首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Contribution to irrigation from shallow water table under field conditions   总被引:1,自引:0,他引:1  
The mathematical model SWBACROS was applied to estimate the contribution of a shallow groundwater to the water needs of a maize crop. The model was applied with the top and boundary conditions defined by the observed irrigation/rainfall events and the observed water table depth. The simulated water contents of the top zone were very close to the observed values. Furthermore the model was applied with an assumed free drainage bottom boundary condition. The difference of the computed water content profiles under the presence and absence of the water table gave a very good estimate of the capillary rise. It was found that under the specific field conditions about 3.6 mm/day of the water in the root zone originated from the shallow water table, which amounts to about 18% of the water, which was transpired by the maize crop.  相似文献   

2.
浅埋区地下水--土壤水资源动态过程及其调控   总被引:1,自引:0,他引:1  
分析了冬小麦生长期地下水-地下水资源量动态过程和地下水、土壤水分变化特征.结果表明,在地下水浅埋区地下水对土壤水的补给为农田蒸散的重要的水分来源,现行的灌溉制度不考虑这一作用,过多的灌溉量不仅会消弱地下术对土壤水的补给,而且多余的土壤水分还会下渗补给地下水,造成水资源的无效损失和动力能源的损耗.为了提高作物水分利用效率,提出了相应的地下水-土壤水资源调控措施.  相似文献   

3.
Waterlogging and salinity are reducing the productivity of irrigated agriculture on clay soils in south east Australia. We compared five drainage treatments: (1) undrained control (Control); (2) mole drains (Mole); (3) mole drains formed beneath gypsum-enriched slots (GES) (Mole + GES); (4) shallow pipe drains installed beneath GES (Shallow Pipe); (5) deep pipe drains (Deep Pipe). The experiment was set out on a vertisol and our measurements were made during the growth of an irrigated onion crop.

Over the 3 months before the spring irrigations commenced, the perched water table on the Control was less than 400 mm below the soil surface for 27% of the time, whereas the shallow drainage treatments (Treatments 2, 3 and 4) reduced this time to less than 4%. During the irrigation season, the perched water table on the Mole + GES treatment rose above 400 mm for 3% of the time. The perched water table on the Mole treatment was above 400 mm for 14% of the time, compared with 19% of the time on the Control. The Deep Pipes were less effective in reducing the depth to the perched water table, both before and during the irrigation period.

Mole drains increased the gas-filled porosity above the drains. However, the gas-filled porosity remained below reported levels for optimum root growth. Although the drains effectively drained excess water, and lowered the water table, the hydraulic gradient was insufficient to remove all of water from the macropores. Gypsum enriched slots above the mole drains increased the gas-filled porosity in the slots but the drainable porosity in the undisturbed soil appeared to be inadequate for optimum root growth, even though some drainage occurred near the slots.

Discharge from the shallow drainage treatments averaged 58 mm for each irrigation, and was considerably more than the amount required to drain the macropores. The mole channels were in reasonably good condition at the end of the irrigation season, with at least 70% of the cross-sectional area of the channel open.

Shallow subsurface drains increased onion yield by about 38%. For each day the water table was above 400 mm, the yield declined by 0.23 tonnes per hectare. Farmer adoption of shallow subsurface drainage will depend on the long-term economic benefits (influenced by the longevity of the mole channels and yields response) and the need to develop more sustainable management practices.  相似文献   


4.
In the laboratory, molecularly thick films of compounds such as hexadecanol and octadecanol have been shown to retard the evaporation of water. While such monolayers offer the prospect of an economical solution to the evaporative loss of water from storages there are practical difficulties arising mainly from the short lifetimes of these monolayers on the water surface. This review article describes the relevant laboratory experiments and results, and then discusses the problems that have arisen in field applications. It is clear that better monolayer materials are required and that better methods of monolayer distribution would also be helpful. Although no resolution of these difficulties is available at present it is hoped that a better understanding of the problems will stimulate further research.  相似文献   

