首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The bitter acids of hops (Humulus lupulus L.) mainly consist of alpha-acids, beta-acids, and their oxidation products that contribute the unique aroma of the beer beverage. Hop bitter acids displayed a strong growth inhibitory effect against human leukemia HL-60 cells, with an estimated IC(50) value of 8.67 microg/mL, but were less effective against human histolytic lymphoma U937 cells. Induction of apoptosis was confirmed in HL-60 cells by DNA fragmentation and the appearance of a sub-G1 DNA peak, which were preceded by dissipation of mitochondrial membrane potential, cytochrome c release, and subsequent induction of pro-caspase-9 and -3 processing. Cleavages of PARP and DFF-45 were accompanied with activation of caspase-9 and -3 triggered by hop bitter acids in HL-60 cells. The change in the expression of Bcl-2, Bcl-X(L), and Bax in response to hop bitter acids was studied, and the Bcl-2 protein level slightly decreased; however, the Bcl-X(L) protein level was obviously decreased, whereas the Bax protein level was dramatically increased, indicating that the control of Bcl-2 family proteins by hop bitter acids might participate in the disruption of mitochondrial integrity. In addition, the results showed that hop bitter acids promoted the up-regulation of Fas and FasL prior to the processing and activation of pro-caspase-8 and cleavage of Bid, suggesting the involvement of a Fas-mediated pathway in hop bitter acids-induced cells. Taken together, these findings suggest that a certain intimate link might exist between receptor- and mitochondria-mediated death signalings that committed to cell death induced by hop bitter acids. The induction of apoptosis by hop bitter acids may offer a pivotal mechanism for their chemopreventive action.  相似文献   

4.
Important secondary metabolites, present in hops (Humulus lupulus L.), include alpha-acids and beta-acids, which are essential for the brewing of beer, as well as the prenylated chalcones, desmethylxanthohumol, and xanthohumol, which exhibit interesting bioactive properties. Their formation and accumulation in five selected hop varieties, Wye Challenger, Wye Target, Golding, Admiral, and Whitbread Golding Variety, were quantitatively monitored by high-performance liquid chromatography using UV detection. All target compounds were present from the onset of flowering, not only in female hop cones but also in male inflorescences, albeit in low concentrations. During development from female inflorescences to cones, levels of alpha-acids, beta-acids, desmethylxanthohumol, and xanthohumol gradually increased, while each hop variety exhibited individual accumulation rates. Furthermore, these compounds were present in leaves of fully grown hops as well. The study demonstrated that key compounds for flavor and potential beneficial health effects associated with beer not only reside in the glandular lupulin structures but also are distributed over various parts of the hop plant.  相似文献   

5.
Trans-Piceid and trans-resveratrol contents of hop cones, hop pellets, CO2 extracts, and spent hop from American varieties (harvest 2004) were determined by reverse-phase high-performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry [RP-HPLC-APCI(+)-MS/MS]. Pelletization induced strong stilbene degradation in some cultivars. Similarly, 1 year of storage at 4 degrees C led to a huge loss of trans-piceid, especially in the case of hop cones (much faster than in model media, although well protected from light and oxygen). Therefore, after 8 months of storage, the overall stilbene content was in the same range whatever the conditioned form. Absent in fresh hop cones or pellets, cis-resveratrol was released from cis-piceid in all stored samples. On the other hand, no delta-viniferin was detected despite it is present in light-protected model media spiked with trans-piceid. Because supercritical carbon dioxide proved inefficient for recovering resveratrol and piceid from pellets, spent hop emerged as the most interesting material for subsequent specific stilbene extraction.  相似文献   

6.
香石竹GA20-oxidase基因的克隆及RNA干扰载体的构建   总被引:2,自引:0,他引:2  
根据已发表的菠菜、烟草等植物GA 20-oxidase基因序列在保守区设计简并引物,通过RT-PCR和RACE的方法克隆了Marster香石竹(Dianthus caryophyllus L. cv. Marster)GA 20-oxidase基因的全长cDNA(1 179 bp),命名为Dc20ox。同源性分析表明该基因与其它作物上发表的GA 20-oxidase基因的氨基酸序列同源性为66%~75%。在此基础上选用同源性相对较高的400 bp DNA片段,构建了RNA干扰(RNAi)载体pART400。  相似文献   

