly efficient vectors of plant viruses present an intractable problem as they frequently carry a diverse suite of insecticide resistance mechanisms. In many areas of China, native biotypes have been supplanted by the invasive and globally widespread biotype B since the 1990s. More recently, biotype Q has established, posing a new and more potent threat to agricultural production systems throughout the country. Insecticide resistance profiles for a range of Chinese B. tabaci strains covering biotypes B and Q were examined, to establish the potential for insecticides to play a pivotal role in biotype competition and ultimate displacement. Commonly used compounds including pyrethroids, neonicotinoids, abamectin and pyriproxyfen were targeted as widespread use is pre-requisite to drivers of population dynamics on a national scale.  相似文献   

10.
A study was conducted to evaluate the use of reflective mulch and host plant resistance for the management of the sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), in watermelon [Citrullus lanatus var. lanatus (Thunberg) Matsum & Nakai]. Whitefly abundance data were collected under both greenhouse (caged and uncaged) and field conditions. Consistently, a reflective mulch (also called silver or metallic) treatment resulted in a lower incidence of adult whiteflies as compared with a standard black mulch treatment. Moreover, two whitefly resistant Citrullus colocynthis (L.) Schrad genotypes, which are wild relatives of cultivated watermelon, reduced whitefly populations as compared with standard watermelon. There was generally no interaction between the mulch and genotype variables. No effect of mulch color was observed on sticky card capture of Delphastus catalinae (Horn), a whitefly predator, or on capture of an Eretmocerus sp. whitefly parasitoid in caged trials, which suggests no adverse effect on these natural enemies when using reflective mulch. Overall whitefly populations were relatively low during four seasons of field trials (2006–2009). Results from this study suggest that a combination of using reflective mulch and host plant resistance can additively suppress whitefly infestations, which have particular importance in the fast-growing organic vegetable production industry.  相似文献   

11.
Nitrogen fertilization is one of the factors that influences Bemisia tabaci (Gennadius) population density. The aim of this study was to determine the effects of three N application rates (75, 205 and 335 mg/l) and three ratios of NO3:NH4+ ions (92:8, 75:25 and 55:45) in standard nutrient solution (205 mg/l N) on the population density of B. tabaci. The experiments were conducted on spring-summer hydroponic crops of tomato. The effect of plant stratum on the whitefly population was also determined. The aggregation of B. tabaci adults as well as their oviposition rate was higher at 205 and 335 mg/l N than on plants grown at 75 mg/l N. By the end of the experiment (60 d after infestation), the number of nymphs on plants at 205 mg/l N was higher than on plants at 75 mg/l N. The number of pupae was lowest on plants supplied with 75 mg/l N. An increase in NH4+ percentage in standard nutrient solution (from 25% to 45% of the total N) reduced adult population density and oviposition rate. The density of nymphs and pupae, at 60 d after infestation, was lower on the tomato plants grown at 75:25 and 55:45 NO3:NH4+ ratios compared to the 92:8 ratio. The 75:25 and 55:45 NO3:NH4+ ratios resulted in a higher incidence of blossom-end rot of tomato fruit, with a lower incidence of disorder at 75:25 than at the 55:45 ratio. Plant stratum influenced adult whitefly distribution in two years of the study. Middle stratum leaves were more attractive to adults in both years. The results demonstrate the effects of N fertilization (N rate and the ratio of NO3:NH4+) and plant stratum on B. tabaci population density.  相似文献   

12.
The cotton whitefly Bemisia tabaci, (Genn.) is an important pest of field crops, vegetables and ornamentals worldwide. Neonicotinoids are considered an important group of insecticides being used against B. tabaci for several years. B. tabaci has developed resistance to some of the compounds of the group. This study was designed to investigate if the selection of B. tabaci with acetamiprid would give a broad-spectrum of cross-resistance and to genetically classify the resistance. At G1 a low level of resistance to acetamiprid, imidacloprid, thiamethoxam, thiacloprid and nitenpyram was observed with resistance ratios of 3-fold, 8-, 9-, 6- and 5-fold, respectively, compared with a laboratory susceptible population. After selection for eight generations with acetamiprid, resistance to acetamiprid increased to 118-fold compared with the laboratory susceptible population. Selection also increased resistance to imidacloprid, thiamethoxam, thiacloprid, nitenpyram, endosulfan and bifenthrin but no change in susceptibility to fipronil was observed. Furthermore resistance in a field population was stable in the absence of acetamiprid selection pressure. Genetic crosses between resistant and susceptible populations indicated autosomal and incompletely recessive resistance. Further genetic analysis suggested that resistance could be controlled by a single factor. The high level of cross-resistance and stability of incomplete resistance in the field population is of some concern. However, lack of cross-resistance between acetamiprid and fipronil or unstable resistance in the resistant population could provide options to use alternative products which could reduce acetamiprid selection pressure.  相似文献   