5.
The sustainability of the rice-wheat cropping system in an irrigated semi-arid area of Haryana State (India) is under threat due to the continuous rise in the poor quality groundwater table, which is caused by the geo-hydrological condition and poor irrigation water management. About 500,000 ha in the State are waterlogged and unproductive and the size of the waterlogged area is increasing. We analyse the hydrology and estimate seasonal net groundwater recharge in the study area. Rainfall is quite variable, particularly in the monsoon season, and the mean monthly reference evapotranspiration shows a high inter-annual variation, with values between 2.45 and 8.47 mm/day in December and May. Groundwater recharge analysis during the study period (1989-2008) reveals that percolation from irrigated fields is the main recharge component with 57% contribution to the total recharge. An annual groundwater table rise of 0.137 m has been estimated for the study area. As the water table has been rising continuously, suitable water management strategies such as increasing groundwater abstraction by installing more tubewells, using the groundwater conjunctively with good quality canal water, changes in cropping patterns, adoption of salt tolerant crops, changes in water-pricing policy, and matching water supply more closely with demand, are suggested to bring the water table down to a safe limit and to prevent further rising of the water table.  相似文献   

6.
The FAO-56 soil water evaporation model is a simple ‘slab’ model that has been found to produce good estimates of evaporation from bare soil over a range of conditions due to its adherence to conservation of mass and energy. The simplicity of the model makes it straightforward to apply and to parameterize. An enhancement is made to the original formulation to accommodate light wetting events that wet the soil ‘skin’ near the surface and evaporate relatively quickly, even when the underlying soil is dry. In effect, the evaporation process, when the soil skin is wetted, reverts temporarily into stage 1 evaporation. The enhancement utilizes the ‘readily evaporable water’ (REW) term of the original model so that no new parameters are required. The extended model performs similar to the original model in the absence of small precipitation events, but increases the evaporation rate when small events occur. The FAO-56 method with the skin evaporation enhancement is shown to compare well against simulations made using the HYDRUS 1D model that bases evaporation on the Richards equation. The enhanced model also closely followed evaporation recorded by weighing lysimeter for a silt loam soil at Kimberly, Idaho, with root mean square difference of 0.39 and 0.69 mm d−1 for two wetting/drying sequences. Total cumulative evaporation during the longest and wettest sequence was estimated at 92% of the measured value.  相似文献   

7.
A simulation study on alternative water management strategies was carried out for Sirsa Irrigation Circle in Haryana, covering an area of about 4800 km2. Results showed that crop evapotranspiration and soil salinity development under reduction in canal water supply and increase in groundwater use, are largely influenced by the amount and distribution of rainfall. Reduction in canal water supply by 25% during the rainy season is unlikely to have any adverse effect on the salinity development in the study area. Reduction in crop evapotranspiration due to decreased canal water supply can partly be compensated by the increase in groundwater use. Leaching of salts due to monsoon rains in the study area shows that groundwater of even relatively poor quality can be used for irrigation without excessive long-term build up of soil salinity under deep groundwater depth conditions. However, increased groundwater extraction without associated actions will not be very effective to solve the problem of rising groundwater levels.  相似文献   

