共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorus bioavailability of sewage sludge‐based recycled fertilizers in an organically managed field experiment
下载免费PDF全文
Recycled phosphorus (P) fertilizers from sewage sludge can contribute to the ongoing effort of closing the P cycle. Five recycled P fertilizers (Struvite SSL, Struvite AirPrex®, P‐RoC®, Pyrolysis coal, and Na‐SSA) were tested for their P availability in a two‐year field experiment with maize. The experiment was conducted on an organic certified research station at soil pH 6.5. Other P fertilizer treatments included: phosphate rock (PR), compost, and an unfertilized control. In addition, the rhizobacteria strain Bacillus sp. Proradix (Proradix®) was applied to test its ability to increase P bioavailability. Each year, shoot DM and P offtake of maize was measured and P use efficiency of the tested fertilizers was calculated. No significant differences in shoot DM were found among fertilized treatments and the unfertilized control in both years of experiment. Fertilization with recycled fertilizers increased P offtake by between 0% (Na‐SSA) and 27.5% (Struvite SSL) compared to the unfertilized control. Rhizobacteria application led to an increase in P offtake of maize from 25.9 to 38.7 kg P ha?1 when combined with PR fertilization in the year of fertilizer application, while no significant effect was found for the recycled fertilizers. Some of the tested recycled fertilizers from urban waste water can be considered as effective fertilizers for their use in organic agriculture. 相似文献
2.
A recycling of Phosphorus (P) from the human food chain is mandatory to secure the future P supply for food production. However, many available recycled P fertilizers from sewage sludge do not have an adequate P bioavailability and, thus, are not suitable for their application in soils with pH >5.5–6.0, unless being combined with efficient mobilization measures. The aim of the study was to test the P mobilization ability of red clover (Trifolium pratense L.) from two thermally recycled P fertilizers for a subsequently grown maize. Two sewage sludge ashes (SSA) were investigated in a pot experiment at soil pH 7.5 with red clover differing in its nitrogen (N) supply (added N fertilizer or biological N2 fixation (BNF)), followed by maize (Zea maize L.). Shoot dry matter of maize was almost doubled when N supply of previous grown clover was covered by BNF, instead of receiving added N fertilizer. Similarly, shoot P removal of maize following clover with BNF was significantly increased. It is suggested that the P mobilization is related to the BNF, and a proton release of N2 fixing clover roots led to the measured decrease in soil pH and thereby increased P availability of the tested fertilizers. 相似文献
3.
《植物养料与土壤学杂志》2017,180(5):594-601
The plant‐availability of phosphorus (P) in fertilizers and soil can strongly influence the yield of agricultural crops. However, there are no methods to efficiently and satisfactorily analyze the plant‐availability of P in sewage sludge‐based P fertilizers except by undertaking time‐consuming and complex pot or field experiments. We employed the diffusive gradients in thin films (DGT) technique to quantify the plant P availability of various types of P fertilizers with a novel focus on sewage sludge‐based P fertilizers. Mixtures of fertilizer and soil were incubated for 3 weeks at 60% water holding capacity. DGT devices were deployed at the beginning of the incubation and again after 1, 2, and 3 weeks. Two weeks of incubation were sufficient for the formation of plant‐available P in the fertilizer/soil mixtures. In a pot experiment, the DGT technique predicted maize (Zea mays L.) biomass yield and P uptake significantly more accurately than standard chemical extraction tests for P fertilizers (e.g ., water, citric acid, and neutral ammonium citrate). Therefore, the DGT technique can be recommended as a reliable and robust method to screen the performance of different types of sewage sludge‐based P fertilizers for maize cultivation minimizing the need for time‐consuming and costly pot or field experiments. 相似文献
4.
