首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of reduced tillage (RT) on nitrous oxide (N2O) emissions of soils from fields with root crops under a temperate climate was studied. Three silt loam fields under RT agriculture were compared with their respective conventional tillage (CT) field with comparable crop rotation and manure application. Undisturbed soil samples taken in September 2005 and February 2006 were incubated under laboratory conditions for 10 days. The N2O emission of soils taken in September 2005 varied from 50 to 1,095 μg N kg−1 dry soil. The N2O emissions of soils from the RT fields taken in September 2005 were statistically (P < 0.05) higher or comparable than the N2O emissions from their respective CT soil. The N2O emission of soils taken in February 2006 varied from 0 to 233 μg N kg−1 dry soil. The N2O emissions of soils from the RT fields taken in February 2006 tended to be higher than the N2O emissions from their respective CT soil. A positive and significant Pearson correlation of the N2O–N emissions with nitrate nitrogen (NO3 –N) content in the soil was found (P < 0.01). Leaving the straw on the field, a typical feature of RT, decreased NO3 –N content of the soil and reduced N2O emissions from RT soils.  相似文献   

2.
We investigated Cd, Zn, and Cd + Zn toxicity to soil microbial biomass and activity, and indigenous Rhizobium leguminosarum biovar trifolii, in two near neutral pH clay loam soils, under long-term arable and grassland management, in a 6-month laboratory incubation, with a view to determining the causative metal. Both soils were amended with Cd- or Zn-enriched sewage sludge, to produce soils with total Cd concentrations at four times (12 mg Cd g−1 soil), and total Zn concentrations (300 mg Zn kg−1 soil) at the EU upper permitted limit. The additive effects of Cd plus Zn at these soil concentrations were also investigated. There were no significant differences in microbial biomass C (B C), biomass ninhydrin N (B N), ATP, or microbial respiration between the different treatments. Microbial metabolic quotient (defined as qCO2 = units of CO2–C evolved unit−1 biomass C unit−1 time) also did not differ significantly between treatments. However, the microbial maintenance energy (in this study defined as qCO2-to-μ ratio value, where μ is the growth rate) indicated that more energy was required for microbial synthesis in metal-rich sludge-treated soils (especially Zn) than in control sludge-treated soils. Indigenous R. leguminosarum bv. trifolii numbers were not significantly different between untreated and sludge-treated grassland soils after 24 weeks regardless of metal or metal concentrations. However, rhizobial numbers in the arable soils treated with metal-contaminated sludges decreased significantly (P < 0.05) compared to the untreated control and uncontaminated sludge-treated soils after 24 weeks. The order of decreasing toxicity to rhizobia in the arable soils was Zn > Cd > Cd + Zn.  相似文献   

3.
Methane oxidising activity and community structure of 11, specifically targeted, methanotrophic species have been examined in an arable soil. Soils were sampled from three different field plots, receiving no fertilisation (C), compost (G) and mineral fertiliser (M), respectively. Incubation experiments were carried out with and without pre-incubation at elevated CH4 mixing ratios (100 ml CH4 l−1) and with and without ammonium (100 mg N kg−1) pre-incubation. Four months after fertilisation, plots C, G and M did not show significant differences in physicochemical properties and CH4 oxidising activity. The total number of methanotrophs (determined as the sum the 11 specifically targeted methanotrophs) in the fresh soils was 17.0×106, 13.7×106 and 15.5×106 cells g−1 for treatment C, G and M, respectively. This corresponded to 0.11 to 0.32% of the total bacterial number. The CH4 oxidising activity increased 105-fold (20–26 mg CH4 g−1 h−1), the total number of methanotrophs doubled (28–76×106 cells g−1) and the methanotrophic diversity markedly increased in treatments with a pre-incubation at elevated CH4 concentrations. In all soils and treatments, type II methanotrophs (62–91%) outnumbered type I methanotrophs (9–38%). Methylocystis and Methylosinus species were always most abundant. After pre-incubation with ammonium, CH4 oxidation was completely inhibited; however, no change in the methanotrophic community structure could be detected.  相似文献   

