首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ten flavone glycosides have been isolated and identified in aerial parts of alfalfa. These included six tricin, one 3'-O-methyltricetin, and three chrysoeriol glycosides. Most of these compounds were acylated with ferulic, coumaric, or sinapic acids, and acylation occurred on the terminal glucuronic acid. Eight of these compounds, including 7-O-beta-D-glucuronopyranosyl-3'-O-methyltricetin, 7-O-beta-D-glucuronopyranosyl-4'-O-beta-D-glucuronopyranosidechrysoeriol, 7-O-[2'-O-feruloyl-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside]chrysoeriol, 7-O-[2'-O-feruloyl-[beta-D-glucuronopyranosyl(1-->3)]-O-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside]chrysoeriol, 7-O-[2'-O-sinapoyl-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside]tricin, 7-O-[2'-O- feruloyl-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside]tricin, 7-O-[2'-O-p-coumaroyl-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside]tricin, and 7-O-[2'-O-feruloyl-[beta-D-glucuronopyranosyl(1-->3)]-O-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside]tricin, have not been reported previously in the plant kingdom. Two previously identified alfalfa flavones, 7-O-beta-D-glucuronopyranosidetricin and 7-O-[beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside]tricin, were also isolated.  相似文献   

2.
Nine flavones and adenosine have been identified in aerial parts of alfalfa, and their structures were established by spectral (FABMS and NMR) techniques. Five of the identified compounds, including apigenin 7-O-[beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranosyl]-4'-O-beta-D-glucuronopyranoside, apigenin 7-O-[2-O-feruloyl-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranosyl]-4'-O-beta-D-glucuronopyranoside, apigenin 7-O-[2-O-feruloyl-[beta-D-glucuronopyranosyl(1-->3)]-O-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside], apigenin 7-O-[2-O-p-coumaroyl-[beta-D-glucuronopyranosyl(1-->3)]-O-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside], and luteolin 7-O-[2-O-feruloyl-beta-D-glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranosyl]-4'-O-beta-D-glucuronopyranoside, have not been reported before in the plant kingdom. Additionally, five known compounds, including apigenin 7-O-beta-D-glucuronopyranoside, apigenin 4'-O-beta-D-glucuronopyranoside, apigenin 7-O-[beta-D- glucuronopyranosyl(1-->2)-O-beta-D-glucuronopyranoside], luteolin 7-O-beta-D-glucuronopyranoside, and adenosine, were identified.  相似文献   

3.
Eighteen triterpene saponins (1-18) from Medicago arborea leaves have been isolated and their structures elucidated by spectroscopic, spectrometric (1D and 2D NMR, FAB-MS, ESI-MS/MS), and chemical methods. They have been identified as glycosides of medicagenic, zanhic, and 2beta-hydroxyoleanolic acids, soyasapogenol B, bayogenin, and 2beta,3beta-dihydroxyolean-12-en-23-al-28-oic acid. Twelve of them, identified as 3-O-beta-D-glucopyranosyl-28-O-[alpha-L-arabinopyranosyl(1-->3)-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside] zanhic acid (3), 3-O-beta-D-glucopyranosyl-28-O-[beta-D-xylopyranosyl(1-->4)-[alpha-L-arabinopyranosyl-(1-->3)]-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside] zanhic acid (4), 3-O-[alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranosyl(1-->2)-beta-D-glucopyranosyl]-2beta-hydroxyoleanolic acid (5), 3-O-beta-D-glucuronopyranosyl-28-O-[alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside]medicagenic acid (6), 3-O-beta-D-glucuronopyranosyl-28-O-[beta-D-xylopyranosyl(1-->4)-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside]bayogenin (9), 3-O-beta-D-glucuronopyranosyl-28-O-[beta-D-xylopyranosyl(1-->4)-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside]-2beta,3beta-dihydroxyolean-12-en-23-al-28-oic acid (10), 3-O-beta-D-glucuronopyranosyl-28-O-[beta-D-xylopyranosyl(1-->4)-[beta-D-apiofuranosyl(1-->3)]-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside]zanhic acid (12), 3-O-beta-D-glucuronopyranosyl-28-O-[beta-D-xylopyranosyl(1-->4)-[alpha-L-arabinopyranoside(1-->3)]-alpha-L-rhamnopyrano-syl(1-->2)-alpha-L-arabinopyranoside]zanhic acid (13), 3-O-beta-D-glucuronopyranosyl-28-O-[beta-D-xylopyrano-syl(1-->4)-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside]zanhic acid (14), 3-O-[alpha-L-arabinopyranosyl-(1-->2)-beta-D-glucopyranosyl(1-->2)-beta-D-glucopyranosyl]-28-O-[beta-D-xylopyranosyl(1-->4)-[beta-D-apiofurano-syl(1-->3)]-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside]zanhic acid (16), 3-O-[beta-D-glucopyrano-syl(1-->2)-beta-D-glucopyranosyl]-28-O-[beta-D-xylopyranosyl(1-->4)-[alpha-L-arabinopyranosyl(1-->3)]-alpha-L-rhamno-pyranosyl (1-->2)-alpha-L-arabinopyranoside]zanhic acid (17), and 3-O-beta-D-glucuronopyranosyl-28-O-[beta-D-xylopyranosyl(1-->4)-[beta-D-apiofuranosyl(1-->3)]-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyrano-side]medicagenic acid (18), are reported as new natural compounds. The presence of the aldehydic group on the sapogenin moiety of saponin 10 is discussed in the framework of a possible elucidation of the biosynthesis of these metabolites.  相似文献   