Thermal utilization of sewage sludge through mono‐incineration or gasification results in phosphorus (P) rich sewage sludge ash (SSA) that must be returned to agricultural production systems to fulfill the need for recycling of P resources contained in wastewater streams. As the plant‐availability of P contained in SSA is low, we propose feeding SSA directly into the production of superphosphate fertilizers, thereby opening a further pathway for the recycling of phosphorus (P) from wastewater streams to agricultural production systems by using available technologies. We carried out laboratory‐scale production of superphosphate test‐products, in which rock phosphate (RP) was partially replaced with SSA (gasification) before digestion with concentrated sulfuric acid, and evaluated these products with regard to the solubility of P in H2O and neutral ammoniumcitrate solution. We further carried out a growth‐chamber experiment (28 d) using maize (Zea mays L. cv. Sulano) as a model plant on a low P (0.4 mg PCAL 100g?1), high pH (7.6) substrate to evaluate plant P availability of the test products. Our laboratory‐scale results show that at least 8% of P from RP can be replaced by P from SSA while maintaining both the high solubility of P in the fertilizer product and the growth of maize compared to pure RP digested with concentrated sulfuric acid. Further substitution of RP through SSA decreased the total P concentration of the test products, as well as the relative amounts of P soluble in H2O and neutral ammoniumcitrate solution, which affected early plant development of maize. 相似文献
5.
《Communications in Soil Science and Plant Analysis》2012,43(17):2341-2362
A laboratory experiment was conducted to evaluate the P mobilization potentials of six bacterial strains isolated from three wheat-growing soils of Australia. Four different forms of insoluble phosphorus (P) were used in this experiment. Two strains (Pantoea ananatis and Pantoea sp.) mobilized more P from calcium phosphate [Ca3(PO4)2] when ammonium sulfate [(NH4)2SO4] was used as a source of nitrogen (N) compared to ammonium nitrate (NH4NO3) as the N source. The remaining four strains showed increased P-mobilizing ability with nitrate as sources of N. Cultures containing Burkholderia sp. showed a greater net increase in soluble P from rock phosphate compared to Ca3(PO4)2. Mobilization of P from aluminium phosphate (AlPO4) and iron phosphate (FePO4) was much lower than from calcium P sources in cultures containing all the bacterial strains tested. Pantoea ananatis and Pantoea sp. were significantly better than other strains in mobilizing P from AlPO4 whereas Pantoea sp. was identified as a minor P mobilizer from FePO4. 相似文献
6.
The equivalence of the Calcium‐Acetate‐Lactate and Double‐Lactate extraction methods to assess soil phosphorus fertility
下载免费PDF全文
Michael van Laak Uwe Klingenberg Edgar Peiter Thomas Reitz Dana Zimmer Uwe Buczko 《植物养料与土壤学杂志》2018,181(5):795-801
A large variety of extraction methods are used worldwide for the estimation of “plant‐available P” in soils. In Germany, the standard extractants are Calcium‐Acetate‐Lactate (CAL) and Double‐Lactate (DL). Until now there is no validated transformation procedure available and studies on the comparability of both methods have reported conflicting evidence. The uncertainty about the equivalence of CAL‐P and DL‐P hinders a direct comparison of the P fertility status and P fertilizer recommendations across Germany. Based on 136 datasets for soil samples from an interlaboratory comparison program and three P fertilization field trial sites, for which plant‐available P had been determined by both the CAL and DL method, we assessed the comparability of both extraction methods and derived simple and multiple regression equations to transform DL‐P into CAL‐P values. On average, DL extracted 30% more P than CAL. However, this strongly depended on soil pH and carbonate content. A simple linear regression model explained 70% of the variance. However, if simple linear regression models were fitted to pH‐specific samples (pH range 4.5 to 7.0) the R2 increased to 0.96. Based on an independent validation dataset (n = 48) we demonstrated that such pH‐specific models were more accurate than models that did not consider pH when transforming DL‐P to CAL‐P values. Multiple regression results showed that out of soil pH, Corg, Nt, and C : N ratio, only soil pH improved the model. The transformation equations in this study provide a step towards an improved comparability of P fertility status assessments of soils across Germany. 相似文献
7.
