首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Glutathione S-transferases (GST) detoxify many electrophilic xenobiotics, including several volatile organic compounds and pesticides. The GST activity for the conjugation of several xenobiotic substances was isolated from needles of Norway spruce (Picea abies L. Karst.) trees from a forest decline stand in the northern alps. Trees that exhibited different degrees of damage were selected from several stands in an altitude profile. The GST activity toward 1-chloro-2,4-dinitrobenzene (CDNB) in crude protein extracts of needles showed a seasonal pattern with highest activity during summer. The GST activity exhibited a strong dependence on the altitude of the stand showing highest activities in trees growing in the valley and lowest activities in trees growing in the summit regions of the mountain. When cytosolic GST from needles of healthy and damaged trees was purified, trees of healthy appearance exhibited three distinct GST isozymes with activities for the conjugation of CDNB and 1,2-dichloro-4-nitrobenzene (DCNB), whereas severely defoliated trees exhibited four GSTs with additional activity for the conjugation of ethacrynic acid. The main GST isozymes catalyzing the conjugation of CDNB differed in molecular weight, isoelectric point and catalytic properties between damaged and healthy trees.  相似文献   

2.
W. Koch 《Forest Pathology》1985,15(4):207-216
Osmotic cell sap potentials of diseased and healthy spruce, fir and beech leaves, fine roots and cortes were determined with the aid of capillary cryoscopy. With one exception (fir needles) the diseased trees showed no reduction in osmotic potential compared to healthy trees.  相似文献   

3.
Boyce RL 《Tree physiology》1993,12(3):217-230
I compared the shoot structures of high-elevation red spruce (Picea rubens Sarg.) and balsam fir (Abies balsamea (L.) Mill.). Needle widths, thicknesses and perimeters were measured to estimate total leaf areas from measured projected leaf areas. Measured needle perimeter/needle width ratios differed significantly from estimated ratios that assumed needles were either rhomboidal or elliptical in cross section. The vertical and horizontal silhouette shoot area to total leaf area ratios (STAR(v) and STAR(h)) of the two species were negatively correlated with needle packing and canopy height. Red spruce had higher values of STAR(v) than balsam fir at each canopy height, but STAR(v) declined with canopy height at a similar rate in the two species. The STAR(h) values of the two species did not differ significantly at a given canopy height. Needle packing increased with canopy height at the same rate in the two species. Needle weight increased in red spruce and decreased in balsam fir with increased needle packing, but showed no significant dependence on canopy height. Red spruce had higher values of STAR(h) than balsam fir at low values of needle packing, but STAR(h) values converged at high values of needle packing. The generally comparable values of STAR, along with similar needle diameters, may imply that red spruce and balsam fir have similar collection efficiencies of wet and dry particles. Measurements of STAR may be used to estimate leaf area indices (LAI) more accurately when using indirect techniques.  相似文献   

4.
Forest pasturing of livestock in Norway: effects on spruce regeneration   总被引:1,自引:0,他引:1  
Forest pasturing of free-roaming livestock is a common practice in many parts of the world, but knowledge on how it affects tree regeneration in boreal forests is lacking. We mapped tree density, livestock site use and accumulated damage to young trees of commercial interest(Norway spruce, Picea abies L. Karst.) on 56 clearcuts inside and outside a fenced forest area used for livestock pasturing in Ringsaker, Norway. Inside the fence 56±1.8% of spruce trees were damaged compared to 37±3.4% outside. Proportion of damaged spruce trees was positively related to cattle use of the clearcut, but not so for sheep. On the most intensively used clearcuts, four out of five trees were damaged. The density of deciduous trees was five times lower inside compared to outside of the fence(varying with plant species). While livestock grazing may reduce resource competition in favour of spruce, the current animal density clearly is impeding forest regeneration in the study area.  相似文献   