4.
Flavonoids accumulated in proanthocyanidin-free near-isogenic lines iso ant 13, iso ant 17, and iso ant 22 of Nishinohoshi, developed by backcross breeding using a leading cultivar, Nishinohoshi, as a recurrent parent and a proanthocyanidin-free mutant as a nonrecurrent parent in Japan, were examined. A new flavanone, (2RS)-dihydrotricin 7-O-β-D-glucopyranoside (1), known flavanones (2RS)-dihydrotricin (2) and (2RS)-homoeriodictyol (3), and known flavones chrysoeriol 7-O-[α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside] (4), chrysoeriol 7-O-β-D-glucopyranoside (5), tricin (6), and chrysoeriol (7) were isolated from iso ant 17 of Nishinohoshi. The structures and stereochemistries of the isolated flavonoids (1-7) were elucidated on the basis of spectroscopic analyses. The concentrations of the isolated flavonoids (1-7) in iso ant 13, iso ant 17, and iso ant 22 of Nishinohoshi were similar to each other, whereas the flavonoids 1-5 and 7 were not detected in Nishinohoshi, an old Japanese cultivar, Amaginijo, and North American cultivar Harrington. The concentration of tricin (6) in Nishinohoshi was a half those in iso ant 13, iso ant 17, and iso ant 22 of Nishinohoshi. Except for iso ant 13, iso ant 17, and iso ant 22 of Nishinohoshi, the concentration of tricin (6) was highest in Nishinohoshi, followed by Amaginijo and Harrington. Thus, tricin (6), its precursor dihydrotricin (2), and its glucopyranoside, dihydrotricin 7-O-β-D-glucopyranoside (1), as well as chrysoeriol (7) and homoeriodictyol (3) were accumulated in iso ant 13, iso ant 17, and iso ant 22 of Nishinohoshi probably by blocking at the step of flavanone 3-hydroxylase in the procyanidin biogenetic pathway, resulting in enhancement of the alternative biogenetic pathway.  相似文献   

5.
Six triterpenoid saponins were isolated from the seeds of Chenopodium quinoa (Chenopodiaceae). Their structures were as follows: phytolaccagenic acid 3-O-[alpha-L-arabinopyranosyl-(1' '-->3')-beta-D-glucuronopyranosyl]-28-O-beta-D-glucopyranoside (1); spergulagenic acid 3-O-[beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl-28-O-beta-D-glucopyranoside (2); hederagenin 3-O-[beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl]-28-O-beta-D-glucopyranoside (3); phytolaccagenic acid 3-O-[beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl]-28-O-beta-D-glucopyranoside (4); hederagenin 3-O-[beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl]-28-O-beta-D-glucopyranoside (5); and spergulagenic acid 3-O-[alpha-L-arabinopyranosyl-(1' '-->3')-beta-D-glucuronopyranosyl]-28-O-beta-D-glucopyranoside (6). Saponins 5 and 6 are new. The structures were characterized on the basis of hydrolysis and spectral evidence, including IR, UV, optical rotations, 1D- and 2D-NMR (HMQC and HMBC), ESIMS, and FABMS analyses.  相似文献   

