共查询到19条相似文献,搜索用时 84 毫秒
1.
基于最小二乘支持向量机的中国粮食产量预测模型研究 总被引:1,自引:0,他引:1
粮食产量预测是制定农业政策的重要依据。针对农业生产系统的特征,在统计学习理论和结构风险最小化原理的基础上,建立了基于最小二乘支持向量机的时间预测模型。预测结果表明该模型具有较高的预测精度,为粮食产量预测提供了一条新的途径。 相似文献
2.
针对耕地变化内部规律与模拟方法进行研究,提出最小二乘支持向量机耕地变化预测方法,有效构建耕地变化与耕地变化影响因子之间复杂的非线性关系模型。利用遗传算法全局寻优功能优化最小二乘支持向量机内部参数,提高最小二乘支持向量机耕地变化预测模型精度。利用该模型对江苏无锡市1987-2000年期间耕地变化进行预测,并与多元回归、GM(1,1)、BP网络、支持向量机(SVM)耕地预测模型和实际调查耕地变化数据进行比较分析。预测精度评价结果证实,该方法耕地预测精度远高于多元回归、GM(1,1),BP网络模型,略高于SVM模型,但算法复杂度和计算效率远优于SVM预测模型,是一种有效的耕地变化预测方法。 相似文献
3.
针对如何从低压电网总泄漏电流中检测出生物体触电电流信号的难题,提出了一种基于网格搜索和交叉验证的最小二乘支持向量机的触电电流信号检测方法。首先在剩余电流动作保护装置触电物理试验系统平台上通过故障录波器获得生物体在3个典型时刻(电源电压最大时刻、电源电压过零时刻及电源电压任意时刻)发生触电过程的总泄漏电流和触电电流波形,并截取触电前1个周期和触电后3个周期共800个采样点的信号数据作为触电试验样本数据;然后将触电试验样本数据进行滤波预处理,预处理后的多个样本采样点的总泄漏电流组合成特征向量输入最小二乘支持向量机(least square-support vector machine,LS-SVM),相应样本采样点的触电电流作为其输出,并通过网格搜索与交叉验证相结合的方法来优化最小二乘支持向量机参数,利用输出最优参数组合对触电电流与总泄漏电流的关系进行训练,从而建立了触电电流的检测模型;最后利用该方法对10组测试样本数据进行了检测,检测结果为:当训练样本数据为20组时,检测均方误差为14.0040,当训练样本数据为40组时,检测均方误差为11.7469,当训练试验数据为65组时,检测均方误差为11.1849。与径向基(radial basis function,RBF)神经网络方法相比,最小二乘支持向量机方法比径向基神经网络方法检测均方误差分别低3.7272、1.9132、0.1556,从而可较准确地从总泄漏电流中检测出生物体触电电流信号,为开发新一代基于生物体触电电流分量而动作的自适应型剩余电流保护装置提供理论依据。 相似文献
4.
基于最小二乘支持向量回归的鹅肉弹性的可见-近红外光谱测定 总被引:1,自引:0,他引:1
为简化鹅肉弹性的可见-近红外光谱模型和提高预测精度,采用联合区间偏最小二乘法(synergyinterval partial least square algorithm,siPLS)结合遗传算法(Genetic algorithm,GA)提取可见-近红外光谱特征波长,用最小二乘支持向量回归(least square support vector for regression,LSSVR)建立鹅肉弹性的预测模型。试验以万能试验机获取恢复距离S作为鹅肉弹性实际值。在模型建立过程中,先利用sym8小波的2层分解对原始的可见-近红外光谱进行光谱预处理;然后用siPLS优选出4个特征光谱子区间(分别为第3、5、9、13子区间),在这4个特征光谱子区间内继续用GA优选出74个特征波长,并建立基于LSSVR的鹅肉弹性的预测模型。模型预测集的决定系数(R2)和预测均方根误差(root mean squarederror of prediction,RMSEP)分别为0.9096和0.0588。试验结果表明,siPLS结合GA法能够有效提取光谱中的鹅肉弹性对应的特征波长,有利于提高LSSVR模型预测鹅肉弹性的精度。 相似文献
5.
