首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
保鲜运输车温度场分布特性试验研究   总被引:8,自引:7,他引:1  
为解决果蔬保鲜运输车厢体内温差过大的问题,搭建了基于压差原理的保鲜运输温度场试验平台。通过改变回风道风速、回风道长度、开孔隔板开孔率、堆栈方式、气流导轨等影响气流形式的因素,研究了这些因素对保鲜运输车厢温度场分布的影响。结果表明:回风道风速越大,回风道越长,保鲜厢内的温度场均匀性越好;堆栈方式为中间两侧留空时,厢体内温度场均匀性优于仅中间留空、两侧留空和满载等3种堆栈方式;开孔隔板开孔率对保鲜室中横截面温度场均匀性的影响较大;有气流导轨时的温度场均匀性优于无气流导轨时。当回风道长度为1.5 m,回风道风速为8 m/s,开孔率为16.11%,堆栈方式为中间两侧留空,有气流导轨时,保鲜运输车厢内的温度场均匀性较优,此时保鲜室内中纵截面温度分布的标准差为1.15℃,中横截面温度分布的标准差为2.04℃。研究结果为果蔬保鲜运输车的厢体结构优化提供参考。  相似文献   

2.
果蔬气调保鲜运输车的设计与试验   总被引:6,自引:3,他引:3  
为解决果蔬气调保鲜运输气调效率低且成本高等问题,该文提出了一种液氮充注气调保鲜运输技术,应用该技术制造的运输车主要由汽车底盘、基于压差原理的运输厢体、液氮充注气调装置、超声波加湿装置、制冷机组、变风量通风装置、换气装置和集中控制系统等组成。整车性能试验结果表明:在环境温度(33.5±1)℃、相对湿度59%±3%、采用仅中间留空堆栈、装载后厢体内后部温度(22.3±0.3)℃的条件下,物料初始温度为4.82和6.38℃时,调控至目标环境所用时间为52和90 min;物料初始温度基本相同(4.65~4.82℃)、采用仅中间留空、中间与两侧留空和无空留堆栈方式时,调控至目标环境所用时间分别为52、30和77 min,相对湿度自85%升至90%所用时间分别为26、9和33 min,中间与两侧留空堆栈方式在调控速度方面依次优于仅中间留空和无空留堆栈;实载时厢体内氧气体积分数自20.9%降至5%用时28 min,平均消耗液氮18.99 kg,气调效率高且使用成本低。研究结果对提升果蔬气调保鲜运输技术水平具有一定参考价值。  相似文献   

3.
管道式加湿装置湿度场分布的数值模拟及试验验证   总被引:2,自引:1,他引:1  
为掌握管道式加湿装置加湿流场的分布规律,该文针对压差原理的保鲜运输厢体,以脐橙为试验物料,建立厢体的1/4等比例三维紊流数值计算模型,结合有孔模型和组分传输模型,采用SIMPLE算法和壁面函数算法,运用Fluent软件对管道式加湿过程厢体内湿度场进行数值模拟,得出了厢体内纵截面和横截面以及货物表面的湿度分布云图。采用管道式加湿可以在246 s内将厢体内的相对湿度从75%升高到90%,厢体内湿度场分布均匀,相对湿度差小于2%,货物表面的相对湿度差不超过3%。经试验验证,试验结果与模拟结果相吻合,试验值与模拟值相对湿度最大偏差值不超过1.2%。通过所建立的模型研究不同回风道风速、管道直径、开孔数对货物表面湿度分布的影响。研究结果表明:加湿速率随回风道风速和管道直径的增大而增大,开孔数对加湿速率的影响不大(P>0.05);货物表面湿度最大差值随回风道风速的增大而减小,随管道直径的增大先增大后减小,随管道开孔数的增加先减小后增大。该研究结果对于保鲜运输加湿装置的优化设计具有一定的参考价值。  相似文献   