7.
Resveratrol, a well-known phytoalexin and antioxidant, is produced by the action of stilbene synthase (STS) in some plant species. Hop (Humulus lupulus L.) plants of the Tettnang variety were transformed with a gene encoding for STS from grapevine. Under the control of the constitutive 35S cauliflower mosaic virus promoter, expression of the transgene resulted in accumulation of resveratrol and high levels of its glycosylated derivatives in leaves and inflorescences. Piceid, the predominant derivative, reached a concentration of up to 560 microg/g of fresh weight (f.w.) in hop cones, whereas no stilbenes were detected in nontransformed controls (wild-type). In transgenic plants the amounts of alpha- and beta-acids, naringenin chalcone, and prenylated flavonoids did not change significantly when compared with nontransformed plants. Transgenic plants showed normal morphology and flower development as did the nontransformed controls. The results clearly show that in hop constitutive expression of sts interferes neither with plant development nor with the biosynthesis of secondary metabolites relevant for the brewing industry. Since resveratrol is a well-known phytoalexin and antioxidant, sts transgenic hop plants could display enhanced pathogen resistance against microbial pathogens, exhibit new beneficial properties for health, and open new venues for metabolic engineering.  相似文献   

8.
Hop (Humulus lupulus L.) inflorescences, commonly known as "hop cones", are prized for their terpenophenolic contents, used in beer production and, more recently, in biomedical applications. In this study we investigated morphological and phytochemical characteristics of hop cones over five developmental stages, using liquid chromatography coupled to time-of-flight mass spectrometry (LC-TOF-MS), and ultrahigh performance liquid chromatography photodiode array detection (UHPLC-PDA) methods to quantitate 21 polyphenolics and seven terpenophenolics. Additionally, we used light microscopy to correlate phytochemical quantities with changes in the morphology of the cones. Significant increases in terpenophenolics, concomitant with glandular trichome development and associated gross morphological changes, were mapped over development to fluctuations in contents of polyphenolic constituents and their metabolic precursor compounds. The methods reported here can be used for targeted metabolic profiling of flavonoids, phenolic acids, and terpenophenolics in hops, and are applicable to quantitation in other crops.  相似文献   

9.
The concentrations of alpha-acids, beta-acids, desmethylxanthohumol, and xanthohumol were monitored in the hop varieties Admiral (A), Wye Challenger (WC), and First Gold (FG) during the harvest seasons of 2003 through 2005. Hops grown under an organic regimen were compared to plants grown conventionally in hop fields in close vicinity. The concentrations of the key compounds depended very much on climatological conditions showing, in general, highest levels in poorest weather conditions (2004). Of the three varieties studied, FG was the only one showing a clear trend for higher concentrations of secondary metabolites under organic growing conditions than under conventional farming conditions. Cultivation of A and WC seems to be very sensitive to climatic conditions and environmental stresses caused by pests and diseases, thereby leading to various results. WC proved to be a rich source of bioactive chalcones, particularly desmethylxanthohumol.  相似文献   

10.
This study investigates the applicability of on-line coupling of capillary electrophoresis with electrospray ionization tandem mass spectrometry (CZE-ESI-MS) for the separation and characterization of alpha- and beta-acids and oxidized hop acids from crude extracts of different hop varieties. CZE-ESI-MS with negative-ion electrospray ionization proved to be a suitable technique for the determination of these types of natural compounds and their oxidized derivatives. The CZE parameters (pH, concentration, and buffer type) and ESI-MS parameters (nature and flow rate of the sheath liquid, nebulizer pressure, drying gas flow rate, temperature, and compound stability) were optimized. The optimized method provides the potential for a fast qualitative determination of hop acids and their oxidation compounds. The method was also applied to the determination of iso-alpha-acids in beer.  相似文献   

11.
In this article, a detailed study on hop alpha-acid isomerization kinetics is presented. Because of the complex wort matrix and interfering interactions occurring during real wort boiling (i.e., trub formation and alpha-acids/iso-alpha-acids complexation), this investigation on alpha-acid isomerization kinetics was performed in aqueous buffer solution as a function of time (0-90 min) and heating temperature (80-100 degrees C). Rate constants and activation energies for the formation of individual iso-alpha-acids were determined. It was found that iso-alpha-acid formation follows first-order kinetics and Arrhenius behavior. Differences in activation energies for the formation of trans- and cis-isomers were noticed, the activation energy for the formation of trans-iso-alpha-acids being approximately 9 kJmol (-1) lower.  相似文献   