4.
The contributions of root and microbial respiration to the total emission of CO2 from the surface of gray forest and soddy-podzolic soils were compared under laboratory and field conditions for the purpose of optimizing the field version of the substrate-induced respiration method. The magnification coefficients of respiration upon the addition of saccharose (k mic) were first determined under conditions maximally similar to the natural conditions. For this purpose, soil cleared from roots was put into nylon nets with a mesh size of 40 μm to prevent the penetration of roots into the nets. The nets with soil were left in the field for 7–10 days for the compaction of soil and the stabilization of microbial activity under natural conditions. Then, the values of k mic were determined in the root-free soil under field conditions or in the laboratory at the same temperature and water content. The contribution of root respiration as determined by the laboratory version of the substrate-induced respiration method (7–36%) was lower compared to two field versions of the method (27–60%). Root respiration varied in the range of 24–60% of the total CO2 emission from the soil surface in meadow ecosystems and in the range of 7–56% in forest ecosystems depending on the method and soil type.  相似文献   

5.
Seasonal drought in tropical agroecosystems may affect C and N mineralization of organic residues. To understand this effect, C and N mineralization dynamics in three tropical soils (Af, An1, and An2) amended with haricot bean (HB; Phaseolus vulgaris L.) and pigeon pea (PP; Cajanus cajan L.) residues (each at 5 mg g−1 dry soil) at two contrasting soil moisture contents (pF2.5 and pF3.9) were investigated under laboratory incubation for 100–135 days. The legume residues markedly enhanced the net cumulative CO2–C flux and its rate throughout the incubation period. The cumulative CO2–C fluxes and their rates were lower at pF3.9 than at pF2.5 with control soils and also relatively lower with HB-treated than PP-treated soil samples. After 100 days of incubation, 32–42% of the amended C of residues was recovered as CO2–C. In one of the three soils (An1), the results revealed that the decomposition of the recalcitrant fraction was more inhibited by drought stress than easily degradable fraction, suggesting further studies of moisture stress and litter quality interactions. Significantly (p < 0.05) greater NH4+–N and NO3–N were produced with PP-treated (C/N ratio, 20.4) than HB-treated (C/N ratio, 40.6) soil samples. Greater net N mineralization or lower immobilization was displayed at pF2.5 than at pF3.9 with all soil samples. Strikingly, N was immobilized equivocally in both NH4+–N and NO3–N forms, challenging the paradigm that ammonium is the preferred N source for microorganisms. The results strongly exhibited altered C/N stoichiometry due to drought stress substantially affecting the active microbial functional groups, fungi being dominant over bacteria. Interestingly, the results showed that legume residues can be potential fertilizer sources for nutrient-depleted tropical soils. In addition, application of plant residue can help to counter the N loss caused by leaching. It can also synchronize crop N uptake and N release from soil by utilizing microbes as an ephemeral nutrient pool during the early crop growth period.  相似文献   

6.
The impacts of fallow on soil fertility, crop production and climate-forcing gas emissions were determined in two contrasting legumes, Gliricidia sepium and Acacia colei, in comparison with traditional unamended fallow and continuous cultivation systems. After 2 years, the amount of foliar material produced did not differ between the two improved fallow species; however, grain yield was significantly elevated by 55% in the first and second cropping season after G. sepium compared with traditional fallow. By contrast, relative to the unamended fallow, a drop in grain yield was observed in the first cropping season after A. colei, followed by no improvement in the second. G. sepium had higher foliar N, K and Mg, while A. colei had lower foliar N but higher lignin and polyphenols. In the third year after fallow improvement, a simulated rainfall experiment was performed on soils to compare efflux of N2O and CO2. Improved fallow effects on soil nutrient composition and microbial activity were demonstrated through elevated N2O and CO2 efflux from soils in G. sepium fallows compared with other treatments. N2O emissions were around six times higher from this nitrogen-fixing soil treatment, evolving 69.9 ngN2O–N g−1soil h−1 after a simulated rainfall event, compared with only 8.5 and 4.8 ngN2O–N g−1soil h−1 from soil under traditional fallow and continuous cultivation, respectively. The findings indicate that selection of improved fallows for short-term fertility enhancement has implications for regional N2O emissions for dry land regions.  相似文献   