4.
冷板冷藏汽车箱体内温度场的数值模拟及试验   总被引:8,自引:5,他引:3  
冷板冷藏汽车内空气的温度分布对其储运能力有很大影响,均匀的温度场使得货物在运输过程中品质得到有效保证。该文采用数值模拟方法,计算空载车箱内部温度场,并分析不同堆码方式对货物区温度场及流场的影响。通过对不同情况下冷板冷藏汽车箱体内的温度场特性进行数值模拟研究,得出了车箱内温度分布规律及其影响因素,可为其结构的优化改造及运输货物堆放方式合理性的验证提供理论依据。模拟研究发现车箱顶部温度相对较高,在该模型中货物区最高温差达到18℃左右,不利于货物贮运,建议顶部安装适量冷板并寻找合适的送风方式加强冷空气与货物的对流换热,以改善冷板冷藏汽车冷却速度慢的缺点。验证试验实测温度与模拟温度的偏差在1.7℃左右,两者偏差不大,说明所建立的模型适用于冷板冷藏车箱体内温度场的模拟。  相似文献   

5.
冷藏运输厢体结构对流场影响的数值模拟   总被引:5,自引:4,他引:1  
为了研究不同冷藏运输厢体结构对冷藏运输环境均匀性的影响,该文针对3种厢体,冷藏运输中比较常用的“上进上出”式厢体和“上进下出”式厢体以及华南农业大学研制的“差压式”厢体建立了三维紊流数值计算模型,并运用FLUENT软件,采用SIMPLE算法和壁面函数法对3种厢体的空载和满载结构模型进行风速流场的数值计算,得到了3种厢体的风速云图和矢量图。通过厢中不同截面的对比分析,发现“差压式”厢体无论是处于空载还是满载时内部流场都比“上进下出”和“上进上出”式厢体的流场均匀;“上进下出”式厢体满载时的风速流场比空载时和“上进上出”式厢体的流场更均匀;“上进上出”式厢体无论是处于空载还是满载时,厢体内部的风速梯度较大,流场均匀性一般。研究结果对于冷藏运输厢体结构的优化设计具有一定参考价值。  相似文献   

6.
为解决果蔬保鲜运输用高压雾化加湿系统的设计问题,建立了高压雾化加湿系统试验平台。通过改变保鲜厢体中回风道风速、开孔隔板开孔率、回风道长度等,研究各因素对加湿效率和湿度分布的影响,分析高压雾化加湿系统的湿度调节特性。结果表明:设计的保鲜厢体结构有利于加速液滴雾化,防止果蔬包装箱强度降低;高压雾化加湿系统加湿效率与风速、开孔率呈非线性关系;在风速和开孔率相同的情况下,回风道越长,保鲜室内湿度分布越均匀;确定开孔率为7.56%,风速为8m/s,回风通道长度为1.5m为本试验平台的最优的工作参数组合。研究结果对保鲜运输用高压雾化加湿系统的设计具有一定的参考价值。  相似文献   

7.
气调保鲜运输车变频通风系统调控与能耗分析   总被引:1,自引:1,他引:0  
为解决果蔬气调保鲜运输过程中通风系统能耗高、果蔬干耗损失大等问题,该文建立了保鲜运输变频通风试验平台。通过改变风机频率,研究厢体内不同通风量对液氮充注气调、制冷、超声波加湿和换气等装置的工作性能调节特性,基于满足果蔬保鲜要求和能量消耗低的原则,优化了液氮充注气调、制冷、超声波加湿和换气等装置工作的风机频率。设计了气调保鲜运输变频通风系统,并通过试验与定频通风系统进行了能耗对比,试验结果表明:变频通风系统能够满足果蔬保鲜要求,且总能耗比定频通风系统节约15.2%,风机能耗比定频通风系统的风机能耗低81.8%。气调保鲜运输变频通风系统的设计,对提升果蔬气调保鲜运输技术水平具有一定的参考价值。  相似文献   