Neglected P and K fertilization in organic farming reduces N2 fixation and grain yield in a red clover‐oat rotation N2 fixation is the most important N source in organic farming. An insufficient P, K, and S supply to legumes may reduce their N2 fixation capacity. Consequently, the total yield of plant production may also be reduced. This problem was studied in a pot experiment with red clover followed by oat. Soil was taken from a field where organic farming had been practiced for more than 30 years without applying any mineral fertilizers or buying additional fodder. The soil (luvisol from loess) was characterized by: pH (CaCl2) 5.4; lactate‐soluble (CAL) P 5 mg kg–1 and K 110 mg kg–1. 6 kg dry soil were mixed with 400 mg P applied as (i) triplesuperphosphate (TSP), (ii) rock phosphate (RP) or (iii) compost from organic household residues (BAK). An additional treatment (iv) with TSP received 1000 mg K as K2SO4 (TSP+K) and an additional treatment with RP (v) received only 200 mg P (RP/2). A control treatment received no fertilizer. P application significantly improved the P nutritional status of the plants (P content) and increased the N amount in the shoots of red clover (with 400 mg P per pot by 64 % to 139 % as compared to the control) and the dry matter (DM) yield by 60 % to 130 %. No significant differences between TSP and RP were found. The application of BAK resulted in a significantly higher N yield than the application of RP and TSP. The treatment TSP+K resulted in the highest DM yield (230 %), removal of P was 343 %, of K 228 %, and of N 239 % as compared to the control plants. This indicates a synergistic effect of P, K, and S on N2 fixation, which was also found with BAK. Oat grown after red clover increased its grain yield by 132 % (200 mg P as RP) to 165 % (400 mg P treatments). This was mainly due to a higher P uptake (up to 172 %) and a higher N uptake (up to 172 %) as compared to the control. 相似文献
8.
《Soil Use and Management》2018,34(1):9-17
Reuse of phosphorus (P) from waste streams used for bioenergy conversion is desirable to reduce dependence on nonrenewable P resources. Two different ash materials from low‐temperature biomass gasification of wheat straw and sewage sludge, respectively, were investigated with regard to their P bioavailability. A set of pot experiments with spring barley was carried out to compare the ash P fertiliser value with mineral P fertiliser and the sewage sludge feedstock. An indirect radioactive labelling approach with 33P was used to determine the amount of P taken up from the fertiliser materials. Depending on the application rate, straw gasification ash produced a fertiliser response comparable to mineral P. However, P uptake from the ash was generally less than uptake from equivalent amounts of mineral P, and the calculated relative effectiveness was 44% after 6 weeks of plant growth. In contrast, the P fertiliser value of Fe‐rich sewage sludge after low‐temperature gasification was practically zero. These results suggest that ash from low‐temperature gasification could be developed into alternative P fertilisers; however, as the P bioavailability depends greatly on the feedstock used, a greater emphasis on feedstock composition is required. 相似文献
9.
Ana A. Robles-Aguilar Silvia D. Schrey Johannes A. Postma Vicky M. Temperton Nicolai D. Jablonowski 《植物养料与土壤学杂志》2020,183(1):80-90
Next to nitrogen, phosphorus (P) is the most limiting nutrient for plant production worldwide. To secure food production, new nutrient management strategies using alternative P sources instead of mined P fertilizers need to be implemented. Struvite (MgNH4PO4 · 6 H2O) is a promising example of a recycled mineral P fertilizer. Besides positive agronomic results regarding crop yields, further investigations are required to improve the use efficiency of the product and thereby increase its value. Using an automated plant phenotyping platform, we investigated the dynamic response to struvite by two plant species (lupine and maize) with diverse P acquisition strategies in an acidic sandy substrate. Although at three weeks after germination both maize and lupine had reduced leaf area in the struvite treatments compared to the commercial triple superphosphate (TSP), from week four onwards struvite plants grew larger than the TSP‐treated plants, indicating a slow release fertilizing effect. Greater P uptake efficiency (g / root length), but reduced root length were observed in the combined treatment of struvite and ammonium, in comparison to struvite and nitrate. We propose that rhizosphere acidification in response to ammonium uptake may enhance P recovery from struvite. A possible additional acidification effect by lupine root exudation might explain the higher P uptake efficiency in this species compared to maize. We conclude that struvite combined with ammonium can be used as a sustainable slow‐release P fertilizer on acidic sandy soils. 相似文献
10.