8.
A two-dimensional finite element model of solute transport in a tile — drained soil — aquifer system has been applied to study the effects of the depth of impervious layer and quality of irrigation water on salt distribution during drainage of an initially highly saline soil. The model assumes steady state water movement through partially saturated soil and to drains in the saturated zone. The exact in time numerical solution yields explicit expressions for concentration field at any future time without having to compute concentrations at intermediate times. The model facilitates predictions of long-term effects of different irrigation and drainage practices on concentration of drainage effluent and salt distribution in the soil and groundwater. The model results indicated that the depth of impervious layer from drain level, dI, does not significantly influence the salt distribution in the surface 1 m root zone of different drain spacings (drain spacing (2S)=25, 50, 75 m; drain depth (dd)=1.8 m), its effect in the aquifer becomes dominant as drain spacing increases. It was also observed that dI significantly governs the quality of drainage effluent. The salinity of drainage water increases with increasing dI in all drain spacings and this effect magnifies with time. The model was also applied to study the effects of salinity of irrigation water in four drain spacing-drain depth combinations: (2S=48 m, dd=1.0 m; 2S=67 m, dd=1.5 m; 2S=77 m, dd=2.0 m; 2S=85 m, dd=2.5 m). The results indicated that a favorable salt balance can be maintained in the root zone even while irrigating with water up to 5 dS/m salinity in drains installed at 48 to 67 m spacing and 1.0 to 1.5 m depth. Further, irrespective of the quality of irrigation water, the deep, widely spaced drains (dd=2.5 m, 2S=85 m) produced much saline drainage effluent during the initial few years of operation of the drainage system than the more shallow, closely spaced drains, thus posing a more serious effluent disposal problem.
Résumé Considérant les conséquences potentiellement sérieuses de la pollution du sol et de l'eau souterraine dans l'agriculture irriguée, il est devenu absolument nécessaire de développer des modèles de simulation en vue d'évaluer les effects à long terme des méthodes agricoles modernes. Un modèle d'éléments finis à deux dimensions du transport en solution dans un système de sol aquifère drainé au moyen de tuyaux a été développé et validé sur le terrain (Kamra et al. 1991 a, b). Le modèle assume le mouvement de l'eau à régime constant à travers un sol partiellement saturé et jusqu'aux drains dans la zone saturée. La solution numérique exacte dans le temps produit des expressions explicites pour le champ de concentration à un temps future quelconque sans avoir à calculer les concentrations aux temps intermédiares. Le modèle facilite les prédictions des effets à long terme des diverses méthodes d'irrigation et de drainage sur la concentration des effluents de drainage et sur la distribution de la salinité dans le sol et dans l'eau souterraine. Les résultats du modèle relatifs aux effets de la profondeur de la couche imperméable et de la qualité de l'eau d'irrigation sur la distribution de la salinité lors du drainage d'un sol fortement salé à l'origine sont mentionnés dans la présente communication.Les résultats du modéle ont indiqué que la profondeur de la couche imperméable depuis le niveau du drain, dI, n'influence pas d'une façon significative la distribution de la salinité dans la zone superficielle radiculaire de 1 m des divers écartements de drains (écartement de drains, 2S=25, 50, 75 m; profondeur des drains, dd=1.8 m); son effet dans l'aquifère devient dominant à mesure que l'écartement de drains augmente. On a aussi constaté que le niveau du drain dI influence d'une manière significative les effluents du drainage. La salinité de l'eau de drainage augmente à mesure que dI augmente dans tous les écartements de drains et cet effet s'amplifie avec le temps. Le modèle a été aussi appliqué pour étudier les effets de la salinité de l'eau d'irrigation dans le cas de quatre conbinaisons d'écartement de drain et de profondeur de drain: (2S=48 m, dd=1,0 m; 2S=67 m, dd=1,5 m; 2S=77 m, dd=2,0 m; 2S=85 m, dd=2,5 m). Les résultats ont indiqué qu'un bilan de salinité favorable peut être maintenu dans la zone radiculaire même en irrigant avec de l'eau d'une salinité de 5 dS/m dans des drains installés à un écartement de 48 à 67 m et une profondeur de 1,0 à 1,5 m. De plus, indépendamment de la qualité de l'eau d'irrigation les drains profonds à grand écartement (dd=2,5 m, 2S=85 m) produisaient une grande quantité d'effluents salés de drainage durant les quelques premières années de l'exploitation du système de drainage par rapport aux drains peu profonds à écartement serré, posant ainsi un problème plus sérieux d'évacuation des effluents.Les résultats du développement et de l'évaluation du modèle on montré qu'il peut être utilement employé en vue d'une évaluation judicieuse de la variation de temps escomptée dans la salinité des effluents de drainage lors de la mise en valeur des sols salins et peut ainsi aider à formuler son règlement plus sûr du point de vue environnement et les projects d'évacuation.
  相似文献   