5.
The single-tree selection system is an important option for management of Norway spruce (Picea abies (L.) Karst.) and silver fir (Abies alba Mill.) forests because it provides continuous cover, requires low investments for tending, and promotes natural regeneration as well as high stand resistance and elasticity. It is often regarded as a very conservative system that usually results in only minor spatiotemporal changes in forest structure and composition. We studied management history, structural changes, regeneration dynamics, and light climate of a traditional single-tree farmer selection silver fir-Norway spruce forest (site typology Bazzanio-Abietetum). Stand structure was analyzed on five 0.25 ha permanent plots in 1994, 2001, and 2008. Regeneration density and height growth, forest floor vegetation, and light climate were also assessed on 1.5 × 1.5 m regeneration subplots in 2001 and 2008. Tree cores extracted from dominant trees from both species in two plots were used for reconstructing stand history and age structure of the canopy layer. We documented the forest response to three types of selection management regimes: excessive, normal, and conservative. Excessive management with harvest intensity significantly above the increment was documented until the late 1950s, including two peaks of heavy fellings (diameter limit cut) in the 1880s and 1930s, which favoured establishment of Norway spruce and released regeneration. The period that followed was characterized by normal selection management, but was nevertheless marked by a decline of silver fir as a result of air pollution and several droughts. This led to sanitary fellings that were carried out from the late 1970s to the early 1990s. In the last two decades conservative management followed, which led to suppression and decline of regeneration, especially of Norway spruce, and loss of selection structure. Although we recorded lower regeneration potential of silver fir compared with Norway spruce within the seedling category, silver fir outcompeted Norway spruce within the small-sized tree category (1 cm < dbh ? 10 cm) because of its superior height growth in low light levels (diffuse light <6%) and occupied a greater share of the canopy. Nevertheless, we anticipate that over the long-term the low light regime will also cause regeneration decline of silver fir and broadleaves. Our research revealed significant structural changes in a single-tree farmer selection forest during the last 150 years. These were a result of variable management regime and environment. A farmer single-tree selection system could better mimic the natural disturbance regime if spatiotemporal combinations of diverse felling regimes would be used.  相似文献   

6.
Montane red spruce (Picea rubens Sarg.) in the northeastern United States has undergone a decline during the past two decades. One symptom associated with the decline syndrome is the episodic browning of first-year foliage in early spring. To examine the potential role of winter desiccation in this browning, the water relations of red spruce foliage in a subalpine forest on Mt. Moosilauke, New Hampshire, USA, were monitored from January to May, 1989. All sampled trees lost water during the winter and the first-year foliage on some trees turned brown in early spring. The relative water content of first-year shoots during the winter was a significant predictor of spring browning; red spruce trees that showed browning had desiccated faster and reached lower relative water contents. Damaged trees also had more closely packed needles and lower cuticular resistances to water loss. The first-year shoots had a significantly lower average relative water content than older shoots before and after browning. Cuticular resistance to water loss decreased with elevation. Sun-exposed shoots lost more water than shaded shoots because of solar heating of needles. Winter desiccation can occur before the decline-related spring browning of red spruce foliage.  相似文献   

7.
Inspection of Norway spruce and Silver fir on experimental plots in south-western Germany showed that Silver fir had suffered significantly less bark injuries than Norway spruce. Data from both federal forest inventories (1987, 2002) showed a similar species-specific vulnerability. Additional visual inspections of the basal cross-sections of trees removed from the experimental plots showed rather high proportions of butt rot in uninjured Norway spruce (51%). The proportion further increased to 93% in trees, which had sustained bark injuries. In contrast, decay symptoms were almost absent in uninjured Silver fir and less enhanced in trees with bark injuries (27%). Management implications for risk rating of tree species, as well as the necessity of implementing low-damage harvesting regimes, are discussed.  相似文献   

8.