13.
Sweet potato leaf curl virus (SPLCV), a sweet potato whitefly (Bemisia tabaci) transmitted begomovirus, causes serious yield losses to many sweet potato cultivars. Using experimental whitefly transmissions in a greenhouse (choice tests) and in a growth chamber (no-choice tests), we evaluated 111 plant species in 30 families to determine the host range of SPLCV. The host range was limited to plants in the genus Ipomoea within the family Convolvulaceae. In total, 38 of 45 Ipomoea species tested were susceptible to SPLCV infection. Surveys were conducted during the 2007-2009 sweet potato growing seasons in Mississippi and South Carolina to evaluate morning glory species as potential reservoir hosts for SPLCV. In the sweet potato experimental fields and surrounding areas, a large proportion of volunteer sweet potatoes, as well as a high percentage of annual and perennial morning glories tested positive for SPLCV. Understanding the host range and potential virus reservoir host plants will ultimately help in the development of an effective disease management strategy that is based on the consideration of agroecological factors.  相似文献   

14.
The relative efficacies of registered label rates for foliar and soil drench treatments of imidacloprid and dinotefuran at preventing the establishment of Bemisia tabaci B biotype whitefly populations on newly infested poinsettia plants were evaluated. Pesticide levels within and on plant leaves were monitored for 10 weeks by ELISA and LC/MS in an effort to better understand the dynamics of neonicotinoid activity against this insect and to estimate insecticide concentrations needed to kill the nymphal and adult stages. While all treatments proved equally effective as a remedial measure for the control of the resident adult populations, thereby accomplishing the objective of foliar contact treatments, the dinotefuran soil drench application was the only treatment that provided multi-generational control of Bemisia populations.  相似文献   

15.
The sweetpotato whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) continues to be a serious threat to crops worldwide. The UK holds Protected Zone status against this pest and, as a result, B. tabaci entering on plant material is subjected to a policy of eradication. Q biotype (Mediterranean species) is the predominant whitefly now being intercepted entering the UK. With increasing reports of neonicotinoid resistance in this biotype, it is becoming more problematic to control/eradicate. The current study evaluated sequential insecticide applications of a range of chemicals and two entomopathogenic fungi, Beauveria bassiana and Lecanicillium muscarium, applied within the first 21 days after potting poinsettia cuttings. All sequential treatment programmes tested eradicated Q biotype from poinsettia plants. The efficacy of chemicals and fungi against various Q biotype life-stages was also evaluated as individual treatments. Against the egg stage, abamectin (Dynamec), acetamiprid (Gazelle), refined petroleum spraying oil (Tri-Tek) and the physically acting product SB-Plant Invigorator all proved excellent. None of the products gave total control of second instar larvae. However, Agri-50E, B. bassiana, Tri-Tek and SB-Plant Invigorator all gave over 71% mortality. For adult control, B. bassiana and the oil based products (Addit, Tri-Tek and Spraying Oil) all produced 100% mortality. The work also demonstrated that B. bassiana offers better control of B. tabaci than L. muscarium. Investigating direct tank-mixing of the fungi with the chemical products proved that Majestic (physically acting product), spiromesifen (Oberon), Savona (physically acting product) and SB-Plant Invigorator significantly reduced germination of B. bassiana spores and so could not be recommended as mixes. Tri-Tek Oil, Spraying Oil, Addit, Dynamec and Gazelle showed best potential to be used as tank-mixes with over 90% B. bassiana spore germination following exposure to the test products for 24 h. A direct tank mix of L. muscarium with Tri-Tek allowed full fungal spore germination. The implications of the work in regards to continued protection of the UK horticultural industry from B. tabaci and overcoming insecticide resistance among biotypes are discussed.  相似文献   

16.
Tomato yellow leaf curl virus (TYLCV) can cause an economically relevant disease in the major tomato growing regions, and no resistance has been identified in commercial and wild tomato cultivars in Iran. In the present study, 34 common bean lines were screened for their reaction to TYLCV-Ir2 under greenhouse conditions. The experiment was conducted in a randomized complete block design with three replications. Bean plants were inoculated at the first trifoliate stage with viruliferous whiteflies (Bemisia tabaci biotype B) and were then sprayed with an insecticide and maintained in whitefly-proof greenhouse. The inoculated plants were monitored for the development of symptoms and the presence of viral DNA by polymerase chain reaction (PCR) four weeks after inoculation. Results revealed that out of the 34 lines, five were resistant. These lines exhibited either no symptoms or very mild symptoms and no viral DNA was detected in them by PCR. Two lines, which showed no typical disease symptoms but contained viral DNA, were identified as tolerant to TYLCV-Ir2. The vector feeding preference for common bean lines was assessed. Results indicated a significant difference in adult whitefly numbers among bean lines but there was no relationship between the number of whiteflies and disease symptom severity. The resistance to TYLCY-Ir2 expressed in common bean lines may be useful as source of resistance for the development of resistant commercial common bean cultivars.  相似文献   