7.
Effect of cropping systems on nitrogen mineralization in soils   总被引:3,自引:0,他引:3  
 Understanding the effect of cropping systems on N mineralization in soils is crucial for a better assessment of N fertilizer requirements of crops in order to minimize nitrate contamination of surface and groundwater resources. The effects of crop rotations and N fertilization on N mineralization were studied in soils from two long-term field experiments at the Northeast Research Center and the Clarion-Webster Research Center in Iowa that were initiated in 1979 and 1954, respectively. Surface soil samples were taken in 1996 from plots of corn (Zea mays L.), soybean (Glycine max (L.) Merr.), oats (Avena sativa L.), or meadow (alfalfa) (Medicago sativa L.) that had received 0 or 180 kg N ha–1 before corn and an annual application of 20 kg P and 56 kg K ha–1. N mineralization was studied in leaching columns under aerobic conditions at 30  °C for 24 weeks. The results showed that N mineralization was affected by cover crop at the time of sampling. Continuous soybean decreased, whereas inclusion of meadow increased, the amount of cumulative N mineralized. The mineralizable N pool (N o) varied considerably among the soil samples studied, ranging from 137 mg N kg–1 soil under continuous soybean to >500 mg N kg–1 soil under meadow-based rotations, sampled in meadow. The results suggest that the N o and/or organic N in soils under meadow-based cropping systems contained a higher proportion of active N fractions. Received: 10 February 1999  相似文献   

8.
Crop residues with high C/N ratio immobilize N released during decomposition in soil, thus reducing N losses through leaching, denitrification, and nitrous oxide (N2O) emission. A laboratory incubation experiment was conducted for 84 days under controlled conditions (24°C and moisture content 55% of water-holding capacity) to study the influence of sugarcane, maize, sorghum, cotton and lucerne residues, and mineral N addition, on N mineralization–immobilization and N2O emission. Residues were added at the rate of 3 t C ha−1 to soil with, and without, 150 kg urea N ha−1. The addition of sugarcane, maize, and sorghum residues without N fertilizer resulted in a significant immobilization of soil N. Amended soil had significantly (P < 0.05) lower NO3–N, which reached minimum values of 2.8 mg N kg−1 for sugarcane (at day 28), 10.3 mg N kg−1 for maize (day 7), and 5.9 mg N kg−1 for sorghum (day 7), compared to 22.7 mg N kg−1 for the unamended soil (day 7). During 84 days of incubation, the total mineral N in the residues + N treatments were decreased by 45 mg N kg−1 in sugarcane, 34 mg kg−1 in maize, 29 mg kg−1 in sorghum, and 16 mg kg−1 in cotton amended soil compared to soil + N fertilizer, although soil NO3–N increased by 7 mg kg−1 in lucerne amended soil. The addition of residues also significantly increased amended soil microbial biomass C and N. Maximum emissions of N2O from crop residue amended soils occurred in the first 4–5 days of incubation. Overall, after 84 days of incubation, the cumulative N2O emission was 25% lower with cotton + N fertilizer, compared to soil + N fertilizer. The cumulative N2O emission was significantly and positively correlated with NO3–N (r = 0.92, P < 0.01) and total mineral N (r = 0.93, P < 0.01) after 84 days of incubation, and had a weak but significant positive correlation with cumulative CO2 in the first 3 and 5 days of incubation (r = 0.59, P < 0.05).  相似文献   