基于最小二乘向量机土壤水分动态模拟与分析 总被引:2,自引:0,他引:2
土壤水分动态的模拟对水分循环与农业生产中水分的合理利用与管理具有重要的意义.应用最小二乘支持向量机对加入气象因子随机变量的红壤中土壤水分动态变化进行了训练、检验及模拟.结果表明,最小二乘支持向量机相比与神经网络方法不论是模拟性能指标还是建模的数学意义都有更好的可靠性和优越性;本研究应用最小二乘支持向量机对土壤水分动态日变化进行了模拟,并采用bior 3.3小波函数5层分解提取日变化趋势图进而把该研究区土壤水分日变化划分为4个阶段,其结果可为研究区水分合理利用和土壤墒情的预测预报提供科学依据. 相似文献
6.
基于支持向量机方法建立土壤湿度预测模型的探讨 总被引:5,自引:0,他引:5
支持向量机(Support Vector Machine简称SVM)方法,是通过核函数实现到高维空间的非线性映射,适宜于解决非线性问题,具有算法简单、计算量小、易于实现等优点。本文运用支持向量机方法建立了不同土层土壤湿度预测模型,0~10cm土层土壤湿度预测模型有较好的推广能力,10~50cm处的各层预测模型预报能力相对较弱。分析土壤湿度历史监测资料,发现同一时刻0~10cm土层与其它各土层土壤湿度具有较高的相关关系,基于此建立了预报精度较高的各土层土壤湿度的预测模型,实现了运用前期环境气象因子对各土层土壤湿度的预测。 相似文献
7.
基于细菌觅食优化算法的支持向量机在土壤墒情预测中的应用 总被引:1,自引:0,他引:1
[目的]对基于细菌觅食优化算法的支持向量机在土壤墒情预测中的应用进行探讨,为现代农业研究中土壤墒情预测及农业生产提供支持。[方法]基于支持向量回归机方法建立土壤墒情预测模型,利用细菌觅食优化算法优化支持向量机预测模型的相关参数。根据从种植区采集的田间数据对模型进行建模和测试。[结果]与仅利用支持向量回归机和利用粒子群优化的支持向量回归机分别建立的模型进行对比,发现本研究所提算法建立的预测模型的预测效果更佳。[结论]该模型预测效果较好,所建模型已应用于实际项目,预测精度基本满足要求,且运行稳定。进而证明了该研究所提算法的有效性和可行性。 相似文献
8.
泵的性能曲线是泵选型、优化调度和泵站运行的重要依据,通常该曲线均是通过试验或是根据试验数据和性能图表上的数据进行曲线拟合而获得,但这些方法复杂昂贵,而且拟合精度不高。针对以上方法的缺点,提出了一种基于交叉验证最优参数选择的最小二乘支持向量机(LSSVM)泵性能预测方法。通过最小二乘支持向量机(LSSVM)学习算法网络的设计和构建,并应用网络搜索-交叉验证的方法对支持向量机参数进行优化选择,模拟得到复杂和非线性很强的泵的性能曲线,经优化模型输出值和试验值、同多项式拟合值以及径向基神经网络误差的比较,交叉验证最优参数选择的最小二乘支持向量机具有优良的非线性建模能力和泛化能力,在有限学习样本条件下仍获得了很高的精度,平均相对误差为0.02378%,为泵的性能分析提供了一种简便可行的智能方法。 相似文献
9.