17.
Bacterial spot caused by Xanthomonas euvesicatoria Jones et al. and Xanthomonas perforans Jones et al. is a major disease on fresh market commercial tomato in Florida. Fourteen field trials were conducted between 1999 and 2005 (10 in south Florida and four in north Florida) testing famoxadone plus cymoxanil (Tanos 50DF®, E.I. du Pont de Nemours and Company, Wilmington, DE), Bacillus subtilis strain QST 713 (B. subtilis) (Serenade WPO® or Serenade Max®, AgraQuest, Inc., Davis, CA), and acibenzolar-S-methyl (ASM) (Actigard 50WG®, Syngenta Crop Protection, Greensboro, NC) at different rates and in various application programs that were combined and rotated with copper hydroxide and mancozeb for management of bacterial spot. In field applied spray treatments containing famoxadone as a component, all of the programs significantly reduced bacterial spot severity on plants compared to the untreated control plants (UTC) and 97% of the programs were equal for disease suppression conferred by the copper-mancozeb standard. In spray programs containing ASM or B. subtilis plus copper hydroxide, treated plants had significantly reduced disease compared to the UTC plants and were not different from the plants treated with the copper-mancozeb standard. Yield data from small plots was unaffected. Several of the programs which used these compounds in rotation with copper-mancozeb provided similar levels of reduction in the disease severity for bacterial spot while reducing by 50% the amount of copper applied to plants. The effect of famoxadone plus cymoxanil on the survival of Xanthomonas in vitro did not cause a significant reduction in the bacterial population and was not determined to be directly bactericidal. However, greenhouse and field testing supports disease reduction of bacterial spot on plants treated with these compounds. The products tested in these trials may be useful, alternative tools for use in an integrated management program for bacterial spot on tomato.  相似文献   

18.
二穗短柄草(Brachypodium distachyon)是一种新兴的模式植物,在病毒-植物的互作研究中具有广阔的应用前景。水稻黑条矮缩病毒(Rice black-streaked dwarf virus,RBSDV)是一种重要的植物病毒,明确该病毒是否能够侵染二穗短柄草,是进行病毒-寄主互作研究的前提。本研究利用传毒介体灰飞虱将RBSDV人工接种于二穗短柄草Bd21,观察RBSDV是否侵染短柄草,以及侵染后的症状发展过程,同时对病毒进行了PCR检测。结果显示,RBSDV可以侵染二穗短柄草;初期症状为节间缩短,随后表现植株矮缩、心叶扭曲、缺刻等症状;PCR检测有明显的目的条带。由此确定二穗短柄草是RBSDV的新寄主,可作为该病毒与寄主互作的研究材料。这为进行RBSDV抗病基因鉴定、基因组学研究以及农作物的抗病育种奠定了基础。  相似文献   

19.
《Crop Protection》1988,7(1):43-47
Fifteen cotton cultivars were evaluated in Israel during 1985 or 1986 for resistance to sweetpotato whitefly, Bemisia tabaci (Gennadius). Lowest whitefly populations were found on the okra-leaf cottons; however, lower yields were obtained with the most resistant okra-leaf type cotton tested. Under dryland cotton culture, whitefly populations were higher than under auxiliary or normal irrigations. High whitefly populations were positively correlated with high reducing and total sugar contamination of the cotton lint.  相似文献   

20.
《Crop Protection》1987,6(2):109-116
Two large-scale field trials were carried out in consecutive cotton seasons to evaluate the effects of a chlorfenvinphos-based spray regime and a standard commercial spray regime on whiteflies (B. tabaci) and their parasites. During both trials B. tabaci was the dominant pest species and occurred in generally increasing numbers throughout October to January. The only abundant natural enemy of B. tabaci was an aphelinid parasite, Eretmocerus sp. This parasite occurred in very large numbers towards the end of the first cotton season but was less abundant in the following year. In both seasons, cotton fields treated with chlorfenvinphos had significantly lower populations of whiteflies than those treated with the standard commercial spray regime. In contrast, the percentage of parasitized whitefly scales and numbers of parasite adults was significantly higher in the chlorfenvinphos-treated fields. It is suggested that the better control of whiteflies achieved in fields sprayed with chlorfenvinphos is at least in part due to this greater conservation of natural enemies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号