Seasonal development of above‐ and below‐ground organs of Trifolium pratense in grass–legume mixture on different soils 下载免费PDF全文
Lucie Chmelíková Sebastian Wolfrum Harald Schmid Michal Hejcman Kurt‐Jürgen Hülsbergen 《植物养料与土壤学杂志》2015,178(1):13-24
Grass–legume mixtures are suitable for crop rotations in organic farming. However, seasonal development of below‐ground organs of Trifolium pratense in mixtures and on different soils was neglected. We asked (1) how the diameter of the root neck, the maximum order of branching as well as (2) the nodule traits are affected by locality and time, and (3) how above‐ground plant traits of red clover vary in space and time. Red clover was investigated in grass–legume mixtures in the first year of vegetation. Five sites in S Germany were sampled at the day of cut at the end of May, the beginning of July, and at the end of August, respectively. Under similar climatic conditions root traits (diameter of the root neck, order of root branching, size of nodules, and proportion of senescent nodules) differed with soil conditions and time within the season. Root diameter increased during the season. Higher sand content fostered root branching and branched roots developed more nodules. Thinner roots had more active nodules (pink). Root diameter and non‐active senescent (green) or moribund (brown) nodules increased at the end of season. Nodule activity differed more according to season than to soil conditions. The number of nodules per plant (12.5–19.5) decreased from May to August. Cylindrical nodules were found on 85–100% of the plants and branched nodules only on 0–25%. The height of plants was lowest in May and increased in July. The mean number of stems per plant (3.3–6.3) was highest in August. Understanding red clover traits and N2 fixation is interesting scientifically as well as agronomical. Organic and conventional farmers can both benefit of our findings. 相似文献
11.
Anne-Kristin Løes Trond M. Henriksen Ragnar Eltun Helge Sjursen 《Acta Agriculturae Scandinavica, Section B - Plant Soil Science》2013,63(2):164-175
Abstract By restricted access to manure, nitrogen (N) supply in organic agriculture relies on biological N-fixation. This study compares grain yields after one full-season green manure (FSGM) to yields with repeated use of a green-manure catch crop. At two sites in south-eastern Norway, in a simple 4-year rotation (oats/wheat/oats/wheat), the repeated use of ryegrass, clover, or a mixture of ryegrass and clover as catch crops was compared with an FSGM established as a catch crop in year 1. The FSGM treatments had no subsequent catch crops. In year 5, the final residual effects were measured in barley. The yield levels were about equal for grains with no catch crop and a ryegrass catch crop. On average, the green-manure catch crops increased subsequent cereal yields close to 30%. The FSGM increased subsequent cereal yields significantly in two years, but across the rotation the yields were comparable to those of the treatments without green-manure catch crop. To achieve acceptable yields under Norwegian conditions, more than 25% of the land should be used for full-season green manure, or this method combined with green-manure catch crops. The accumulated amount of N in aboveground biomass in late autumn did not compensate for the N removed by cereal yields. To account for the deficiency, the roots of the green-manure catch crops would have to contain about 60% of the total N (tot-N) required to balance the cereal yields. Such high average values for root N are likely not realistic to achieve. However, measurement of biomass in late autumn may not reflect all N made available to concurrent or subsequent main crops. 相似文献
12.