9.
In grazed pasture systems, a major source of N2O is nitrogen (N) returned to the soil in animal urine. We report in this paper the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), applied in a fine particle suspension (FPS) to reduce N2O emissions from dairy cow urine patches in two different soils. The soils are Lismore stony silt loam (Udic Haplustept loamy skeletal) and Templeton fine sandy loam (Udic Haplustepts). The pasture on both soils was a mixture of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens). Total N2O emissions in the Lismore soil were 23.1–31.0 kg N2O-N ha−1 following the May (autumn) and August (late winter) urine applications, respectively, without DCD. These were reduced to 6.2–8.4 kg N2O-N ha−1 by the application of DCD FPS, equivalent to reductions of 65–73%. All three rates of DCD applied (7.5, 10 and 15 kg ha−1) were effective in reducing N2O emissions. In the Templeton soil, total N2O emissions were reduced from 37.4 kg N2O-N ha−1 without DCD to 14.6–16.3 kg N2O-N ha−1 when DCD was applied either immediately or 10 days after the urine application. These reductions are similar to those in an earlier study where DCD was applied as a solution. Therefore, treating grazed pasture soils with an FPS of DCD is an effective technology to mitigate N2O emissions from cow urine patch areas in grazed pasture soils.  相似文献   

10.
Awareness of global warming has stimulated research on environmental controls of soil methane (CH4) consumption and the effects of increasing atmospheric carbon dioxide (CO2) on the terrestrial CH4 sink. In this study, factors impacting soil CH4 consumption were investigated using laboratory incubations of soils collected at the Free Air Carbon Transfer and Storage I site in the Duke Forest, NC, where plots have been exposed to ambient (370 μL L−1) or elevated (ambient + 200 μL L−1) CO2 since August 1996. Over 1 year, nearly 90% of the 360 incubations showed net CH4 consumption, confirming that CH4-oxidizing (methanotrophic) bacteria were active. Soil moisture was significantly (p < 0.01) higher in the 25–30 cm layer of elevated CO2 soils over the length of the study, but soil moisture was equal between CO2 treatments in shallower soils. The increased soil moisture corresponded to decreased net CH4 oxidation, as elevated CO2 soils also oxidized 70% less CH4 at the 25–30 cm depth compared to ambient CO2 soils, while CH4 consumption was equal between treatments in shallower soils. Soil moisture content predicted (p < 0.05) CH4 consumption in upper layers of ambient CO2 soils, but this relationship was not significant in elevated CO2 soils at any depth, suggesting that environmental factors in addition to moisture were influencing net CH4 oxidation under elevated CO2. More than 6% of the activity assays showed net CH4 production, and of these, 80% contained soils from elevated CO2 plots. In addition, more than 50% of the CH4-producing flasks from elevated CO2 sites contained deeper (25–30 cm) soils. These results indicate that subsurface (25 cm+) CH4 production contributes to decreased net CH4 consumption under elevated CO2 in otherwise aerobic soils.  相似文献   

11.
The co-application of glufosinate with nitrogen fertilizers may alter atrazine cometabolism, thereby extending the herbicide’s residual weed control in adapted soils. The objective of this study was to assess the effects of glufosinate, ammonium sulfate, and the combination of glufosinate and ammonium sulfate on atrazine mineralization in a Dundee silt loam exhibiting enhanced atrazine degradation. Application of glufosinate at rates of 10 to 40 mg kg−1 soil extended the lag phase 1 to 2 days and reduced the maximum degradation rate by 15% to 30%. However, cumulative atrazine mineralization averaged 85% 21 days after treatment and was independent of treatment. Maximum daily rates of atrazine mineralization were reduced from 41% to 55% by application of 1 to 8 g kg−1 of ammonium sulfate. Similarly, cumulative atrazine mineralization was inversely correlated with ammonium sulfate rates ranging from 1.0 to 8 g kg−1 soil. Under the conditions of this laboratory study, atrazine degradation was relatively insensitive to exogenous mineral nitrogen, in that 8 g (NH4)2SO4 per kilogram soil repressed but did not completely inhibit atrazine mineralization. Moreover, an additive effect on reducing atrazine mineralization was observed when glufosinate was co-applied with ammonium sulfate. In addition, ammonium fertilization alters the partitioning of 14C-atrazine metabolite accumulation and nonextractable residues, indicating that ammonium represses cleavage of the triazine ring. Consequently, results indicate that the co-application of glufosinate with N may increase atrazine persistence under field conditions thereby extending atrazine residual weed control in adapted soils.  相似文献   