9.
Phreatic groundwater pumping is affecting water availability for crops in areas with a shallow water table. This can reduce crop growth and so affect farm income. There is a need for a generic and transparent method to assess the agricultural damage caused by water table drawdown. This paper proposes such a method that consists of ‘damage tables’ relating agricultural production losses to the groundwater regime for different soil/crop combinations found in Northern Belgium. The damage tables are constructed based on numerous simulations with the agrohydrological model SWAP, in which the bottom boundary conditions are gradually changed to reflect different groundwater regimes. The credibility of the resulting metamodel is assessed in three ways: using (1) field data, (2) an existing local expert system for land suitability assessment and (3) literature applying to a wider region. Field data of actual transpiration for two grasslands do not systematically deviate from the model predictions. This provides some credibility to the claim that the model captures the processes determining evapotranspiration and agricultural production. The local expert system allows us to evaluate the range of groundwater regimes where optimal growth is expected for maize and grassland across different soil types. Diverging predictions of the optimal groundwater regime between the metamodel and the local expert system can be explained in terms of differences in assumptions underlying both models. One notable limitation of the damage tables is that only direct physiological stress is reckoned while indirect effects of wet conditions (decreased accessibility of the terrain, soil structural damage) may also limit growth on soils with a water table near the surface. Further comparison with literature data focused on two issues: the contribution of groundwater to evapotranspiration and the extinction depth, i.e., the depth at which groundwater no longer contributes to evapotranspiration. This comparison revealed that damage tables developed for our area of interest are only valid under similar climatic conditions for the following two reasons: they assume a relatively small groundwater contribution to evapotranspiration, which is typical for humid climates, and they take into account temporal variations in plant characteristics such as root depth, which is also climate dependent.  相似文献   

10.
Reuse of drainage water from irrigated areas   总被引:1,自引:0,他引:1  
Increasing competition for water of good quality and the expectation that at least half of the required increase in food production in the near-future decades must come from the world's irrigated land requires to produce more food by converting more of the diverted water into food. Reuse of the non-consumed fraction ('drainage water') of the irrigation water already diverted is a proven but risky option for better fresh water management. This paper presents an overview of different options for reuse of drainage water and guidelines for its safe use. Criteria for maximum irrigation water salinity to prevent soil deterioration and crop yield reduction, for the maximum concentration of toxic substances and limits for bacteriological water quality are given. Examples of sustainable reuse of drainage water in Egypt, India and the USA are presented. The usefullness of simulation models for the analysis of regional water and salt balances is demonstrated.  相似文献   

11.
In the irrigated western U.S. disposal of drainage water has become a significant economic and environmental liability. Development of irrigation water management practices that reduce drainage water volumes is essential. One strategy combines restricted drainage outflow (by plugging the drains) with deficit irrigation to maximize shallow groundwater consumption by crops, thus reducing drainage that needs disposal. This approach is not without potential pitfalls; upward movement of groundwater in response to crop water uptake may increase salt and sodium concentrations in the root zone. The purposes for this study were: to observe changes in the spatial and temporal distributions of SAR (sodium adsorption ratio) and salt in a field managed to minimize drainage discharge; to determine if in situ drainage reduction strategy affects SAR distribution in the soil profile; and to identify soil or management factors that can help explain field wide variability. We measured SAR, soil salinity (EC1:1) and soil texture over 3 years in a 60-ha irrigated field on the west side of the San Joaquin Valley, California. At the time we started our measurements, the field was beginning to be managed according to a shallow groundwater/drainage reduction strategy. Soil salinity and SAR were found to be highly correlated in the field. The observed spatial and temporal variability in SAR was largely a product of soil textural variations within the field and their associated variations in apparent leaching fraction. During the 3-year study period, the percentage of the field in which the lower profile (90-180 cm) depth averaged SAR was above 10, increased from 20 to 40%. Since salinity was increasing concomitantly with SAR, and because the soil contained gypsum, sodium hazard was not expected to become a limiting factor for long term shallow groundwater management by drain control. It is anticipated that the technology will be viable for future seasons.  相似文献   