Foliar responses of subalpine fir [Abies lasiocarpa (Hook.) Nutt.] to thinning were studied in a 35-yr-old mixed stand of paper birch (Betula papyrifera Marsh.) and conifers. The stand regenerated naturally after a wildfire with a canopy dominated by paper birch (average height 9.8 m) and an understorey dominated by subalpine fir (average height 1.6 m). The stand was thinned to four densities of birch: 0, 600 and 1200 stems ha-1 and control (unthinned at 2300-6400 stems ha-1) in the autumn of 1995. The understorey conifers, mainly subalpine fir, were thinned to 1200 stems ha-1. The study used a completely randomized split-plot design. Three sample trees were systematically selected from each treatment replicate and each tree stratum (upper, intermediate and lower understorey). One-year-old and older age class needles were collected from one south-facing branch within the fifth whorl from the tree top. Thinning of paper birch significantly (p <0.001) increased leaf area and dry weight per 100 needles for intermediate and short trees except in the 0 birch treatment. Understorey subalpine fir trees in 600 stems ha1 birch (T3) had the largest leaf area and leaf dry weight per 100 1-yr-old needles. Specific leaf area (SLA) decreased from unthinned (T1) to 0 birch (T4). Lower understorey trees had the largest SLA. One-year-old needles had significantly higher N, P and K concentrations in all the thinning treatments. These responses are consistent with the shade tolerance of subalpine fir. The results suggest that when managing a paper birch-conifers mixed-wood forest it may be of benefit to understorey conifers to leave a birch canopy as a nursing crop.  相似文献   

9.
Ueda M  Shibata E 《Tree physiology》2004,24(6):701-706
We examined the water status of Hinoki cypress, Chamaecyparis obtusa (Siebold & Zucc.) Endl., trees after a severe typhoon to determine possible causes of the decline and dieback that can occur in what appear, at first, to be healthy trees in typhoon-damaged forest stands. We found that in apparently healthy trees in a storm-damaged stand, the water conducting area of the trunk cross section was greatly reduced compared with that of similarly sized trees in a nearby undamaged stand. Although leaf specific hydraulic resistance (Wl) from soil to leaf and from trunk to leaf was higher in trees from the storm-damaged than the undamaged stand, Wl values from soil to root were similar. Diurnal patterns in the rates of change in trunk diameter differed between trees in the damaged and the undamaged stand. We conclude that increased aboveground hydraulic resistance caused by a reduction in trunk water conducting area could be a major reason for the decline and dieback of apparently healthy trees in typhoon-damaged stands.  相似文献   

10.
Large cavity-nesting birds depend on large-diameter trees for suitable nest sites. The increased spatial extent of commercial timber harvesting is modifying forest structure across the land base and may thus compromise the availability of large trees at the landscape scale. In this study, our objectives were to (1) characterize the availability of large living and dead trees in old-growth stands dominated by different tree species and surficial deposits that encompass the range of natural cover types of eastern Québec's boreal forest; (2) analyze the distribution of trees among decay-classes; and (3) compare the availability of large trees in unharvested, remnant, and harvested stands for the entire range of decay-classes. A total of 116 line transects were distributed across unharvested forests, remnant linear forests, and cutblocks in cutover areas. Unharvested forest stands (black spruce [Picea mariana], balsam fir [Abies balsamea]–black spruce, balsam fir–white spruce [Picea glauca] and balsam fir) reflected a gradient of balsam fir dominance. The remnant forests selected were isolated for 5–15 years. Analyses were performed at two diameter cut-off values. Trees with DBH ≥20 cm were considered for availability of total trees whereas trees with DBH ≥30 cm were considered for availability of large trees. Forest stands comprised high proportions of standing dead trees (33% of all stems, 8% were large dead stems). Availability of total and large standing trees increased with the dominance of balsam fir in stands. Forest stands located on thick surficial deposits showed higher densities of large dead trees for every stand type suggesting a higher productivity on those sites. Availability of stems according to decay-classes showed a dome-shaped distribution with higher densities of snags in intermediate decay stages. However, for large stems, black spruce stands showed a significantly lower availability that was consistent across all decay-classes. In linear remnant forests, pure balsam fir stands were absent. Remnant stands thus showed a much lower availability in large trees when compared with unharvested balsam fir stands. Clearcuts had the lowest densities of dead trees across sampled stands. Current even-aged management practices clearly affect availability and recruitment of large trees, therefore forest-dwelling wildlife relying on these structures for breeding is likely to be affected by large-scale harvesting in coniferous boreal forests.  相似文献   

