首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results of several studies show interactive effects of salinity and macronutrients on the growth of wheat plants. These effects may be associated with the nutrient status in plant tissues. The objective of this study was to investigate interactive effects of salinity and macronutrients on mineral element concentrations in leaves, stems, and grain of spring wheat (Triticum aestivum L. cv. Lona), grown in hydroponics, and the relation of these effects to yield components. Eight salinity levels were established from 0 to 150 mM NaCl, and 1, 0.2, and 0.04 strength Hoagland macronutrient solution (x HS) were used as the macronutrient levels. Sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), chlorine (Cl), and phosphorus (P) in leaves, stems, and grain, NO3 in leaves and stems, and total nitrogen (N) in grain were determined. Supplemental Ca, Mg, K, and NO3 added to 0.2 x HS increased mineral concentrations in leaves and stems, but did not improve growth or yield in salinized wheat plants except moderately at 100–150 mM NaCl. In contrast, growth or yield was improved significantly when the concentration of macronutrients was increased from 0.04 to 0.2 × HS. In contrast to leaves and stems, mineral concentrations in grain increased (Na, Cl) or decreased (Ca, Mg, K) only slightly or were not affected (K) by salinity except at high salinity and low macronutrient level. Nitrogen and P concentrations in grain were not affected by salinity. Sodium and Cl concentrations in leaves and stems increased significantly, whereas K and NO3 decreased significantly, with an increase in salinity regardless of the macronutrient level. The latter was also observed for Ca and Mg in leaves. Extreme Na/Ca ratios in plant tissues negatively affected grain yield production at high salinity with medium or high macronutrient levels and at low macronutrient level together with medium salinity. Even though strong and significant correlations between mineral concentration at grain maturity in leaves, stems, and grain and various yield parameters were observed, our results are inconclusive as to whether toxicity, nutrient imbalance, nutrient deficiency, or all of these factors had a strong influence on grain yield.  相似文献   

2.
  【目的】  我国植胶区砖红壤钾、镁缺乏现象日益突出,研究钾、镁缺乏对橡胶幼苗根系形态和养分吸收的影响,可为橡胶平衡施肥和优质高产栽培提供理论依据。  【方法】  选用‘热研7-33-97’橡胶 (Hevea brasiliensis) 幼苗为研究材料,在人工气候箱内用营养液培养。采用二因素二水平的析因试验设计,设置4个处理:对照 (CK)、缺钾 (–K)、缺镁 (–Mg) 和缺钾镁 (–K-Mg),培养3个月后,取样测定橡胶幼苗干物质量、根系构型参数、根系活力和养分含量等指标。  【结果】  1) 与CK相比,–K和–K-Mg处理显著降低了单株干物质量和根冠比,干物质量降幅分别为8.4%和27.5%,根冠比降幅分别为20.4%和26.9%,而–Mg处理对干物质量和根冠比均无显著影响;K、Mg交互作用对茎干、根和单株干物质量及根冠比均有显著影响 (P < 0.05)。2) 与CK相比,各缺素处理均显著降低了橡胶幼苗吸收根 (直径 < 2 mm) 的根长、根表面积、根体积、总根尖数及根系活力等根系构型参数,而不同程度增加了平均根粗。方差分析结果表明,K、Mg交互作用对吸收根的根长、根表面积、根体积及总根尖数有极显著影响 (P < 0.01)。3) 各处理下氮和镁、磷和钾以及钙分别在叶片、根系以及茎皮中的平均分配比例高于其他器官。各缺素处理下,地上部的养分占比呈增加趋势。4) 与CK相比,–K处理显著增加了橡胶幼苗单株氮、磷和镁的积累,–K-Mg处理则显著降低了单株氮积累,各缺素处理均显著增加了单株钙的积累;K、Mg交互作用对氮、磷、钙和镁的积累有显著或极显著影响。  【结论】  钾、镁营养显著影响橡胶幼苗对养分的吸收,缺钾、缺镁显著抑制橡胶幼苗特别是根系的生长发育,同时缺钾缺镁加重抑制效果。因此,橡胶生产上不仅要保证培养基质或土壤的矿质营养充足,还要重视钾、镁元素间平衡关系。  相似文献   

