共查询到20条相似文献,搜索用时 90 毫秒
1.
针对传统的土壤墒情监测手段存在的监测范围小、采样率低等不足,设计实现了基于ZigBee无线传感网络和J2EE三层B/S架构技术的柑橘园土壤墒情远程监控系统。系统采用具有ZigBee无线数据传输功能的XBee-PRO模块和ECH2O型土壤水分传感器EC-5为核心组成传感器节点,部署于柑橘园的各个采集点对土壤墒情信息进行采集、预处理和无线发送等工作,通过基于ARM9的嵌入式网关与Internet网络连接,采集数据传输至远程Web主机,通过远程监控中心系统实现对采集数据分析处理和系统运行的远程和实时监控。进行了不同距离的传感器节点发送数据包的耗时和数据包发送成功率试验,在1 km以内耗时低于100 ms,数据包发送成功率高于98%。试验结果表明,系统实现了稳定可靠的数据传输,适合柑橘园土壤墒情的远程和实时监控。 相似文献
2.
3.
目前对采用水文干旱方法,即通过监视农田墒情的变化来建立抗旱决策信息系统研究还很少,文章阐述在干旱灌区建立土壤墒情监测预报和灌溉决策信息系统的重要性,提出适用于干旱灌区的土壤墒情监测方法和作物灌水预报模型,对土壤墒情自动测报及灌溉决策系统的信息传输、结构及功能作了详细论述。研究表明,通过计算机信息技术对农田墒情、气象信息、灌溉用水以及农业生产等综合信息实行一体化系统管理,提高了灌溉管理水平,节约了水资源。研究成果在干旱、半干旱地区具有参考和应用价值。 相似文献
4.
为了定量预报农田未来7d 土壤墒情变化特征,提升农业气象服务工作质量与效率,该文旨在研发基于网络化的辽宁省农田土壤墒情监测与预报系统。该系统基于VC++及Fortran程序语言设计,以改进的CERES-MAIZE模型中的土壤水分子模型为基础,通过程序设计及各接口功能的实现,自动调用辽宁省自动土壤水分观测站的监测当日土壤含水量数据和中央气象台预报指导产品,实现数据的网络化获取和业务模型的实时运行,提升土壤墒情模拟的准确性、时效性和便利性。结果表明,预报准确率随预报日期增加而呈现降低的趋势,越临近实际监测日期土壤墒情预报情况与实际情况拟合越好;等级干旱预报准确率最低值为70.1%,最高值为81.9%,系统对于辽宁省农田土壤干旱级别的预报具有较高准确率。 相似文献
5.
为提高农业灌溉用水利用率、实现节水灌溉,设计了基于GPRS的无线土壤墒情监测预报系统。提出了一种土壤墒情监测预报模型,开发了以ARM9系列S3C2410处理器、GPRS模块和CS8900a网卡等组成数据采集系统,实现了对土壤墒情信息的自动采集、存储和墒情信息的无线网络传输,并可以根据墒情信息实施定时、定量的灌溉控制。该系统已投入国家农业示范基地使用15个月的时间,试验表明,该系统对土壤墒情的预报值与实际测试数据误差为3.39%,实现了对土壤墒情的有效监测和准确预报。 相似文献
6.
基于气象因子的金华市土壤墒情预测模型 总被引:3,自引:1,他引:3
利用金华2007—2008年土壤墒情资料和相关气象资料,分析了土壤湿度的基本变化规律,对土壤湿度与相关气象因子进行了灰色关联度分析,找出关键气象影响因子,建立了基于关键气象影响因子的土壤墒情预测模型并进行了试报和验证。结果表明:金华市冬季、春季土壤较为湿润、变化较为平稳,夏季、秋季土壤相对较干、变幅较大;5mm降水与蒸发的差为影响土壤相对湿度变化的首要因子;基于关键因子的土壤墒情预测模型试报2008年夏季的10cm、10—20cm、20—30cm土层相对湿度的平均误差分别为15.75%、6.89%、8.21%,该模型预测的土壤湿度状况基本能反映旱情发展的动态趋势。模型可为准确预测土壤墒情的变化状况,为农业生产合理用水和防灾减灾提供参考。 相似文献
7.
基于ZigBee的淡水养殖溶氧浓度自动监控系统 总被引:1,自引:0,他引:1
无线传感器网络是近年来兴起的一门新兴技术,主要应用在自动控制和远程测控领域。本文介绍了ZigBee技术的特点,给出了基于ZigBee技术养殖自动加氧系统的工作原理和控制电路的软硬件设计。测试结果表明:系统具有结构简单、性能可靠等特点。 相似文献
8.
土壤墒情是一个非线性、时空异质性和动态不确定过程,利用Elman动态神经网络对研究区临沂站和平邑站土壤水分含量进行了预测。结果表明,所建立的网络模型能够对土壤墒情进行成功模拟,预测的土壤水分值与观测值吻合得较好,模拟精度较高。临沂站和平邑站模拟土壤墒情的平均绝对误差分别为1.08%和1.07%,平均相对误差为10.2%和11.0%。Elman动态神经网络模型利用其独特的非线性、非凸性和适应时变特性的能力从时空变率复杂的土壤水分运移系统中找出一定的演变规律,为土壤水分预测提供了一种有效可靠的方法。为了更好地验证该方法的优越性,还需要更多的样本数据,更多的区域和更全面的敏感影响因素来验证,以及更深层次的理论研究和分析。 相似文献
9.