12.
Fixation and defixation of ammonium in soils: a review   总被引:2,自引:0,他引:2  
Fixed NH4+ (NH4+ f) and fixation and defixation of NH4+ in soils have been the subject of a number of investigations with conflicting results. The results vary because of differences in methodology, soil type, mineralogical composition, and agro-climatic conditions. Most investigators have determined NH4+ f using strong oxidizing agents (KOBr or KOH) to remove organic N and the remaining NH4+ f does not necessarily reflect the fraction that is truly available to plants. The content of native NH4+ f in different soils is related to parent material, texture, clay content, clay mineral composition, potassium status of the soil and K saturation of the interlayers of 2:1 clay minerals, and moisture conditions. Evaluation of the literature shows that the NH4+ f-N content amounts to 10–90 mg kg−1 in coarse-textured soils (e.g., diluvial sand, red sandstone, granite), 60–270 mg kg−1 in medium-textured soils (loess, marsh, alluvial sediment, basalt) and 90–460 mg kg−1 in fine-textured soils (limestone, clay stone). Variable results on plant availability of NH4+ f are mainly due to the fact that some investigators distinguished between native and recently fixed NH4+ while others did not. Recently fixed NH4+ is available to plants to a greater degree than the native NH4+ f, and soil microflora play an important role in the defixation process. The temporal changes in the content of recently fixed NH4+ suggest that it is actively involved in N dynamics during a crop growth season. The amounts of NH4+ defixed during a growing season varied greatly within the groups of silty (20–200 kg NH4+-N ha−1 30 cm−1) as well as clayey (40–188 kg NH4+-N ha−1 30 cm−1) soils. The pool of recently fixed NH4+ may therefore be considered in fertilizer management programs for increasing N use efficiency and reducing N losses from soils.  相似文献   

13.
 A routine soil testing procedure for soil N mineralization is needed that is rapid and precise. Not accounting for N mineralization can result in the over-application of N, especially in soils with a history of manure application. Our objectives were to compare results from a recently proposed rapid laboratory procedure with: (1) long-term N mineralization under standard laboratory conditions, and (2) actual forage N uptake from soil receiving dairy cattle (Bos taurus) manure in a 2-year field study. The rapid procedure is based on the quantity of CO2-C evolved during 24 h under optimum laboratory conditions following the rewetting of dried soil. Dairy cattle manure was surface applied beginning in 1992 at annual rates of 0, 112, 224, or 448 kg N ha–1 to field plots on a Windthorst fine sandy loam soil (fine, mixed, thermic Udic Paleustalf) near Stephenville, Texas (32°N, 98°W). Results of the one-day CO2 procedure were highly correlated with soil N mineralized from samples collected in March of 1995 (P=0.004) and 1996 (P<0.001) and with forage N uptake (P<0.001) both years of the study. Residual inorganic N in the same soil samples was poorly correlated with soil N mineralization and forage N uptake. Received: 23 February 2000  相似文献   

14.
A study was conducted to investigate the effects of cow manure and sewage sludge application on the activity and kinetics of soil l-glutaminase. Soil samples were collected from a farm experiment in which 0, 25, and 100 Mg ha−1 of either cow manure or sewage sludge had been applied annually for 4 consecutive years to a clay loam soil (Typic Haplargid). A chemical fertilizer treatment had also been applied. Results indicated that the effects of chemical fertilizer and the solid waste application on pH in the 18 surface soil (0–15 cm) samples were not significant. The organic C content, however, was affected significantly by the different treatments, being the greatest in soils treated with 100 Mg ha−1 cow manure, and the least in the control treatment. l-Glutaminase activity was generally greater in solid-waste applied soils and was significantly correlated (r = 0.939, P < 0.001) with organic C content of soils. The values of l-glutaminase maximum velocity (Vmax) ranged from 331 to 1,389 mg NH4 +–N kg−1 2 h−1. Values of the Michaelis constant (K m) ranged from 35.1 to 71.7 mM. Organic C content of the soils were significantly correlated with V max (r = 0.919, P < 0.001) and K m (r = 0.763, P < 0.001) values. These results demonstrate the considerable influence that solid waste application has on this enzymatic reaction involved in N mineralization in soil.  相似文献   