6.
Six triterpenoid saponins were isolated from the edible grain quinoa, which is seeds of Chenopodium quinoa (Chenopodiaceae). Following are their structures: phytolaccagenic acid 3-O-[alpha-L-arabinopyranosyl-(1' '-->3')-beta-D-glucuronopyranosyl]-28-O-beta-D-glucopyranoside (1); phytolaccagenic acid 3-O-[beta-D-glucopyranosyl-(1' '-->3')-alpha-L-arabinopyranosyl]-28-O-beta-D-glucopyranoside (2); phytolaccagenic acid 3-O-[beta-D-glucopyranosyl-(1' "-->3' ')-beta-D-xylopyranosyl-(1' '-->2')-beta-D-glucopyranosyl]-28-O-beta-D-glucopyranoside (3); phytolaccagenic acid 3-O-[beta-D-glucopyranosyl-(1' "-->2' ')-beta-D-glucopyranosyl-(1' '-->3')-alpha-L-arabinopyranosyl]-28-O-beta-D-glucopyranoside (4); oleanolic acid 3-O-[alpha-L-arabinopyranosyl-(1' '-->3')-beta-D-glucuronopyranosyl]-28-O-beta-D-glucopyranoside (5); and oleanolic acid 3-O-[beta-D-glucopyranosyl-(1' '-->3')-alpha-L-arabinopyranosyl]-28-O-beta-D-glucopyranoside (6). The oleanane-type saponins (5, 6) were isolated for the first time in this plant, two of the phytolaccagenane (1, 3) were new compounds and two (2, 4) were previously found in quinoa. The structures were characterized on the basis of hydrolysis and spectral evidence, including 1D- and 2-D NMR (HMQC and HMBC) and ESI-MS analyses.  相似文献   

7.
Triterpene saponins from aerial parts of Medicago arabica L   总被引:3,自引:0,他引:3  
Eight major triterpene saponins have been isolated from the aerial parts of Medicago arabica and their structures elucidated by FAB-MS and NMR analysis. Three of them are new compounds and are identified as 3-O-(alpha-L-arabinopyranoside) bayogenin, 3-O-(alpha-L-arabinopyranosyl), 28-O-(beta-D-glucopyranoside) bayogenin, and 3-O-[alpha-L-arabinopyranosyl(1-->2)-beta-D-glucuronopyranosyl], 28-O-beta-D-glucopyranoside 2-beta-hydroxyoleanolic acid. Two saponins, identified as 3-O-(alpha-L-arabinopyranoside) hederagenin and 3-O-(alpha-L-arabinopyranosyl), 28-O-(beta-D-glucopyranoside) hederagenin are known compounds but not previously reported as saponin constituents of Medicago species, while three other saponins, being mono- and bidesmosides of hederagenin, have been previously isolated from roots of M. sativa.  相似文献   

8.
Three new furostanol oligoglycosides, 3-O-{alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl-(1-->4)]-beta-D-glucopyranosyl}-26-O-beta-D-glucopyranosyl-22alpha-methoxy-25R-furost-5-ene-3beta,17alpha,26-triol (1), 3-O-{alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl-(1-->4)]-beta-D-glucopyranosyl}-26-O-beta-D-glucopyranosylfurost-5-ene-3beta,17alpha,22alpha,25,26-pentol (2), and 3-O-{alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl-(1-->4)]-beta-D-glucopyranosyl}-26-O-beta-D-glucopyranosylfurost-5-ene-3beta,22alpha,25,26-tetrol (3), named lycianthosides A-C, together with known flavone glycosides were isolated from Lycianthes synanthera leaves, an edible plant of the Solanaceae family that grows naturally in Guatemala. The nutrient composition of the raw leaves was also evaluated.  相似文献   