《Communications in Soil Science and Plant Analysis》2012,43(7):1003-1010
Phosphorus (P) fractionation of composted crop residues and Andosols amended with composted crop residues was conducted. Inorganic P (Pi) comprised 85% of total P in the composts. The distribution of inorganic P forms was in the following order: sodium hydroxide (NaOH) Pi > hydrochloric acid (HCl) Pi > sodium bicarbonate (NaHCO3) Pi > water (H2O) Pi. After 22 years of the compost application to two Andosols, total Pi concentration significantly increased. However, total organic P (Po) concentration in the composted soil was not significantly different from that in noncomposted soil. Among of Pi fractions, compost application distinctly increased Al-Pi concentration, followed by Fe-Pi. The ratio of Fe-Po to total P concentrations significantly decreased by compost application. 相似文献
13.
The objective of this work was to assess the changes of soil P fractions by Lotus corniculatus and to determine contribution of each fraction to plant P nutrition. Phosphorus was added at a rate of 240 mg/pot as triple
superphosphate (20% P), phosphate rock (13% P), or poultry litter (2% P) to a Vertisol or an Inceptisol; a control treatment
(without P fertilizer) was also included. Then, L. corniculatus was sowed and harvested eight times; both yields and P content of plant were determined at each harvest. Soil P fractions
were determined by Hedley’s modified method. The content of labile and moderately labile P [anionic exchange membrane-Pi (AEM-Pi),
NaHCO3-Pi, and NaOH-Pi] fractions were markedly reduced and were probably due to P uptake by plants. The content of the HCl-Pi fraction
of the phosphate-rock-treated soil decreased whereas that of the residual P fraction was not modified. The content of organic
forms increased in all treatments. The content of both labile organic P and moderately labile organic P were positively and
significantly correlated with the P concentration of roots and with roots biomass, suggesting that the increase in these two
organic fractions was related to root production. AEM-Pi accounted for 95% and 84% of absorbed P in Vertisol and Inceptisol,
respectively. 相似文献
14.
ABSTRACT The aim of the study was to examine response of mature phosphorus (P) deficient apple (Malus domestica Borkh.) trees to phosphorus fertilization and liming. The experiment was carried out during 2003–2005 in a commercial orchard in Central Poland on ‘Jonagold’ apple trees/M.26 planted in 1996 on a coarse-textured soil with low both pH (4.6) and organic matter (1.2%). Calcium-lactate soluble phosphorus concentration in the soil was within an optimal range despite appearance of leaf phosphorus deficiency symptoms. Soil and foliar applications of phosphorus, and soil liming were applied. Soil phosphorus fertilization was made in the first year of the experimental at a rate of 100 kg P per ha as triple superphosphate. Foliar sprays of a soluble compound containing organic phosphorus were performed 5 times per season at 2-week intervals, starting 4 weeks after full bloom. Soil liming was applied in the fall 2002 at a rate of 1100 kg Ca ha?1 as hydrated lime. Additional combination as soil phosphorus fertilization plus liming was also applied. Plots unsupplied with phosphorus and lime served as a control. The results showed that liming and liming plus soil P application increased soil pH, and phosphatase activity in the soil, and improved phosphorus nutrition, tree vigor, yield, fruit color, and firmness after storage; effect of these treatments was not found only in the first year of the study. In all years foliar phosphorus sprays improved phosphorus nutrition of apple trees, and fruit color and firmness after storage. In 2 out of 3 years foliar phosphorus application increased yield. The vegetative and reproductive responses of ‘Jonagold’ apple trees did not depend on soil phosphorus fertilization. It was concluded that maintaining an optimal pH of soils for apple trees limits the incidence of orchard phosphorus deficiency and that foliar phosphorus sprays should be applied in phosphorus-deficient apple orchards to improve yield, and fruit appearance and storability. 相似文献
15.