12.
Tomahawk hop (Humulus lupulus) is a recently developed Super Alpha cultivar (14-18% α-acids w/w), already widely used by brewers to impart bitterness and a citrus-like aroma to beer. By comparison with two bitter varieties (Nelson Sauvin and Nugget) and two aromatic ones (Cascade and Saaz), the Tomahawk cultivar showed a very particular terpenoid profile, rich in both α- and β-selinenes (>600 mg/kg IST equiv in total), methyl geranate (>40 mg/kg IST equiv), and geraniol (>200 mg/kg). Tomahawk also proved to contain a wide variety of odorant polyfunctional thiols. The major β-sulfanyl acetate, 3-sulfanyl-2-ethylpropyl acetate, newly identified here, was found at similar levels in the famous Sauvignon-like Nelson Sauvin and Tomahawk varieties (15-44 μg/kg IST equiv). On the other hand, lower levels of total β-sulfanyl alcohols were measured in Tomahawk, although 3-sulfanylhexan-1-ol was found at a similar level and the 3-sulfanyl-4-methylpentan-1-ol previously claimed to be specific to the Nelson Sauvin variety was also evidenced in the Super Alpha cultivar (9-13 μg/kg IST equiv). As revealed by boiling and fermentation, Tomahawk hop also contains very interesting bound polyfunctional thiols that should be investigated for better use by brewers.  相似文献   

13.
Application of aroma extract dilution analysis on the volatiles obtained from dried cones of Spalter Select hops grown in the German hop-growing area of Hallertau revealed 23 odorants in the flavor dilution (FD) factor range of 16-4096, 20 of which could be identified. On the basis of high FD factors, trans-4, 5-epoxy-(E)-2-decenal, linalool, and myrcene were identified as the most potent odorants, followed by ethyl 2-methylpropanoate, methyl 2-methylbutanoate, (Z)-1,5-octadien-3-one, nonanal, (E,Z)-1,3, 5-undecatriene, 1,3(E),5(Z),9-undecatetraene, propyl 2-methylbutanoate, 4-ethenyl-2-methoxyphenol, and 1-octen-3-one. Ten of the high-impact hop aroma compounds had previously not been identified as hop constituents and, in particular, 1,3(E),5(Z), 9-undecatetraene has not yet been reported as a food odorant. In an extract obtained from fresh hops, in addition to the odorants found in dry hops, (Z)-3-hexenal was characterized as a further key odorant rendering an additional green aroma note to the fresh material.  相似文献   

14.
The use of direct thermal desorption-gas chromatography-mass spectrometry (DTD-GC-MS) and DTD-GC-flame ionization detection (DTD-GC-FID) for characterization of hop essential oils is described. Four hop varieties (Nugget, Galena, Willamette, and Cluster) from the Yakima valley (Yakima, WA) 1998 harvest were analyzed by DTD-GC-MS and DTD-GC-FID methodology. Approximately 1 g of hops was needed for the analysis. Hop samples were prepared for GC-MS and/or GC-FID profiling in approximately 20 min. More than 100 volatile compounds have been identified and quantified for each hop variety. The results were found to be in good agreement with conventional steam distillation-extraction (SDE) data. A calibration curve for determination of essential oil content in hops by DTD-GC-FID has been generated. Quantitation of hop oil content by DTD-GC-FID was shown to be in good agreement with conventional SDE data. The recovery of key oil components valuable for varietal identification was demonstrated to be highly reproducible and characteristic of each variety analyzed when DTD-GC-FID was used for analysis.  相似文献   

15.
The rate of isomerization of alpha acids to iso-alpha acids (the compounds contributing bitter taste to beer) was determined across a range of temperatures (90-130 degrees C) to characterize the rate at which iso-alpha acids are formed during kettle boiling. Multiple 12 mL stainless steel vessels were utilized to heat samples (alpha acids in a pH 5.2 buffered aqueous solution) at given temperatures, for varying lengths of time. Concentrations of alpha acids and iso-alpha acids were quantified by high-pressure liquid chromatography (HPLC). The isomerization reaction was found to be first order, with reaction rate varying as a function of temperature. Rate constants were experimentally determined to be k1 = (7.9 x 10(11)) e(-11858/T) for the isomerization reaction of alpha acids to iso-alpha acids, and k2 = (4.1 x 10(12)) e(-12994/T) for the subsequent loss of iso-alpha acids to uncharacterized degradation products. Activation energy was experimentally determined to be 98.6 kJ per mole for isomerization, and 108.0 kJ per mole for degradation. Losses of iso-alpha acids to degradation products were pronounced for cases in which boiling was continued beyond two half-lives of alpha-acid concentration.  相似文献   