15.
Red lead (Pb3O4) has been used extensively in the past as an anti-corrosion paint for the protection of steel constructions. Prominent examples being some of the 200,000 high-voltage pylons in Germany which have been treated with red lead anti-corrosion paints until about 1970. Through weathering and maintenance work, paint compounds and particles are deposited on the soils beneath these constructions. In the present study, six such “pylon soils” were investigated in order to characterize the plant availability and plant uptake of Pb, Cd, and Zn. For comparison, three urban soils with similar levels of heavy metal contamination were included. One phase extractions with 1 M NH4NO3, sequential extractions (seven steps), and extractions at different soil pH were used to evaluate the heavy metal binding forms in the soil and availability to plants. Greenhouse experiments were conducted to determine heavy metal uptake by Lolium multiflorum and Lactuca sativa var. crispa in untreated and limed red lead paint contaminated soils. Concentrations of Pb and Zn in the pylon soils were elevated with maximum values of 783 mg Pb kg−1 and 635 Zn mg kg−1 while the soil Cd content was similar to nearby reference soils. The pylon soils were characterized by exceptionally high proportions of NH4NO3-extractable Pb reaching up to 17% of total Pb. Even if the relatively low pH of the soils is considered (pH 4.3–4.9), this appears to be a specific feature of the red lead contamination since similarly contaminated urban soils have to be acidified to pH 2.5 to achieve a similarly high Pb extractability. The Pb content in L. multiflorum shoots reached maximum values of 73 mg kg−1 after a cultivation time of 4 weeks in pylon soil. Lime amendment reduced the plant uptake of Pb and Zn significantly by up to 91%. But L. sativa var. crispa cultivated on soils limed to neutral pH still contained critical Pb concentrations (up to 0.6 mg kg−1 fresh weight). Possible mechanisms for the exceptionally high plant availability of soil Pb derived from red lead paint are discussed.  相似文献   

16.
A 10-week laboratory study, using an open incubation technique, was carried out to determine net sulphur (S) mineralization potentials of soil samples obtained from some representative soils in Tuscany, Italy. The time-course of organic S mineralization in the soils was analyzed by fitting the experimental values to three kinetic models (first-order, first-order E, zero-order). The first-order model was found to be the most suitable because it provided the best fit to the experimental data and for its simplicity. Potentially mineralized S (S 0) values ranged from a minimum of 13.6 to a maximum of 50.7 mg kg−1 soil and the mineralization rate k varied from 0.111 to 0.615 week−1. It was also positively related to organic C, N, and S, protease, arylsulphatase, and dehydrogenase activities. The mineralization rate did not show any significant relationship with soil properties.  相似文献   

17.
Tillage systems influence soil properties and may influence the availability of applied and mineralized soil N. This laboratory study (20°C) compared N cycling in two soils, a Wooster (fine, loamy Typic Fragiudalf) and a Hoytville (fine, illitic Mollic Epiaqualf) under continuous corn (Zea mays) production since at least 1963 with no-tillage (NT), minimum (CT) and plow tillage (PT) management. Fertilizer was added at the rate of 100 mg 15N kg–1–1 soil as 99.9% 15N as NH4Cl or Ca(NO3)2 and the soils were incubated in leaching columns for 1 week at 34 kPa before being leached periodically with 0.05 M CaCl2 for 26 weeks. As expected, the majority of the 15NO3 additions were removed from both soils with the first leaching. The majority of applied 15NH4+ additions were recovered as 15NO3 by week 5, with the NT soils demonstrating faster nitrification rates compared with soils under other tillage practices. For the remaining 22 weeks, only low levels of 15NO3 were leached from the soils regardless of tillage management. In the coarser textured Wooster soils (150 g clay kg–1), mineralization of native soil N in the fertilized soils was related to the total N content (r2 0.99) and amino acid N (r2 0.99), but N mineralization in the finer textured Hoytville (400 g clay kg–1) was constant across tillage treatments and not significantly related to soil total N or amino acid N content. The release of native soil N was enhanced by NH4+ or NO3 addition compared to the values released by the unfertilized control and exceeded possible pool substitution. The results question the use of incubation N mineralization tests conducted with unfertilized soils as a means for predicting soil N availability for crop N needs.  相似文献   