为了准确地进行淡水鱼种类自动识别,利用计算机视觉技术,提出了一种基于Krawtchouk矩、灰度共生矩阵、蜂群优化多核最小二乘支持向量机(least squares support vector machine,LS-SVM)的识别方法。首先获取淡水鱼样本的灰度图像,计算淡水鱼鱼体的长宽比、鱼头鱼尾的Krawtchouk矩不变量形状特征,求得鱼身的灰度共生矩阵纹理特征,将上述形状与纹理特征组合成高维特征向量,并输入到多核LS-SVM,通过人工蜂群(artificial bee colony,ABC)算法对多核LS-SVM中的待定参数进行寻优,ABC算法中的适应度函数为测试样本的识别精度;最后输出识别精度达到最高时的最优参数。利用该方法对鳊鱼、鳙鱼、鲫鱼、草鱼、青鱼5种淡水鱼进行了分类识别,对鳊鱼、鳙鱼、鲫鱼、草鱼4种鱼识别时,各类鱼的识别精度均达到95.83%以上,对鳊鱼、鳙鱼、鲫鱼、青鱼4种鱼识别时,各类鱼的识别精度均达到91.67%以上,对鳊鱼、鳙鱼、鲫鱼、草鱼和青鱼 5种鱼识别时,各类鱼的识别精度均达到83.33%以上;与近年来提出的淡水鱼识别方法、BP(back propagation)神经网络方法、单核LS-SVM方法相比,该方法的识别精度更高,从而可快速准确地识别淡水鱼的种类,提高水产养殖的自动化水平。 相似文献
10.
以食用油中铜、铅、锌三组分重金属同时检测为目的,用差分脉冲溶出伏安法对三种金属混合溶液进行了电化学检测,获得了检测信号.利用平滑、平滑求导、卡尔曼滤波、小波包分析四种降噪方法对检测信号进行了降噪处理;运用主成分分析融合数据,以降低数据维数.同时,借助最小二乘支持向量机回归构建了四种不同模型.通过对预测集检验以及食用油样品的实际测试,得出基于平滑求导的回归模型预报结果较好,且满足食用油中铜、锌、铅检测精度要求.该研究为食用油中多组分重金属含量快速检测提供了一种新手段. 相似文献
11.
该文研究利用电子舌技术快速评价绿茶的滋味品质。试验以“碧螺春”绿茶为研究对象,以绿茶滋味化学鉴定法作为绿茶滋味品质的评价方法,获得的滋味总得分值作为电子舌评价模型的参考测量值。在数据分析过程中,首先对不同生产日期的碧螺春茶汤滋味总得分值和各传感器响应值进行单因素方差分析;然后对比采用偏最小二乘法和最小二乘支持向量机建立电子舌传感器响应值与滋味总得分值之间的相关模型。结果显示不同生产日期对绿茶滋味品质及各传感器响应信号都具有极显著影响;当采用4个主成分时,建立的最小二乘支持向量机模型最优。用独立样本检验模型精度,模型预测值与参考值的相关系数为0.906,预测集均方根误差为4.077。研究结果可为茶叶品质智能化评价提供参考。 相似文献
12.
Bernard Ludwig Rajasekaran Murugan V. R. Ramakrishna Parama Michael Vohland 《植物养料与土壤学杂志》2018,181(5):704-713
Visible and near infrared spectroscopy (vis‐NIRS) may be useful for an estimation of soil properties in arable fields, but the quality of results are often variable depending on the applied chemometric approach. Partial least squares regression (PLSR) may be replaced by approaches which employ supervised learning methods or variable selection procedures in order to increase the proportion of informative wavelengths used in the estimation procedure, to reduce the noise of the spectra and to find the best fitting solution. Objectives were (1) to compare the usefulness of PLSR with either PLSR combined with a genetic algorithm (GA‐PLSR) or support vector machine regression (SVMR) for an estimation of soil organic carbon (SOC), total nitrogen (N), pH, cation exchange capacity (CEC) and soil texture for surface soils (0–5 cm, n = 144) of an arable field in Bangalore (India) and (2) to test and optimize different calibration strategies for GA‐PLSR for an improved estimation of soil properties. PLSR was useful for an estimation of SOC, N, sand and clay. In the cross‐validation (n = 96), accuracies of estimated soil properties generally decreased in the order GA‐PLSR > SVMR > PLSR. However, the order of estimation accuracies for the random validation sample (n = 48) changed to SVMR > GA‐PLSR > PLSR for SOC, N, pH, and CEC, whereas for clay the order changed to SVMR > PLSR > GA‐PLSR. A sequential procedure, which used the most frequently selected wavelengths of the GA‐PLSR runs, proved to be useful for an improved estimation of SOC and N. Overall, SVMR especially improved estimations of SOC and clay, whereas GA‐PLSR was particularly useful for SOC and N and it was the only approach which successfully estimated CEC in cross‐validation and validation. 相似文献
13.