8.
基于CFD数值模拟的冷藏车节能组合方式比较   总被引:1,自引:5,他引:1  
精确掌握温度控制是实现高质量食品冷链运输的关键,节能减排降低运输成本也是供应商所追求的目标。该文以短距离冷藏运输车为研究对象,以土豆为货物区试验材料,建立了求解冷藏车车厢温度场分布计算模型。模拟过程采用2种不同的风机制冷温度(0和3℃),依据制冷机组功率和货物最佳冷藏温度,确定运输过程中打开和关闭制冷风机最佳间隔时间。模型以冷气出风口风速、冷气温度、车厢以及货物的初始温度、货物的物性参数为边界条件,采用计算流体力学(CFD)非稳态SST κ-ω计算模型,模拟开启风机和关闭风机不同阶段车厢内温度场的分布情况。结果表明在组合方式为制冷温度3℃,制冷时间和关闭制冷风机阶段都为10 min时比制冷温度为0,制冷时间15 min和关闭制冷风机为20 min时要节约3.6×105 J能耗。该研究为合理选择制冷风机温度和冷却时间最佳组合方式,以及实现节能减排降低运输成本提供了依据。  相似文献   

9.
液氮充注气调保鲜运输厢内环境因素间耦合关系   总被引:2,自引:2,他引:0  
为掌握液氮充注气调运输保鲜环境因素间的耦合关系,搭建了气调运输保鲜环境调控试验平台。通过试验分别研究了制冷、高压雾化加湿、液氮充注气调、换气等调节过程对保鲜环境中温度、相对湿度、氧气体积分数、二氧化碳体积分数等参数的影响。结果表明:液氮充注气调在快速降低氧气体积分数的同时,对温度和相对湿度影响均较大;制冷在降低温度的同时,对相对湿度影响较大;采用高压雾化加湿时,对温度影响较小,空气压缩机吸入外界空气将对氧气体积分数产生较大影响,而吸入厢体内气体对氧气体积分数影响均很小;换气对厢体内氧气体积分数和二氧化碳体积分数影响较大。研究结果可供气调运输保鲜环境综合调控提供参考。  相似文献   

10.
果蔬冷库进货期间货物温度稳定性的影响因素   总被引:1,自引:2,他引:1  
温度是果蔬贮藏环境最重要的参数。为了研究果蔬进库过程中影响货物温度稳定性的因素,该文以西安某苹果冷藏库为研究对象,建立冷库环境三维非稳态数值求解模型,模拟了进货过程中新进货物摆放间距、进货温度和进货量对达到贮藏条件货物温度稳定性的影响。模拟结果表明,在实际运行管理中,存在适宜的进货温度和进货量,可使苹果贮藏环境受进货过程影响最小,进货效率最高;增大进货间距可以减小对货物温度场的影响,进货摆放间距并不是越大越好。该文研究的冷库,进货过程中货物应先预冷到3℃再进库,进货摆放间距为0.5 m,进货量不大于10%。  相似文献   

11.
液氮充注式果蔬气调保鲜运输箱能耗模型建立与验证   总被引:1,自引:1,他引:0  
为掌握液氮充注式果蔬气调保鲜运输箱能耗规律,该文分析了运输箱的传热传质过程及其能耗构成,在分别研究了气调过程、制冷过程和加湿过程的基础之上建立了液氮充注式果蔬气调保鲜运输箱能耗模型,并对所建能耗模型进行了试验验证。研究结果表明,液氮充注式果蔬气调保鲜运输箱能耗主要由气调能耗、制冷能耗和加湿能耗构成;根据能耗模型所得的理论能耗与试验能耗基本一致,平均相对误差为11.86%±4.29%;根据能耗模型所得的理论液氮消耗量与试验液氮消耗量基本一致,平均相对误差为11.60%±3.51%;液氮充注气调过程消耗较少能耗即可产生较大的附加制冷总量,并且气调附加制冷总量与箱体气调体积有关,在该验证试验中理论液氮充注气调附加制冷总量所占理论制冷总量的比例达22%左右。该研究为液氮充注式果蔬气调保鲜运输装备优化以及果蔬保鲜运输节能提供参考。  相似文献   

12.
保鲜运输用液氮充注气调控制系统的设计与试验   总被引:5,自引:5,他引:0  
为实现对气调保鲜运输厢体内气体成分的自动控制,以液氮充注气调为对象,搭建了液氮充注气调试验平台。设计了基于低温保护优先的气调方案,采用双限值的控制方法,实现了液氮充注气调的自动控制。以香蕉为试验物料,开展液氮充注气调保鲜试验。结果表明:运输厢体气密性对氧气体积分数变化影响较大,气密性差则增加了系统执行机构的工作频率及液氮消耗量;塑料筐和纸皮箱2种香蕉包装条件对液氮充注降氧影响不大;初始温度对液氮充注的降氧时间影响较大,初始温度高时降氧时间短,初始温度低时降氧时间长;系统实现了以温度优先的气调控制策略,系统工作稳定性良好。上述研究为开发液氮充注气调保鲜运输车提供了参考。  相似文献   