9.
Twenty-four saponins have been identified in alfalfa roots, including 13 medicagenic acids, 2 zanhic acids, 4 hederagenins, 1 soyasapogenol A, 2 soyasapogenol B's, 1 soyasapogenol E, and 1 bayogenin glycoside. Ten of the identified compounds, including 3-O-[beta-D-glucopyranosyl(1-->3)-beta-D-glucopyranosyl]-28-O-beta-D- glucopyranoside medicagenate, 3-O-[alpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl(1-->2)-beta -D-glucopyranoside] medicagenic acid, 3-O-[beta-D-glucopyranosyl(1-->2)-beta-D-glucopyranosyl(1-->2)-beta-D -glucopyranosyl]-28-beta- D-glucopyranoside medicagenate, 3-O-[beta-D-glucuronopyranosyl methyl ester]-28-O-[beta-D-xylopyranosyl(1-->4)-alpha-L-rhamnopyranosyl(1--> 2)-alpha-L-arabinopyranoside] medicagenate, 3-O-[alpha-L-rhamnopyranosyl(1-->2)-beta-D-galactopyranosyl(1-->2)-be ta-D-glucuronopyranosyl]-21-O-alpha-L-rhamnopyranoside soyasapogenol A, 3-O-[beta-D-glucopyranosyl(1-->2)-beta-D-glucopyranosyl(1-->2)glucopy ranosyl]-28-O-[beta-D-xylopyranosyl(1-->4)-alpha-L-rhamnopyranosyl (1- ->2)-alpha-L-arabinopyranoside] medicagenate, 3-O-[beta-D-glucopyranosyl(1-->2)-beta-D-glucopyranosyl(1-->2)glucopy ranosyl]-28-O-?beta-D-xylopyranosyl(1-->4)-)-[beta-D-apiofurano syl-(1 -->3)]- alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside? medicagenate, 3-O-[beta-D-glucopyranosyl(1-->2)-beta-D-glucopyranosyl(1-->2)-beta-D -glucopyranosyl]-28-O-[beta-D-xylopyranosyl(1-->4)-alpha-L-rhamnopyra nosyl(1-->2)-alpha-L-arabinopyranoside] zanhic acid, 3-O-[beta-D-glucopyranosyl(1-->2)-beta-D-glucopyranosyl(1-->2)-beta-D -glucopyranosyl]-28-O-?beta-D-xylopyranosyl(1-->4)-[beta-D-apiofurano side-(1-->3)]- alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranoside?zanhic acid, and 3-O-[beta-D-galactopyranosyl(1-->2)-beta-D-glucuronopyranosyl]-28- O-b eta-D-glucopyranoside bayogenin, were not reported before, and their structures were established by spectral (FAB-MS and NMR) techniques. In addition, 3-O-[alpha-L-rhamnopyranosyl(1-->2)-beta-D-galactopyranosyl(1-->2)-be ta-D-glucuronopyranoside] soyasapogenol E was identified in the roots for the first time.  相似文献   

10.
Six novel pyranoanthocyanins were identified by HPLC-ESI-MSn in black carrot (Daucus carota L. ssp. sativus var. atrorubens Alef.) juice. The two major compounds, namely, the vinylcatechol adducts of cyanidin 3-O-(6-O-feruloyl-beta-D-glucopyranosyl)-(1-->6)-[beta-D-xylopyranosyl-(1-->2)]-beta-D-galactopyranoside and cyanidin 3-O-[beta-D-xylopyranosyl-(1-->2)]-beta-D-galactopyranoside, respectively, were isolated by a combination of high-speed countercurrent chromatography with semipreparative HPLC. Their structures were fully elucidated by means of one- and two-dimensional NMR spectroscopy and high-resolution mass spectrometry. The four remaining pigments were characterized as the vinylphenol and vinylguaiacol adducts of cyanidin 3-O-[beta-D-xylopyranosyl-(1-->2)]-beta-D-galactopyranoside, the vinylguaiacol adduct of cyanidin 3-O-(6-O-feruloyl-beta-D-glucopyranosyl)-(1-->6)-[beta-D-xylopyranosyl-(1-->2)]-beta-D-galactopyranoside, and the vinylcatechol adduct of cyanidin 3-O-(6-O-sinapoyl-beta-d-glucopyranosyl)-(1-->6)-[beta-D-xylopyranosyl-(1-->2)]-beta-D-galactopyranoside. These compounds are formed during storage of the juice through the direct reaction of either caffeic, ferulic, or coumaric acid with the respective genuine anthocyanins.  相似文献   