11.
Norway spruce trees in the subalpine forests of the European Alps are frequently attacked by the needle rust Chrysomyxa rhododendri. The obligate parasite undergoes a complex life cycle with a host shift between rhododendrons (Rhododendron sp.) and Norway spruce [Picea abies (L.) Karsten] and causes a yellowing and defoliation of the current-year needles in summer. Infected trees show several anatomical, morphological and physiological modifications, including a decrease in pigment content and net photosynthesis of infected needles, lower biomass production and reduced radial and height growth. The consequences are diminished timber yield and cripple growth. Because of repeated heavy infections in recent years, forest managers report increasing difficulties in both natural regeneration and afforestation at high elevation sites, where rhododendrons occur. This review gives a summary of the present knowledge about the effects of C. rhododendri infections on Norway spruce, including so far unpublished findings and with particular attention to the phenomena of resistant trees. Implications for subalpine forests and counter strategies are discussed.  相似文献   

12.

Context

For Central Europe, climate projections foresee an increase in temperature combined with decreasing summer precipitation, resulting in drier conditions during the growing season. This might negatively affect forest growth, especially at sites that are already water-limited, i.e., at low elevation. At higher altitudes trees might profit from increasing temperatures.

Aims

We analyzed variations in radial growth of silver fir (Abies alba Mill.) and Norway spruce (Picea abies (L.) Karst.) along an altitudinal gradient from 400 until 1,140 m a.s.l. in the Black Forest, to assess climate responses with increasing elevation.

Methods

Climate–growth relationships were analyzed retrospectively using tree-ring and climate data. In total, we sampled stem discs of 135 trees to build 27 species- and site-specific chronologies (n fir?=?13, n spruce?=?14).

Results

Our results indicate distinct differences in climate–growth relations between fir and spruce along the gradient. Growth of high-altitude fir was positively related to temperature from January till March. Growth of low-altitude fir and spruce at all elevations was positively related to precipitation and negatively to temperature during the growing season, particularly in July. A self-calibrating Palmer drought severity index underlined summer drought sensitivity of these trees.

Conclusion

Overall, we found that climatic control of tree growth changes over altitude for fir. For spruce, a remarkable synchrony in growth variation and climate response was shown, which indicates that this species is drought sensitive at all studied elevations. In a future warmer climate, the growth of low-altitude fir and spruce along the entire studied gradient may be negatively affected in the Black Forest, if an increased evaporative demand cannot be compensated by increased water supply.  相似文献   

13.
The incidence of longitudinal drought cracks in coniferous trees may increase as a consequence of climate change. While larger diameter trees are more prone to splitting, it is unclear why only some of the larger trees within the same stand typically suffer damage. Matched pairs of trees of the same size with and without cracks were studied in two adjacent pole-stage mixed stands of Sitka spruce/grand fir (Picea sitchensis/Abies grandis) and Sitka spruce/noble fir (Picea sitchensis/Abies procera) located in North-East Scotland. A range of attributes were measured on 15 damaged and undamaged trees of each species. Length and position of cracks on stems were also recorded, and annual ring width and latewood percentage measured on cores. Noble fir had significantly longer cracks and these were located higher in the stem than the other species. Fewer cracks formed on east-facing side of stems in all species suggesting that prevailing westerly winds may place greater tensile forces on the damaged sides of stems. A higher proportion of latewood (associated with higher tangential shrinkage) was found in the firs and may explain the greater incidence of cracking on grand and noble fir stems (13% and 16%, respectively) in comparison with Sitka spruce (3%).  相似文献   