16.
为研究苦瓜果实成熟的分子调控机制,以苦瓜自交系E12201-e1为材料,取不同成熟期苦瓜果肉组织等量混合,采用All-Direct方法构建酵母双杂交cDNA文库。经质量鉴定,该文库库容为1.25×107 CFU,平均插入片段大于1 200 bp,阳性率为100%,文库质量较高,符合建库标准。同时,以苦瓜果实成熟关键调控因子McRPF为诱饵,构建诱饵表达载体pGBKT7-McRPF。经鉴定该诱饵蛋白无自激活活性。利用共转化法,从文库中筛选到29个初始阳性菌落,经过DNA测序和BLAST比对分析,最终筛选得到12个可能与McRPF互作的蛋白,为进一步探究McRPF调控苦瓜果实成熟的分子机制奠定了理论基础。  相似文献   

17.
利用抑制消减杂交技术研究同一只西农萨能奶山羊泌乳中期和末期的乳腺组织差异表达基因,以泌乳中期乳腺cD-NA为测试组,末期乳腺cDNA为驱动组,构建消减文库,得到山羊(Capra hircus)嗜乳脂蛋白基因的部分序列。根据牛(Bos)和绵羊(Ovisaries L.)基因组序列进行电子拼接,并设计引物,得到山羊嗜乳脂蛋白基因的CDs区全序列,应用RT-PCR技术从山羊乳腺组织总RNA中扩增克隆了山羊嗜乳脂蛋白基因CDs区,命名为gBTN1A1,并登录GenBank(EF102891)。gBTN1A1基因开放读码框由1581个碱基组成,编码526个氨基酸,前26个氨基酸为推定的信号肽区域。gBTN1A1基因核苷酸序列与牛(NM-174508)、人(NM-001732)和鼠(AK145168)的同源性分别为97%、88%和84%,氨基酸序列的同源性分别为96%、84%和70%。其二级结构、跨膜区域及信号肽分析均与牛、人和鼠的BTN1A1基因相似。  相似文献   

18.
番茄茸毛相关基因ShMYB1的克隆与表达分析   总被引:2,自引:0,他引:2  
番茄茸毛具有多种生物学功能,为了探究番茄中控制茸毛的基因,本研究采用cDNA末端快速扩增技术(rapid amplification of cDNA ends,RACE)从野生种多毛番茄(Solanumhabroc haites)LA1777中,获得了一个与茸毛相关的R2R3 MYB Subgroup 9家族新成员EST241733的全长编码区cDNA序列,命名为ShMYB1。经生物信息学分析,克隆的ShMYB1基因长1350bp,编码338个氨基酸。该基因具有保守的R2R3MYB结构域和Subgroup 9特异motif序列。荧光定量PCR结果表明,ShMYB1基因在番茄叶和花中表达量高,在根、茎、果实中没有表达。在不同发育时期的叶片中表达量差异不大,但是在幼花蕾表达量最高,随花蕾的增大,表达量显著降低。在几个番茄茸毛突变体与对应的野生型中,这个基因表达量存在明显差异。推测该基因与番茄表皮茸毛发生和花发育有关。  相似文献   

19.
本研究以成年早酥梨(Pyrus bretschneideri cv.Zaosu)叶片为材料,通过RT-PCR克隆早酥梨病程相关基因非表达子1基因(NPR1)并获得其全长序列1771 bp,开放阅读框为1761 bp,编码586个氨基酸(GenBank登录号:FJ769372).利用NCBI/Blastp和ClustalX软件进行相似性分析表明,目的基因编码蛋白质序列与日本梨(p.pyrifolia)、秋子梨(P.ussuriensis)、苹果(Malus xdomestica)、烟草(Nicotiana tabacum)和拟南芥(Arabidopsis thaliana)的NPR1蛋白相似性分别为99%、98%、98%、67%和59%.将其连接pGEX-4T-1原核表达载体并转化大肠杆菌(EScherichia coli)BL21,经IPTG诱导表达获得大小约为91 kD的目的融合蛋白,融合蛋白主要以包涵体形式表达,表达量约占总蛋白17%.  相似文献   

20.
Use of GC-olfactometry to identify the hop aromatic compounds in beer   总被引:3,自引:0,他引:3  
This paper describes a sensorial aroma extract dilution analysis (AEDA) approach to the analysis of beer aromas derived from hops. To obtain an extract with an odor representative of the original product, the XAD extraction procedure was applied and the experimental conditions were optimized. The aromagrams of three beers were compared: one brewed without hops, one brewed with Saaz hop pellets, and one brewed with Challenger hop pellets. One spicy/hoppy compound, unmodified from hop to beer, proved responsible for the most intense odor in both hopped beer extracts. Another flavoring compound in hops, linalool, also survives through the process to the final beer. Other compounds such as gamma-nonalactone and humuladienone, although not found in our extracts of hop, significantly modify beer aromagrams after hopping. Sulfur compounds characteristic of Challenger hops proved to be at least partially responsible for the unpleasant flavor found in the corresponding beer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号