为了及时掌握吉林市土壤墒情信息,为旱情预报预警提供基础数据,开发了吉林省吉林市土壤墒情监测系统。该系统由1个旱情分中心、建立在辖区内5个重点抗旱县的信息站以及分布在各县的13个土壤墒情监测站组成。土壤墒情监测站每天定时采集土壤墒情信息,通过GSM短消息上传到信息站;信息站对数据进行初步的整理后上报旱情分中心;旱情分中心根据各信息站上报的土壤墒情信息对区域旱情作出预报或预警,并根据需要给出抗旱决策。历时两年多的连续运行表明,系统在可靠性和实用性上基本达到了要求。 相似文献
10.
11.
该文设计了一套基于ZigBee无线传输方式的粮仓温湿度远程监测系统,有效地解决了目前粮仓粮情监测系统存在的布线困难、扩展性差和成本高的缺点。该系统采用CC2430芯片搭建ZigBee星型网络,网络中的ZigBee设备以TI公司的Z-Stack为基础进行软件设计。ZigBee终端节点承载了粮仓温湿度数据采集的基本功能,并通过ZigBee网络将数据发送给ZigBee协调器,协调器通过RS232串口将数据传送给服务器。并且系统在服务器机上配置了数据库服务和WEB服务,远程粮仓管理员可以通过http服务访问服务器,查询粮仓的温湿度数据并控制粮仓的温湿度采集,从而取消了对粮仓管理员工作地点的限制。该文采取试验对该系统进行了验证,系统的温度误差在±0.4%范围内,湿度误差在±1.0%范围内。研究结果表明该系统数据传输正确、可靠同时具有实时性好、可靠性高以及耗能低等优点。 相似文献
12.
为提高日光温室的灌溉水利用效率,充分发挥现有灌溉决策理论的指导作用,该文构建了基于ET和水量平衡方法的实时精准灌溉决策及控制系统。以句容布戴庄村樱桃番茄温室为试验对象,给出了利用ET和水量平衡方法的灌溉决策实施过程,即当田间蒸发蒸腾总量大于土壤中可供作物利用水分时触发灌溉,灌水量等于自上一次灌溉起蒸散量的总和。采用Java语言开发了灌溉决策软件ETSch,可实现以温室内气象数据为基础对不同地点的灌溉决策项目进行管理;设计了温室精准滴灌系统并研制了基于单片机的灌溉控制器软硬件,通过ETSch软件与控制器的连接,建立了从田间气象信息获取到灌溉决策软件运行,再到灌溉及控制系统的集成化自动精准灌溉模式。试验结果表明,该实时精准灌溉决策及控制系统的平均灌水总量控制平均误差为1.1%,系统运行稳定,节约人工;尽管采用ET和水量平衡方法低估了实际土壤含水率,但总体趋势一致,能实现合理有效的灌溉决策。该研究可为实现灌溉决策和控制系统的集成提供参考,为进一步提高灌溉效果和用水效率提供借鉴。 相似文献
13.
为了实现土壤水分数据的实时采集、处理、可视化与上传,开发了移动式土壤水分监测系统。系统由集成ZigBee协调器、GPS模块、GPRS模块的PDA和基于ZigBee的土壤水分传感器移动节点组成。ZigBee模块主要用于PDA和移动传感器节点间的无线通信,使PDA能无线获取土壤水分传感器信息,并能控制传感器供电电源的通断。GPS模块用来实时获取传感器的位置信息,为绘制土壤水分时间和空间分布图以及为精细灌溉决策系统提供支持。GPRS模块用来将绑定的节点号、经纬度信息、土壤水分信息通过TCP/IP协议上传至互联网远程上位机,以实现土壤水分时空变异的远程监测。系统既能在PDA内存储信息又能上传互联网,具有良好的便携性和可视性。性能试验结果表明,系统可实时准确远程传输测量数据,内嵌软件根据测量结果绘制的土壤水分空间变异分布图可有效指导精细灌溉。 相似文献
14.
为了及时、准确地给作物提供适宜的土壤水分条件,该研究利用拥有自主知识产权的土壤水分传感器、数据采集控制模块、数据传输模块、管道流量计等硬件以及自己编制的土壤墒情监测与精准灌溉控制软件,以灌溉小区为管理单元,布置土壤水分传感器与灌溉设备,实现了自动获取土壤含水量信息,根据作物不同生育期的适宜土壤水分上下限确定自动或手动启动、关闭灌溉系统;通过固定式喷灌、滴灌和渗灌方式,将水直接输送到作物根部,满足作物各生育期对水的需求,从而达到节约用水,提高产量,改善作物品质的功效。运行结果表明,该系统运行稳定、可扩展性强、低成本维护,其相对偏差与传统方法相比不到5%,是有效和适用的工具。 相似文献
15.
16.
17.
18.
19.
本文介绍了利用VP—EXPERT专家系统开发工具进行节水灌溉土壤水分调控专家系统的研制。概述了土壤水分调控装置及其调控原理,讨论了专家系统的构成及应用特点。 相似文献
20.
针对传统温室环境监测系统布线繁杂、成本较高、监测灵活性差及以往无线传感器网络(wireless sensor network, WSN)能耗较高等问题,设计了一种基于WSN的温室环境参数监测系统。利用CC2530无线传感网络芯片和外围接口搭建了系统硬件,使用Z-Stack协议栈编制了系统底层软件,基于VB软件平台开发了的温室环境监测系统上位机软件,并验证分析了CC2530芯片的传输特性。结果表明,节点在距地表1.5 m时的有效传输距离为60 m,单个节点使用2节5号电池能够持续进行温室环境参数数据采集工作45 d,能较为准确的对温室环境温湿度及作物土壤体积含水率进行监测,系统具有较高的实用性与可靠性。 相似文献