Guanghui ZHENG Caixia JIAO Xianli XIE Xuefeng CUI Gang SHANG Chengyi ZHAO Rong ZENG 《土壤圈》2023,(6):849-856
Soil bulk density(BD) is an important physical property and an essential factor for weight-to-volume conversion. However, BD is often missing from soil databases because its direct measurement is labor-intensive, time-consuming, and sometimes impractical, particularly on a large scale. Therefore, pedotransfer functions(PTFs) have been developed over several decades to predict BD. Here, six previously revised PTFs(including five basic functions and stepwise multiple linear regression(SMLR)) and t... 相似文献
14.
入渗参数和糙率是沟灌设计和管理中需要确定的重要基本参数。该研究基于WinSRFR软件模拟结果构建样本集,通过最小二乘支持向量机(least squares support vector machines,LSSVM)回归模型来映射水流推进时间、消退时间与入渗参数、糙率之间的非线性关系,并在此基础上提出了结合最小二乘支持向量机和遗传算法(least squares support vector machines-genetic algorithm,LSSVM-GA)的参数估算方法,即利用LSSVM回归模型构建目标函数,并利用GA获得入渗参数和糙率的最优值。在4组尾端封闭沟试验基础上,将LSSVM-GA法与多元非线性回归(multiple nonlinear regression,MNR)及WinSRFR中的Merriam-Keller post-irrigation volume balance analysis(MK-PIVB)进行对比,结果表明,LSSVM-GA法估算的参数对进退水过程的拟合效果较优,其模拟的推进和消退过程均方根误差分别介于1.06~2.12 min和2.28~3.11min之间,表明LSSVM-GA在估算入渗参数和糙率方面的可靠性,这有助于获得更精确的灌水技术要素,进而提高沟灌性能。 相似文献
15.
针对农畜产品检测现场的需求,基于可见/近红外光谱检测技术和嵌入式系统,开发了灵活方便的猪肉品质无损检测装置。该装置利用卤素灯作为光源,新型光导探头和微型光谱仪采集肉样光谱信息,通过ARM(advanced RISC machines)控制处理器进行集中控制和数据的处理;在内嵌linux操作系统上,采用Qt开发工具,设计出人性化的交互界面,并将猪肉品质的检测结果输出到装置触摸屏上。为了建立多品质无损检测数学模型,获取了猪肉里脊在400~1 000 nm波长范围内的光谱数据,通过国标方法测得猪肉里脊主要品质参数颜色(L*、a*、b*)和p H值,采用标准正态变量变换(standard normalized variate,SNV)和Savitzky-Golay(S-G)平滑对光谱数据进行预处理,并结合理化数据建立偏最小二乘(partial least squares regression,PLSR)模型。用全交叉验证法选取PLSR建模的主成分数。p H值、L*、a*和b*的预测相关系数为0.88、0.90、0.97和0.97,预测标准差为0.19、1.77、1.17和0.63。通过现场试验表明,轻便式多品质无损检测装置具有较高的检测精度,满足于猪肉的颜色和p H值等品质参数检测的要求。 相似文献
16.
探究中红外光谱在预测内蒙古区域农田土壤有机碳含量的潜力。
以中国内蒙古地区农田土壤为研究对象,在内蒙古东部、中部和西部主要农田分布区域采集了411个土壤样品作为测试样本,基于不同预处理组合筛选评价,分别建立偏最小二乘回归(PLSR)和支持向量机回归(SVR)土壤有机碳预测模型,来比较中红外光谱对不同区域和整体土壤有机碳的预测精度。
①从整体预测效果来看,PLSR所对应的不同预处理方法组合中预测精度表现最佳的为归一化处理(Normalization)(
农田土壤类型、土壤碳含量差异和预处理方法选择对中红外光谱的预测效果均具有较大影响。基于中红外光谱技术建立的Normalization-PLSR定量预测模型对区域农田土壤有机碳具有较好的预测效果(
17.