14.
Natural regeneration of windthrow areas is an important issue when planning forestry measures after forest disturbances. Seedling recruitment was investigated in storm-damaged hemiboreal mixed forests in eastern Estonia. The establishment and growth of seedlings from natural regeneration was registered for tree species in soil pits and in mounds of uprooted trees in stands that were either heavily or moderately damaged. Seedling growth is expected to be better in large but shallow soil pits created by uprooted Norway spruce [Picea abies (L.) Karst.] and poorer in small but deep pits created by the hardwoods in the area, silver birch (Betula pendula Roth.) and European aspen (Populus tremula L.). The most abundant regenerating species was birch. Pits hosted larger seedling numbers than mounds, due to soil instability in mounds. Rowan (Sorbus aucuparia L.) showed significantly faster growth than the other seedling species. Norway spruce pits were preferred to pits of other species by both birch and spruce seedlings. Black alder [Alnus glutinosa (L.) J. Gaertn.] did not show a preference for pits of a certain species of uprooted tree. Both spruce and rowan preferred hardwood mounds over spruce mounds. Storm severity also affected species composition: birch predominantly occurred on pits and mounds in heavily disturbed areas, while spruce was more abundant in the moderately damaged areas. The effects of advance regeneration and surrounding stands on seedling microsite preferences should be considered in future research and subsequent management recommendations.  相似文献   

15.
The research site, Wingst Compartment 123B, is a 68-year-old Norway spruce (Picea abies (Karst.)) stand located in the coastal area of northern Germany. This area receives high atmospheric inputs of ammonium and also has relatively high ozone concentrations (0.061 mg m−3).Ten trees were categorized as healthy to slightly damaged (3–29% needle loss) or severely damaged (49–71% needle loss). Apparent net photosynthetic rates were measured on detached branches at light saturation (1000 μE m−2 s−1). Needles were analyzed for chlorophyll, N, C, Ca, Mg, K, Zn, Mn and Fe.When compared to the healthy-to-slightly-damaged trees, the severely damaged trees tended to have higher rates of net apparent photosynthesis in the 1 and 2-year-old needles and similar rates in the current-year needles. All three needle ages from the severely damaged trees had higher average stomatal conductances to water vapor (gs. Although the damaged trees had significantly less total chlorophyll in all needle ages sampled, there was no statistically significant difference in the chlorophyll a:b ratio between the healthy and severely damaged trees.Nitrogen contents of the current-year needles were slightly lower in the severely damaged trees. Carbon and calcium levels did not significantly differ between the damage classes, although the average Ca content of all younger needles was generally under the recommended sufficiency levels. The current-year needles of the severely damaged trees had significantly less magnesium (0.42–0.46 mg Mg g−1) than those of the healthy trees, and all trees had Mg values in the deficiency range (< 0.7 mg g−1). The severely damaged trees also had lower average potassium levels in the older needles.The annual volume increment per unit crown surface area declined with increasing crown damage. Trees with a 50% needle loss showed a 62% loss of volume increment.Soil investigations revealed conditions of high soil acidity and poor nutrient capacity. The low pH values (pH < 3.8) in 64% of all samples indicated a high risk of acid toxicity for plant roots in the investigated area.The significance of these results relative to the current ideas concerning forest decline is discussed.  相似文献   

16.
To trace any possible effects of air pollution stress and injuries on trees around a city centre, needles of Scots pine (Pinus Syivestris L.) and Norway spruce (Picea abies (L.) Karst.) from sites of different distances and directions from Stockholm were analysed. Comparisons were made between needles of different ages, a half to three and a half years old (C ‐ C + 3) for pine up to six and a half years old (C ‐ C + 6) for spruce. Epicuticular waxes, studied by scanning electron microscopy (SEM), showed age‐dependent but site‐independent changes. Different age‐patterns were found in the pine and spruce needles but no dust coverings or lesions were detected, irrespective of the sites. A proportionally increasing peroxidase activity (EC 1.11.1.7) with increasing needle‐age up to the third year was observed in both species. No certain indication of site‐effects, expressed by an unproportional increase of the enzyme activity with increasing needle‐age could be found. Chlorophyll a and b, phaeophytin a and b and carotenoid analyses on the corresponding materials only indicated disturbances in trees from some scattered sampling plots. Thus, neither could the pigment analyses reveal any signs of a general pollution stress in pine and spruce trees from the area in question.  相似文献   