12.
基于CAR-SVM模型的季节性冻融区地下水埋深预测   总被引:1,自引:0,他引:1  
准确预测地下水埋深是灌区水资源管理的重要依据.考虑到地下水埋深在时间序列上呈现滞后性和非线性,耦合了多变量时间序列CAR与支持向量机SVM,构建了CAR-SVM地下水埋深预测模型.为了提高模型在冻融期的模拟效果,构建了季节性冻融灌区地下水埋深拟合模型--CAR-SVM(T-TF)模型.模拟结果显示,只考虑冻融期气温的CAR-SVM(T-TF)模型优于考虑全年气温的CAR-SVM(T)模型及不考虑气温的CAR-SVM模型.CAR-SVM(T-TF)模型在全灌区地下水埋深的模拟结果:在验证期模型决定系数R2为0.954,冻融期R2为0.973;RMSE均小于0.090 m,模型精度较高.将全灌区得到的3阶CAR-SVM(T-TF)模型结构用于灌区内5个灌域地下水埋深模拟,模型在各灌域均有较好的适用性.  相似文献   

13.
In this paper, the concepts for planning and design of drainage depth will be reviewed in relation to the different requirements for maximizing crop production. The relationships of the drainage depth with other design parameters and their interdependency will be discussed. Reference will be made to the cost, cost/benefit ratio and economic returns of drainage systems with respect to the drainage depth. Some applications and practices in different countries will be highlighted.  相似文献   

14.
This study focuses on experimental pilot assessment of contamination of shallow groundwater systems and soil-plant transfer of trace metals under amended irrigated fields. The study approach involved a pilot experimental (greenhouse) set-up of organo-mineral amended test plots/troughs (40 cm × 47 cm × 46 cm) planted with two common vegetable crops (Amaranthus hybridus and Abelmoschus esculentus) and irrigated with wastewater. In addition to the geochemical analyses of the primary un-amended and amended soils before planting as well as residual soils after harvesting, measurements of the physico-chemical parameters and chemical analyses of trace metals concentrations in irrigation leachates and harvested vegetable tissues were also undertaken following appropriate standard sample preparation and analytical methods.The results of the geochemical analyses carried out on irrigation leachate samples collected during the sprouting stage revealed that most of the analyzed trace metals in the collected leachates exhibited 2-10 folds depletion (except for Cu and Co with enrichment of about 1.5-3 folds) compared to the initial wastewater used for irrigation. A situation attributed to uptake/bioaccumulation of these metals and selective enrichment in the residual soils as well as to leaching by infiltrating irrigation water. Nonetheless, the observed higher trace elements concentrations in the second sets of leachates collected during harvesting stage compared to the first sets of leachates collected during the sprouting/vegetative stage is an indication of higher plant uptake during sprouting/vegetative stage or initial sorption/complexation of biosolids amendment before later vertical re-mobilization by infiltrating irrigation water.Although, virtually all of the analyzed metals exhibited elevated concentrations (2-173 ppm) in both A. hybridus and A. esculentus, a closer evaluation revealed 1.2-8.2 folds enrichment of Cr, Co, Ni, Cd, Cu, and Pb in A. esculentus compared to that of A. hybridus, an indication of the fact that phyto-accumulation of trace metal is plant-specific and dependent on physiological set-up. The overall evaluation had clearly demonstrated the potential danger of bioaccumulation of toxic trace metals under biosolid amended soils as well as impacts of irrigation-induced leaching on the shallow groundwater quality, while the need to evolve a sustainable agricultural practices is also highlighted.