11.
Fourteen triterpene saponins (1-14) have been isolated from the roots of Medicago hybrida and their structures elucidated by FAB-MS and NMR analysis. Two of them are new compounds and were identified as hederagenin 3-O-[alpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl(1-->2)-beta-D-glucopyranosyl]-28-O-beta-D-glucopyranoside (7) and oleanolic acid 3-O-[beta-D-galactopyranosyl(1-->2)-beta-D-glucuronopyranosyl]-28-O-[alpha-L-rhamnopyranosyl(1-->4)-beta-D-glucopyranoside] (14). Seven saponins being mono- and bidesmosides of hederagenin (1, 5, 6, 9), one bidesmoside of bayogenin (2), and two bidesmosides of 2beta,3beta-dihydroxyolean-12-en-23-al-28-oic acid (11) and oleanolic acid (13) are known compounds but not previously reported as saponin constituents of Medicago, whereas five other saponins, being mono- and bidesmosides of medicagenic acid (3, 4, 8, 10, 12), and one monodesmoside of hederagenin (8) have been previously isolated from other Medicago species. The presence of 2beta,3beta-dihydroxyolean-12-en-23-al-28-oic acid might represent an interesting intermediate in the biosynthesis of these substances.  相似文献   

12.
An extensive phytochemical analysis of the polar extracts from bulbs of shallot, Allium ascalonicum Hort., led to the isolation of two new furostanol saponins, named ascalonicoside A1/A2 (1a/1b) and ascalonicoside B (4), respectively, along with compounds 2a and 2b, most likely extraction artifacts. On the basis of 2D NMR and mass spectrometry data, the structures of the novel compounds were elucidated as furost-5(6)-en-3beta,22alpha-diol 1beta-O-beta-D-galactopyranosyl 26-O-[alpha-L-rhamnopyranosyl-(1-->2)-O-beta-D-glucopyranoside] (1a), its epimer at position 22 (1b), and furost-5(6),20(22)-dien-3beta-ol 1beta-O-beta-D-galactopyranosyl 26-O-[alpha-L-rhamnopyranosyl-(1-->2)-O-beta-D-glucopyranoside] (4). This is the first report of furostanol saponins in A. ascalonicum. High concentrations of quercetin, isorhamnetin, and their glycosides were also isolated and described.  相似文献   

13.
Eight steroidal saponins have been isolated from Yucca schidigera Roezl. trunk, and their structures were established by spectral (MS and NMR) techniques. These included three novel furostanol glycosides including 3-O-beta-D-glucopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucopyranosyl-5 beta(25R)-furostan-3 beta,22 alpha,26-triol 26-O-beta-D-glucopyranoside, 3-O-beta-D-glcopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucopyranosyl-5 beta(25R)-furost-20(22)-en-3 beta,26-diol-12-one 26-O-beta-D-glucopyranoside, 3-O-beta-D-glcopyranosyl-(1-->2)-beta-D-glucopyranosyl-5 beta(25R)-furostan-3 beta,22 alpha,26-triol 26-O-beta-D-glucopyranoside, and five known spirostanol glycosides. On the basis of the extraction efficiency, furostanol glycosides made up only 6.8% of total saponins isolated.  相似文献   