土壤碳氮比(C/N)不仅可以反映土壤质量,也可以衡量土壤碳氮元素的营养平衡状况,其数值和等级的快速准确测定对指导实时科学施肥和提升土壤质量具有重要意义。本研究利用贵州省501个烤烟-玉米轮作典型农田耕层(0~20 cm)土壤样品的可见-近红外光谱(VNIR)和中红外光谱(MIR)信息以及总有机碳(TOC)、全氮(TN)和C/N数据,对光谱进行Savitzky-Golay(SG)平滑去噪和标准规一化处理后,分别应用偏最小二乘回归(PLSR)、随机森林(RF)和Cubist三种方法进行建模,通过直接预测C/N和间接预测(先分别预测TOC和TN再计算C/N)两种方式构建了土壤C/N预测模型,并对C/N数值和等级预测精度进行了解析。结果表明:(1)对于C/N数值预测,虽然最优预测策略为MIR-PLSR的直接预测,但预测精度(相对标准误差,RPD)仅为1.20;(2)C/N等级可以被准确预测,最优策略为MIR-PLSR模型的直接预测,等级判定精度为0.71;(3)C/N数值预测精度较低的原因主要有两方面,其一是烟田较为一致的严格施肥措施降低了耕层土壤碳氮含量的空间差异,从而也降低了C/N的空间变异(变异系数为17.15%,中度变异),二是C/N与VNIR、MIR光谱的相关性均较低。因此,基于MIR-PLSR可以对C/N等级进行直接预测。 相似文献
18.
为建立一种能够同时快速检测土壤全磷和全钾的定量估计模型,该文采用近红外漫反射技术对赣南脐橙果园的土壤进行研究,对56个土样风干、过筛,然后进行光谱采集和化学分析。光谱经过Savitzky-Golay平滑后再用一阶微分变换的方法进行预处理,分别应用偏最小二乘回归(partial least square regress PLS)、主成分回归(principal component regression PCR)和最小二乘支持向量机(least squares support vector machine LS-SVM)3种方法,在4 000~7 500 cm-1波数范围内,建立赣南脐橙果园土壤全磷和全钾快速定量检测模型。结果发现在建立土壤全磷模型时,PLS和PCR的预测模型效果均不理想,但LS-SVM建立的模型较为理想, 其预测相关系数(correlation coefficient of prediction RP)为0.884,预测集均方根误差(the root mean square error of prediction RMSEP)为0.341,预测相对分析误差(residual predictive deviation RPD)为2.59。在建立土壤全钾模型时,PLS、PCR和LS-SVM 建立3种模型效果均理想,其中以LS-SVM模型最理想,其预测相关系数(RP)为0.971,预测集均方根误差(RMSEP)为0.714,预测相对分析误差(RPD)为5.12。研究表明,采用LS-SVM建立的土壤全磷和全钾模型对实现土壤全磷和全钾含量快速检测具有可行性。 相似文献
19.
基于133个滨海湿地土样的全氮(TN)含量和光谱反射率(R)及其对数(lgR)、对数的一阶微分((lgR)'')、倒数(1/R)、倒数的一阶微分((1/R)'')、一阶微分(R'')、平方根(√R)、一阶微分的倒数(1/(R)'')变换,采用偏最小二乘回归(PLSR)、随机森林回归(RFR)和支持向量机回归(SVR)3种算法分别建立土壤TN含量估测模型。结果表明:①土壤TN含量与光谱变换形式相关性由高到低为:(1/R)''> R''> (lgR)''> 1/R > lgR > 1/(R)''> √R > > R,经光谱变换,土壤TN含量与变换光谱的相关性均高于R,其中与(1/R)''的Pearson相关系数最大为0.746。②PLSR和SVR基于R''、(1/R)''、(lgR)''和1/(R)''变换构建的模型、RFR方法构建的所有模型R2均大于0.732,均可用于滨海湿地土壤TN含量的估算。③基于1/(R)''建立的SVR模型预测精度最高,其R2为0.987,RMSE为0.057 g/kg,MAE为0.050 g/kg,是预测滨海湿地土壤TN含量的最优模型,可为准确获取滨海湿地土壤TN含量提供稳定方法。 相似文献