13.
不同保鲜运输方式对荔枝果实品质的影响   总被引:7,自引:3,他引:4  
为掌握不同保鲜运输方式对荔枝果实品质的影响,该文以\  相似文献   

14.
仓内稻谷干燥的多尺度多层结构热质传递模拟及试验   总被引:4,自引:3,他引:1  
为研究仓内稻谷干燥的热质传递机理,确定稻谷颗粒内部不同组织结构特性对干燥过程的影响,以仓内稻谷堆为研究对象,针对谷粒的多层结构问题,运用多尺度理论、热质传递原理和孔道网络方法等知识,建立了仓内稻谷热风干燥的多尺度多层结构热质传递模型,并进行了稻谷堆热风干燥试验,模拟分析了仓内稻谷的干基含水率、温度分布以及孔隙汽相的温度分布等情况。结果表明:建立的热质传递模型可有效模拟仓内稻谷干燥过程,干燥器尺度下仓内稻谷的平均干基含水率的模拟值与试验值的最大相对误差为7.6%,颗粒尺度下单颗粒稻谷干基含水率的模拟值与试验值的最大相对误差约为6.8%;稻谷颗粒内部传热比传质速率快,颗粒内存在较大的水分梯度。稻谷胚扩散系数对干燥的影响较大,其次是稻谷壳扩散系数,稻谷衣扩散系数影响最小。研究结果为稻谷就仓干燥的品质及工艺分析提供了理论基础。  相似文献   

15.
冷藏库内气体流场数值模拟与验证   总被引:27,自引:13,他引:14  
计算流体力学(CFD)在各种与流体相关的领域内广泛应用,并取得了很好的效果。合理的气体流场才能保证均匀的温度场,这对冷藏库内货物的降温速率和贮藏质量起着至关重要的作用,而常规设计方法很难得到合理的气体流场。本研究以一个(长×宽×高)4.5 m×3.3 m×2.5 m的实验冷库为对象,建立了二维紊流数值计算模型,并采用了SIMPLE算法和交错网格技术进行了求解计算。实验验证表明模型与实际吻合较好。模拟研究揭示整个冷库的流场存在一个中心大回流区、流场主流贴附边界流动、流场在拐角处速度减小。在此基础上,还对可能影响冷藏库内气流组织的多个设计参数(冷风机出口风速,拐角挡板,货物等)进行了模拟研究,研究表明这些参数对冷藏库内流场和温度场都有巨大的影响,进一步说明CFD工具在冷藏库设计和优化设计过程中的重要作用和意义。  相似文献   

16.
保鲜运输用液氮充注气调的温度调节性能优化   总被引:2,自引:2,他引:0  
为解决保鲜运输用液氮充注气调产生的果蔬低温伤害问题,建立了液氮充注气调试验装置,通过改变液氮罐出液阀孔径、汽化盘管长度、横管开孔方向、开孔隔板开孔率、通风风速、回风道长度等因素,研究各因素对液氮充注温度调节性能的影响,优化液氮充注气调的温度调节性能。结果表明:当液氮罐出液阀孔径为1.5 mm,汽化盘管长度为4 m,横管开孔吹向风机,开孔隔板开孔率为4.03%,通风风速为8 m/s,回风道长度为1.5 m,厢体内氧气体积分数自20.95%降至5%时,液氮气调的温度调节性能较优,开孔隔板出气口最大温差仅为1.3℃,开孔隔板出口处与回风道内的最大温差仅为2.72℃。液氮充注气调在43 min内可快速将厢体内氧气体积分数由20.95%降至5%,还可利用液氮的冷量为保鲜环境降温。研究结果对果蔬液氮气调保鲜运输车的设计具有一定的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号