17.
Treatments with acidified solutions of pH 3.5 cause alterations in the wax structure of the needles of silver fir and Norway spruce. The wax structures, especially those of the stomata, once they have been damaged, are not capable of complete reorganization even if the needle is repeatedly treated with distilled water.  相似文献   

18.
The bending and growth characteristics of large fresh stems from four silver fir (Abies alba Mill.) and three Norway spruce (Picea abies (L.) Karst.) trees were studied. Twenty logs taken from different stem heights were subjected to four-point bending tests. From the bending test records, we calculated stress-strain curves, which accounted for detailed log taper, shear deformation and self weight. From these curves we determined, among other parameters, the modulus of elasticity (MOE), the modulus of rupture (MOR) and the work absorbed in bending (W). No significant differences were found between species for the wood properties examined. Values of MOE, MOR and W generally decreased with stem height, with MOR in the range of 43 to 59 MPa and MOE ranging from 10.6 to 15.6 GPa. These MOE values are twice or more those reported for stems of young Sitka spruce (Picea sitchensis (Bong.) Carr.) trees. Based on the radial growth properties measured in discs from the logs, we calculated predicted values of MOE and MOR for the stem cross section. The predictions of MOE were precise, whereas those of MOR were approximate because of a complex combination of different failure mechanisms. Methods to test and calculate MOE, MOR and W for the stems of living trees are discussed with the aim of improving analyses of tree biomechanics and assessments of forest stability protection.  相似文献   

19.
Over the last two centuries, logging has caused major, but unquantified, compositional and structural changes in the southern portion of the North American boreal forest. In this study, we used a series of old forest inventory maps coupled with a new dendrochronological approach for analyzing timber floating histories in order to document the long-term transformation (1820–2000) of a southern boreal landscape (117 000 ha) in eastern Quebec, Canada, in response to logging practices. Landscape exploitation became increasingly severe throughout this time period. During the ninetieth century (1820–1900) of limited industrial capacity, selective logging targeted pine and spruce trees and excluded balsam fir, a much abundant species of the forest landscape. Logging intensity increased during the first half of the twentieth century, and targeted all conifer species including balsam fir. After 1975, dramatic changes occurred over the landscape in relation to clear-cutting practices, plantations, and salvage logging, which promoted the proliferation of regenerating areas and extensive plantations of the previously uncommon black spruce. Overall, logging disturbance resulted in an inversion in the forest matrix, from conifer to mixed and deciduous, and from old to regenerating stands, thus creating significant consequences on forest sustainability. If biodiversity conservation and sustainable forestry are to be management goals in such a heavily exploited forested landscape, then restoration strategies should be implemented in order to stop the divergence of the forests from their preindustrial conditions.  相似文献   

20.
Chrysomyxa rhododendri (DC.) De Bary is a needle rust with a host shift between Rhododendron sp. and Norway spruce (Picea abies (L.) Karst.), penetrating only the new developing flushes of the conifer. Because little is known about its effects on trees, we investigated several parameters related to photosynthesis in artificially infected 3-year-old Norway spruce seedlings. The potential efficiency of photosystem II (PSII; derived from chlorophyll fluorescence measurements) was reduced in infected current-year needles as soon as disease symptoms were visible, about three weeks after inoculation. Two weeks later, photosynthetic O(2) evolution (P(max)) of infected needles was less than 20% of control needles, whereas respiratory O(2) uptake (R(D)) was about three times higher than that of control needles. Nonstructural carbohydrate concentrations were about 60% of control values in all parts of the shoots of infected trees. Photosynthetic inhibition was associated with marked decreases in chlorophyll concentration and chlorophyll a/b ratio but only a small reduction in carotenoid concentration. In infected trees, P(max) of noninfected 1-year-old and 2-year-old needles was 50 and 80% higher than in the corresponding age class of needles of control trees. Estimation of potential daily net dry mass production, based on P(max), R(D), specific leaf area, carbon content and needle biomass, indicated that seedlings infected once were able to produce 60%, and those infected twice only 25%, of the dry mass of controls. We conclude that afforestation and regeneration of Norway spruce is seriously impaired in regions where seedlings are frequently attacked by Chrysomyxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号