18.
Long-term effects of mineral fertilization on microbial biomass C (MBC), basal respiration (R B), substrate-induced respiration (R S), β-glucosidase activity, and the rK-growth strategy of soil microflora were investigated using a field trial on grassland established in 1969. The experimental plots were fertilized at three rates of mineral N (0, 80, and 160 kg ha−1 year−1) with 32 kg P ha−1 year−1 and 100 kg K ha−1 year−1. No fertilizer was applied on the control plots (C). The application of a mineral fertilizer led to lower values of the MBC and R B, probably as a result of fast mineralization of available substrate after an input of the mineral fertilizer. The application of mineral N decreased the content of C extracted by 0.5 M K2SO4 (C ex). A positive correlation was found between pH and the proportion of active microflora (R S/MBC). The specific growth rate (μ) of soil heterotrophs was higher in the fertilized than in unfertilized soils, suggesting the stimulation of r-strategists, probably as the result of the presence of available P and rhizodepositions. The cessation of fertilization with 320 kg N ha−1 year−1 (NF) in 1989 also stimulated r-strategists compared to C soil, probably as the result of the higher content of available P in the NF soil than in the C soil.  相似文献   

19.
The interactive impacts of arbuscular mycorrhizal fungi (AMF, Glomus intraradices) and earthworms (Aporrectodea trapezoides) on maize (Zea mays L.) growth and nutrient uptake were studied under near natural conditions with pots buried in the soil of a maize field. Treatments included maize plants inoculated vs. not inoculated with AMF, treated or not treated with earthworms, at low (25 mg kg−1) or high (175 mg kg−1) P fertilization rate. Wheat straw was added as feed for earthworms. Root colonization, mycorrhiza structure, plant biomass and N and P contents of shoots and roots, soil available P and NO3–N concentrations, and soil microbial biomass C and N were measured at harvest. Results indicated that mycorrhizal colonization increased markedly in maize inoculated with AMF especially at low P rate, which was further enhanced by the addition of earthworms. AMF and earthworms interactively increased maize shoot and root biomass as well as N and P uptake but decreased soil NO3–N and available P concentrations at harvest. Earthworm and AMF interaction also increased soil microbial biomass C, which probably improved root N and P contents and indirectly increased the shoot N and P uptake. At low P rate, soil N mobilization by earthworms might have reduced potential N competition by arbuscular mycorrhizal hyphae, resulting in greater plant shoot and root biomass. Earthworms and AMF interactively enhanced soil N and P availability, leading to greater nutrient uptake and plant growth.  相似文献   

20.
The kinetics of nitric oxide consumption in four tropical soils were studied under oxic and anoxic conditions in a flow-through system in the laboratory. Under anoxic conditions the soils had a very high affinity for NO, resulting in K M values of 0.02–0.27 ppmv NO (equivalent to 0.04–0.50 nM NO in the aqueous phase). These K M values were lower than literature values for NO consumption by denitrifying bacteria. Under oxic conditions the kinetics of NO consumption in the tropical soils were completely different, exhibiting K M values higher than 1.7 ppmv. These higher K M values were similar to literature values for NO consumption by aerobic heterotrophic bacteria. Thus, the tropical soils studied seem to contain two different NO consumption activities which can be distinguished by their kinetics and which predominate under aerobic and anaerobic conditions, respectively. However, it was not possible to quantify the contribution of each process to total NO consumption under natural conditions. Under aerobic conditions NO turnover kinetics were positively correlated with soil respiration, N mineralisation and soil organic carbon, whereas under anaerobic conditions they were positively correlated with potential and actual denitrification rates and pH. Received: 26 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号