Capsule

Organo-mineral amendment can lead to trace metal bioaccumulation (in plants) and irrigation-induced leaching to shallow groundwater system.  相似文献   

15.
Recent community based actions to ensure the sustainability of irrigation and protection of associated ecosystems in the Murrumbidgee Irrigation Area (MIA) of Australia has seen the implementation of a regional Land and Water Management Plan. This aims to improve land and water management within the irrigation area and minimise downstream impacts associated with irrigation. One of the plan objectives is to decrease current salt loads generated from subsurface drainage in perennial horticulture within the area from 20 000 tonnes/year to 17 000 tonnes/year. In order to meet such objectives Controlled Water table Management (CWM) is being investigated as a possible ‘Best Management Practice’, to reduce drainage volumes and salt loads.During 2000–2002 a trial was conducted on a 15 ha subsurface drained vineyard. This compared a traditional unmanaged subsurface drainage system with a controlled drainage system utilizing weirs to maintain water tables and changes in irrigation scheduling to maximize the potential crop use of a shallow water table. Drainage volumes, salt loads and water table elevations throughout the field were monitored to investigate the effects of controlled drainage on drain flows and salt loads.Results from the experiment showed that controlled drainage significantly reduced drainage volumes and salt loads compared to unmanaged systems. However, there were marked increases in soil salinity which will need to be carefully monitored and managed.  相似文献   

16.
Irrigation is widely criticised as a profligate and wasteful user of water, especially in watershort areas. Improvements to irrigation management are proposed as a way of increasing agricultural production and reducing the demand for water. The terminology for this debate is often flawed, failing to clarify the actual disposition of water used in irrigation into evaporation, transpiration, and return flows that may, depending on local conditions, be recoverable. Once the various flows are properly identified, the existing literature suggests that the scope for saving consumptive use of water through advanced irrigation technologies is often limited. Further, the interactions between evaporation and transpiration, and transpiration and crop yield are, once reasonable levels of agricultural practices are in place, largely linear—so that increases in yield are directly and linearly correlated with increases in the consumption of water. Opportunities to improve the performance of irrigation systems undoubtedly exist, but are increasingly difficult to achieve, and rarely of the magnitude suggested in popular debate.  相似文献   

17.
Irrigated agriculture in (semi-)arid regions may exert serious pressures on groundwater resources and jeopardise further agricultural and socio-economical developments. For assessing these pressures, we present in this paper results from a groundwater quality survey performed in 2005 within the irrigated agricultural Triffa plain in north-east Morocco. The study focuses on the physico-chemical and bacteriological quality of the groundwater body within the plain and exploits the correlation and spatial dependency of the quality parameters. It is demonstrated that the water quality in this region is critical. Nitrate levels are situated between 2 and 153 mg/l, with 73% of the observations exceeding the critical level of 50 mg/l. Nitrite, ammonia, orthophosphate and dissolved organic matter content do not exceed existing norms. Bacteriological residues (faecal, total coliforms, faecal streptococcus and clostridium sulfido-reductants), however, are retrieved in nearly all water samples. Bacteriological contamination is merely correlated with nitrite and ammonia content rather than with nitrate content, indicating a possible contribution of local pollution sources to groundwater deterioration. The variability of the nitrate and bacteriological pollution is important and spatially correlated. The spatially dependency is modelled using spherical and Gaussian semi-variograms and is used to map the nitrate and bacteriological contamination using ordinary kriging techniques. The results shown are significantly different as compared to earlier studies on groundwater quality for the studied aquifer. The differences may be explained partially by modified but inappropriate fertilizer management practices in combination with intensive irrigation. Given the agricultural developments in this area, further deterioration of the groundwater quality is expected if no mitigation strategies are developed.  相似文献   