14.
Crude methanol extracts from four cultivated varieties of mature lentil seeds (Lens culinaris Medik.) were found to possess antifeedant and insecticidal properties in laboratory tests with the rice weevil (Sitophilus oryzae L.), an insect pest of stored products. Flash chromatography with silica gel on active Diaion HP-20 methanol extracts gave flavonol, lysolecithin, soyasaponin, and peptide fractions, as determined by HPLC and electrospray ionization LC/MS. The flavonol fraction was shown by high-resolution NMR experiments to contain a mixture of kaempferol 3-O-beta-glucopyranosyl(1-->2)-O-[alpha-rhamnopyranosyl(1-->6)]-beta-galactopyranoside-7-O-alpha-rhamnopyranoside and, tentatively, kaempferol 3-O-beta-glucopyranosyl(1-->2)-O-[alpha-rhamnopyranosyl(1-->6)]-beta-glucopyranoside-7-O-alpha-rhamnopyranoside. These inactive tetraglycosides, although inseparable under the reported HPLC conditions, were detected by NMR spectroscopy in nearly equal proportions. Three lysolecithins were identical to those previously identified in pea extracts. Soyasaponin I (soyasaponin Bb) and soyasaponin VI (soyasaponin betag) were found in Diaion HP-20 methanol extracts. An insecticidal lentil peptide with a mass of 3881 Da, isolated from an Eston variety in small quantities by anion exchange chromatography, was related to the cysteine-rich pea albumin 1b class of botanical insecticides. Binary mixtures of the insecticidal lentil peptide and soybean soyasaponin I were synergistic in tests with S. oryzae.  相似文献   

15.
Eight glycosides and a phenylpropanoid glycerol were isolated from Vitis vinifera cv. Gewurztraminer wine, and their structures were elucidated by MS and NMR spectroscopies. cis-1-(5-Ethenyl-5-methyltetrahydrofuran-2-yl)-1-methylethyl O-beta-D-apiofuranosyl-(1-->6)-O-beta-D-glucopyranoside, (E)-3,6, 9-trihydroxymegastigm-7-ene 9-O-beta-D-glucopyranoside, 2-phenylethyl O-beta-D-apiofuranosyl-(1-->6)-O-beta-D-glucopyranoside, and 2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]propane-1,3-diol are reported for the first time as wine components.  相似文献   

16.
A phytochemical analysis of the methanol extract of Tynanthus panurensis bark led to the isolation of one new phenylpropanoid glycoside, eugenol-O-[beta-D-xylopyranosyl-(1-->5)-O-beta-D-apiofuranosyl-(1-->6)-O-beta-D-glucopyranoside], the known verbascoside, isoverbascoside, and leucosceptoside, along with the known flavonoid apigenin 8-C-[beta-D-xylopyranosyl-(1-->6)-beta-D-glucopyranoside], namely, katchimoside. Their structures were established by NMR and ESIMS experiments. Additionally, a quantitative study of the phenylpropanoid glycosides fraction of T. panurensis bark and of the hydroalcoholic extract prepared according to the traditional recipe was performed by combining high-performance liquid chromatography diode array detection with positive electrospray ionization tandem mass spectrometry. The new eugenol derivate was found to be the most abundant phenylpropanoid glycoside in both dried bark (19.5 mg/g) and hydroalcoholic extract (0.24 mg/mL). The antioxidant activity of all the isolated compounds and of the methanol and hydroalcoholic extract of the bark was determined by measuring the free radical scavenging effects using the Trolox equivalent antioxidant capacity method. The traditional hydroalcoholic extract showed a moderate activity.  相似文献   

17.
A hydroalcoholic extract of lime ( Citrus aurantifolia) leaves has been developed in Cuba to be used as a nutritional supplement and phytomedicine in the form of tincture (TLL). A HPLC-PDA-ESI/MS/MS method has been used for the comprehensive analysis of C-glycosyl flavones in TLL. Six C-glycosyl flavones were characterized and, to confirm the proposed structures and to elucidate the nature of the sugar units, a preparative procedure was applied, and isolated compounds were characterized by NMR. Apigenin-6,8-di-C-beta-D-glucopyranoside (vicenin II) (1), diosmetin-6,8-di- C-beta- d-glucopyranoside (2), apigenin-8-C-beta-D-glucopyranoside (vitexin) (3), apigenin-8-C-[alpha-L-arabinopyranosyl-(1-->6)]-O-beta-D-glucopyranoside (4), apigenin-6-C-[alpha-l-arabinopyranosyl-(1-->6)]-O-beta-D-glucopyranoside (5). and apigenin-6-C-beta-D-glucopyranoside (isovitexin) (6) were identified in TLL and quantified by HPLC-PDA. Compounds 4 and 5 were two new arabinosyl derivatives of vitexin and isovitexin. Inhibitor effect of TLL on platelet aggregation induced by physiological agonists of platelets was evaluated in human plasma. TLL inhibited significantly ADP and epinephrine-induced platelet aggregation in a concentration-dependent manner (IC 50=0.40 and 0.32 mg/mL, respectively).  相似文献   