Bernd Weber Ernst A. Stadlbauer Elmar Schlich Sabrina Eichenauer Juergen Kern Diedrich Steffens 《植物养料与土壤学杂志》2014,177(1):84-90
Recycling of P is a common strategy in efficient use of P. The aims of our investigation were to study the P extractability of biochars produced by low temperature conversion and to determine the effect of soda application on low‐temperature conversion of organic compounds and the bioavailability of P to rye grass (Lolium perenne L., cv. Grazer). In this study canola cake, dried distillers grains with solubles, and meat‐and‐bone meal were converted to biochars with thermo‐chemical conversion at 400°C. The P availability was measured in terms of solubility in water, 2% citric, and 2% formic acid, and in a pot experiment with rye grass (Lolium perenne L.) which was cut three times. Application of 8% (w/w) soda to the process of thermo‐chemical conversion of canola cake, dried distillers grains with soluble and meat‐and‐bone meal resulted in an increase of water‐, 2% citric‐, and 2% formic‐acid‐extractable P in the biochars. In contrast to the application of soda, addition of 12% wood ash (w/w) to the conversion of dried distillers grains with solubles resulted in a lower increase of water‐soluble P in the corresponding biochar compared to processing biochar without additives. Addition of biochar P (100 mg P [kg soil]–1) to a Luvisol resulted in an increase of CAL‐extractable soil P. The P uptake of rye grass from biochars produced with the addition of soda was as effective as basic slag and MgNH4 phosphate fertilizers and even better than rock phosphate. 相似文献
16.
Anaerobic co‐digestion of perennials: Methane potential and digestate nitrogen fertilizer value 下载免费PDF全文
Dorette Sophie Müller‐Stöver Guotao Sun Pablo Kroff Sune Tjalfe Thomsen Henrik Hauggaard‐Nielsen 《植物养料与土壤学杂志》2016,179(6):696-704
Co‐digestion of crop biomass improves the traditional manure‐based biogas yield due to an increased content of easily degradable carbon compounds. In this study, the methane potential of three perennials (grass, legumes, and grass+legume) was determined using various amounts together with animal manure. The nitrogen (N) mineralization dynamics in soil and the N‐fertilizer value of the derived digestates were subsequently tested in both a soil incubation study and a pot experiment with spring barley. Digestion of all tested perennials together with a manure‐based inoculum increased the cumulative methane yield four to five times compared to digestion of the inoculum alone, with the highest increases observed with pure grass. However, the methane potential decreased along with increasing grass biomass concentration. In the plant pot experiment, all tested digestates increased barley shoot biomass by 40–170%, to an extent statistically comparable to mineral N fertilizer. However, the application of the digestate originating from fermentation with pure grass resulted in lower plant growth and a more fluctuating soil mineral N content throughout the incubation study compared to the other digestates. Considering the high dry matter and methane yield ha?1, the possibility to substitute mineral N fertilizer inputs by leguminous biological N2 fixation capacity, and the digestate fertilizer value, the integration of grass–legume mixtures or sole legumes into anaerobic digestion systems as co‐substrate for manure seems to be promising. This could furthermore contribute to the diversification of cropping systems for bioenergy production. 相似文献
17.
采用室内盆栽试验研究了不同施肥处理下马尾松土壤磷形态,结果表明:施入P肥后土壤中无机磷的含量产生了变化,施入PK后根际土和非根际土土壤中的速效磷含量都有增加;除施入K、PK外,施肥后根际土和非根际土中Al-P的含量都比未施肥的高;施肥后Fe-P的变化比较大,而Fe-P的减少是由于南方土壤中的铁大多是以高价存在,易发生氧化还原反应;O-P是一种无效磷,施肥后土壤中的O-P含量均沉积于土壤而比对照的高;施入N、P、K、PK、NK、NPK后降低了两种土壤中Ca-P的含量。因此,为了促进马尾松的生长发育,可以给马尾松增施NP、PK、NPK肥。 相似文献
18.