18.
The use of N fertilizers in agriculture is crucial, and agricultural techniques need to be implemented that improve significantly N fertilizer management by reducing downward movements of solutes through the soil. To achieve this, it is essential to develop and test models against experimental conditions in order to improve them and to make sure that they can be applied to a broad range of soil and climatic conditions. A field experiment was carried out in the French department of Gard. The soil was a clay loam (26.7% clay, 44.7% fine and coarse silt, and 28.6% fine and coarse sand). Salad vegetables (Cichorium endivia, Lactuca sativa) were cultivated during two consecutive periods (spring and summer crops). The crops were planted on punched and permeable plastic mulching bands. The field was irrigated with a sprinkler watering system. Local measurements were made combining a neutron probe, tensiometers, and ceramic porous cups to estimate NO3-N concentrations. The model is one-dimensional and is based on Richards' equation for describing saturated-unsaturated water flow in soil. At the soil surface, the model is designed to handle flux-type or imposed-pressure boundary conditions. In addition, provision is made in the model, for example, to account for a mulch plastic sheet that limits evaporation. The model accounts for heat transport by diffusion and by convection, while the modeling of the displacement of nitrate and ammonium in the soil is based on the convection-dispersion equation. Nitrate uptake by the crop is modeled assuming Michaelis-Menten kinetics. Nitrogen cycle modeling accounts for the following major transformations: mineralization of organic matter, nitrification of ammonium, and denitrification. The results showed that the overall trend of the water potential in the soil profile was correctly described during the crop seasons. Mineralization was high for the spring crop (4.7 kg NO3-N day–1 ha–1), whereas the other sink components, such as root uptake, drainage, and denitrification, were smaller (1.9, 1.4, and 0.2 kg NO3-N day–1 ha–1, respectively). For the summer crop, intensive denitrification was found in the soil layer at 0.15–0.90 m (5.7 kg NO3-N day–1 ha–1), while the mineralization was always an important component (9.2 kg NO3-N day–1 ha–1) and the sink terms were 1.7 and 1.7 kg NO3-N day–1 ha–1 for root uptake and drainage, respectively. Similar high denitrification rates were found in the literature under intensive irrigated field conditions. Received: 25 October 1995  相似文献   

19.
A detailed field experiment was carried out in the Jordan Valley, south of Lake Kinneret, Israel for evaluation of the water management model DRAINMOD. This field was chosen to represent the local agro-climate conditions of that zone. Banana crop was grown and was irrigated daily with about 3200 mm/year and 0.5 leaching fraction. Subsurface drainage system with 2.5 m drain depth and 160 m drain spacing existed in the field. The water table depth was measured with about 100 piezometers, in which most of them were observed weekly, and four were continuosly recording piezometers. Five identical drainage plots were selected, out of 10 existing, as replicates for the evaluation of DRAINMOD. Deviations in a range of 0.3–1.7 m between observed water table depth and that simulated by DRAINMOD were found in four out of the five replicates. A reasonable agreement was found only in one drainage plot out of the five tested. These findings contradict the world wide convention that DRAINMOD simulation is in a good agreement with observed field data. An additional study was therefore conducted to explore the reasons for these large deviations. Three reasons were suggested: (i) a strong side effect by the Jordan River, which flows some 350 m west to the test field; a very steep 4.6% gradient was found toward the Jordan River; (ii) presence of sandy permeable layers below the depth of the drains which magnifies the boundary condition effect of the Jordan River; (iii) a very significant component of deep and lateral seepage (more than 50% of the yearly irrigation plus rainfall). A combination of these three reasons was suggested as an explanation to the apparent large disagreement. It was therefore recommended not to use DRAINMOD or similar vertical flow models for simulation of water table depths in irrigated fields with subsurface drain pipe systems in the Jordan Valley.  相似文献   

20.
叶娜  李立君  顾建林 《湖南农机》2009,(2):31-32,47
转盘梁作为钻机的主要部件,其结构方案的优劣很大程度上影响和决定着钻机方案的优劣,在钻机设计中底座技术更是钻机的关键技术之一。通过对4000 m及以上钻机底座的转盘梁的特点及典型结构进行分析,提出了钻机底座转盘梁的技术方案和设计要点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号