18.
A new furostanol pentaoligoside and spirostanol tetraoligoside were isolated for the first time from yam tubers (Dioscorea pseudojaponica Yamamoto) from Taiwan, together with four known yam saponins, methyl protodioscin, methyl protogracillin, dioscin, and gracillin. Their structures were characterized as 26-O-beta-D-glucopyranosyl-22alpha-methoxyl-(25R)-furost-5-en-3beta,26-diol, 3-O-alpha-L-rhamnopyranosyl-(1-->2)-O-([alpha-L-rhamnopyranosyl-(1-->4)]-O-[alpha-L-rhamnopyranosyl-(1-->4)])-beta-D-glucopyranoside, and (25R)-spirost-5-en-3beta-ol 3-O-alpha-L-rhamnopyranosyl-(1-->2)-O-([alpha-L-rhamnopyranosyl-(1-->4)]-O-[alpha-L-rhamnopyranosyl-(1-->4)])-beta-D-glucopyranoside. The structural identification was performed using LC-MS and 1H and 13C NMR. The methanol extract of yam tubers was fractionated by XAD-2 column chromatography using a methanol/water gradient elution system to yield furostanol and spirostanol glycoside fractions. Preparative high-performance liquid chromatography, employing a C18 column and a mobile phase of methanol/water (69:31, v/v), was used to separate each furostanol glycoside, whereas a mobile phase of methanol/water (79:21, v/v) was used to resolve the individual spirostanol glycosides. The conversions from steroid saponins to diosgenin after acid hydrolysis were around 68 and 90% for furostanol and spirostanol glycosides, respectively.  相似文献   

19.
Tumor necrosis factor-α (TNF-α)-induced reactive oxygen species (ROS) production in HepG2 was used to screen hepatocyte protective compounds from the flowers of Hemerocallis fulva. Three new polyphenols, n-butyl 4-trans-O-caffeoylquinate (1), kaempferol 3-O-{α-L-rhamnopyranosyl(1→6)[α-L-rhamnopyranosyl(1→2)]}-β-D-galactopyranoside (2), and chrysoeriol 7-O-[β-D-glucuronopyranosyl(1→2)(2-O-trans-feruloyl)-β-D-glucuronopyranoside (3), together with four caffeoylquinic acid derivatives (4-7), eight known flavones (8-15), one naphthalene glycoside, stelladerol (16), one tryptophan derivative (17), adenosine (18), and guanosine (19) were isolated from the bioactive fractions of the aqueous ethanol extract of H. fulva flowers. The structures of isolated compounds were characterized by means of spectroscopic data. Compounds 1-3 were described as first isolated natural products. Among the above-mentioned compounds, the caffeoylquinic acid derivatives are the major components with potent free radical scavenging activity in HepG2 cells and are for the first time isolated from H. fulva flowers. A convenient ultraperformance liquid chromatography (UPLC) method was also developed to simultaneously separate and identify caffeoylquinic acids and flavonoids promptly.  相似文献   

20.
From the leaves of barley, Hordeum vulgare, one new flavone C-glucoside and three known flavone glucosides were isolated and characterized by (1)H and (13)C NMR and MALDI-TOF-MS. The novel flavone C-glucoside was isovitexin 7-O-beta-[6' "-O-(E)-p-coumaroyl]glucoside (6' "-coumaroylsaponarin), and the known compounds were isovitexin 7-O-beta-[6' "-O-(E)-feruloyl]glucoside, isoorientin 7-O-beta-[6' "-O-(E)-feruloyl]glucoside, and tricin 7-O-beta-glucoside. The sum of all the flavone glycosides and soluble phenolic acids in the leaves decreased with increased rate of plant nutrients given in animal manure and with increased crop yield. All of the major phenylpropanoids showed the same general response to nutrient level. The concentration of nitrogen in the leaves was not directly related to nutrient application or to contents of phenylpropanoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号