Toshiyuki Wakatsuki Hisao Furukawa Keizaburo Kawaguchi 《Soil Science and Plant Nutrition》2013,59(4):351-360
The authors reported that the relative bonding strength between ligand of soil colloid surface and cations could be obtained easily by the measurement of MCSA, and that the MCSA corresponded to the constant of Langmuir's adsorption isotherm equation. The relative bonding strength of cations with respect to kaolinitic soil clay at pH 6 was, Cr3+>Fe3+, Al3+>Ga8+>Cu8+>Pb2+>Y3+, La3+>Mn2+>Ni2+, Co2+> Zn2+>Sr2+, Mg2+>NH4+, K+, and with respect to colloid with humus coating, Y3+, La3+>Pb2+>Cu2+, and the other orders were same. The solubility of cations in soil colloid aqueous dispersion system was calculated from the values of MCSAs, and considered as follows, Y3+, La3+, Cu3+, Pb3+, Mn2+, Ni2+, CO2+: concentration in soil solution and soil geochemical mobility may be regulated by the specific adsorption reaction, Zn2+, Mg2+, Sr2+, K+, NH4+: concentration in soil solution and soil geochemical mobility may be regulated by the non-specific adsorption reaction, but at neutral to alkaline condition, Zn2+ and Mg2+ may specifically adsorb on soil, clays, Fe3+, Cr3+, Al3+, Ga3+: concentration in soil solution and soil geochemical mobility may be regulated by the solubility of their oxide hydrates. 相似文献
19.
以山西省晋城市采煤塌陷区复垦土壤为研究对象,连续3年定位施肥研究施用有机肥(M)、无机肥(NPK)、有机肥+无机肥(NPK+M)对土壤理化性状、土壤磷分级的影响。结果表明:试验结束后,不同施肥处理土壤的pH、容重、全氮、全磷含量差异均不显著;单施有机肥处理的有机质含量显著高于单施化肥处理;有机肥+无机肥处理土壤速效磷含量高于其余处理,但处理间差异不显著。有机肥+无机肥处理能够明显提高土壤无机磷组分Ca_8-P含量;不同施肥处理均显著提高了Fe-P,处理间差异不显著;各处理的O-P、Ca_(10)-P增幅不明显;对照处理的不同无机磷组分含量总体保持下降趋势,其中Ca_8-P、Fe-P降幅较为明显。有机肥处理对活性、中活性组分,有机肥+无机肥处理对活性、中稳性有机磷效果明显,无机肥对有机磷组分效果不显著。相关性分析表明,Ca_2-P、Ca_8-P、Al-P、Fe-P、中活性、中稳性有机磷与速效磷均呈显著正相关性,Ca_8-P、中活性有机磷与速效磷极显著相关。 相似文献
20.
Inclusion of upland crops in rice‐based rotations affects chemical properties of clay soil 下载免费PDF全文
T. B. linh S. Sleutel S. V. Elsacker V. T. Guong L. V. Khoa W. M. Cornelis 《Soil Use and Management》2015,31(2):313-320
In the Mekong Delta, alluvial clay soils have been used intensively over many generations for rice monoculture. Currently, farmers are confronted by problems of declining land productivity. Rotations comprising rice and upland crops can increase soil quality, but appropriate cropping systems for paddy soils have received relatively little attention. We therefore established a multiyear field experiment to evaluate the long‐term effects of cropping systems with different rotations on soil chemical quality. Systems laid out in a randomized complete block design with four replications were as follows: (i) traditional rice monoculture with three rice crops per year (R‐R‐R), (ii) rotation with two rice crops and maize (R‐M‐R), (iii) rotation with two rice crops and mung bean (R‐Mb‐R) and (iv) rotation with one rice crop and two upland crops – mung bean and maize (R‐Mb‐M). We hypothesized that systems with rotations of upland crops and their temporary beds improve chemical quality of paddy rice soil. Soil chemical parameters were determined to better understand and evaluate the sustainability of the cropping systems. Results showed an improvement in soil chemical quality for cropping systems with rotations of rice and mung bean or maize grown on temporary beds (R‐M‐R, R‐Mb‐R and R‐Mb‐M), particularly the content of soil organic carbon and a presumed hydrolysable labile carbon fraction compared with rice monoculture. Less pronounced improvements in EC, CEC and total acidity were also found with inclusion of upland crops. Cropping systems of rice with upland crops improved rice grain and straw yield in subsequent season in contrast with rice monoculture. 相似文献