3.
Abstract

The ability of poultry litter to support plant growth by supplying essential plant nutrients in the absence of other sources of the nutrients has not been studied thoroughly. The objectives of this research were to (1) determine the ability of poultry litter, as the sole nutrient source, to provide macronutrients and support growth of cotton (Gossypium hirsutum L.) (2) evaluate the distribution of these nutrients within the different plant parts, and (3) estimate the efficiency with which these nutrients are extracted by cotton. The research was conducted in plastic containers filled with a 2:1 (v/v) sand:vermiculite growing mix under greenhouse conditions. The treatments included broiler litter rates of 0, 30, 60, 90, or 120 g pot?1 with or without supplemental Hoagland's nutrient solution. Broiler litter supplied adequate amounts of the macronutrients nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) and supported normal growth of cotton. Tissue nutrient analysis showed that the concentration of N, P, K, and Mg in the upper mainstem leaves was within published sufficiency ranges for cotton growth. Evaluation of the N distribution indicated that the cotton plant partitions N to reproductive parts when faced with deficiency of this nutrient and favors allocating N to new leaf growth once the requirement for reproductive growth is met. The partitioning of P was similar to that of N but less distinct. Cotton extracted Mg and K with greater efficiency (up to 58%) than the other nutrients and stored these nutrients in older leaves. The extraction efficiency of N ranged between 21% at 120 g pot?1 litter and 27% at 30 g pot?1 litter. Phosphorus was the most poorly extracted nutrient, with only 16% of the total applied P extracted when 30 g pot?1 litter was applied and only 6% extracted at the higher litter rates. This suggests that the same problem of P buildup that has been reported in soils under pasture may also occur when poultry litter is repeatedly applied to the same soil planted to cotton. These results show that broiler litter not only supplied enough N but also supplied the four other macronutrients (P, K, Ca, and Mg) in amounts sufficient to support normal cotton growth. This research implies that poultry litter can effectively substitute for several fertilizers to meet crop macronutrient (N, P, K, Ca, and Mg) needs in soils deficient in any or all of these nutrients.  相似文献   

4.
Abstract

Warm‐season grasses contribute substantially to herbage supply during summer in cool‐temperate environments, when the productivity of cool‐season grasses declines. Herbage digestibility as well as mineral concentration may limit the amount of essential nutrients available to meet grazing animal requirements. A field study was conducted to determine the productivity and quality of a new selection of bermudagrass [Cynodon dactylon (L) Pers.], RSl, which is capable of growth and persistence in areas where other cultivars of bermudagrass are likely to winterkill. Concentrations and uptake of mineral nutrients in RSl bermudagrass were determined in response to N levels (0, 120, 240, and 360 kg N/ha) and delayed initial harvest (advancing maturity) at 2, 4, and 6 weeks after active growth began. Concentrations of P, Ca, K, Mg, and S in early season growth generally declined with advancing maturity. Concentrations of elements showed mixed response to N levels, and generally were not affected by treatments late in the growing season. Early in the growing season, mineral uptakes increased with advancing maturity. Increasing N levels early and late in the growing season enhanced mineral uptake. Mineral ratios, such as N:S and K (Ca + Mg), were within critical limits for adequate animal nutrition, but the Ca:P ratio was less than 2:1 and could contribute to known mineral‐related disorders in male sheep. Herbage mineral concentrations of RSl generally met or exceeded mineral nutrient requirements for sheep and cattle in growing or lactating physiological states.  相似文献   

5.
Critical concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), and manganese (Mn) with respect to dry matter yield end antagonistic and synergistic relationships among these nutrients were studied in which tomato (Lycopersicon esculentum L.) was grown in recirculating nutrient solution (NFT). Increments of nutrient elements in the nutrient solution increased the proportional rate of the corresponding nutrient elements. Increasing levels of N negatively correlated with plant P and positively correlated with Ca, Fe, and Zn. Iron and Mn contents of the plants were increased and N, K, Ca, and Mg were decreased as a function of P applied. Increases in K in the nutrient solution caused increases in the concentrations of K, N, P, and Zn, and decreases in the concentration of Ca and Fe. Applied Ca increased the concentrations of Ca and N, and decreased the concentrations of P, Mg, Fe, Zn, and Mn. Potassium, Ca, and Fe contents of the plants were decreased and Zn increased, while N, P, and Mn were not affected by the increasing levels of external Mg. Iron suppressed the plant Mg, Zn, and Mn contents. Synergism between Zn and Fe was seen, while P, K, Ca, Mg, and Mn contents were not affected by Zn levels. Potassium, Ca, Mg, and Fe were not responsive to applied Mn, however, N and P contents of the plants were decreased at the highest levels of Mn.  相似文献   

6.
Abstract

This study had the objective of assessing growth, deficiency symptoms and leaf anatomy of crambe plants submitted to macronutrient availability. The experimental design was the complete randomized with four replications. The first treatment consisted of cultivating crambe plants in a nutrient solution completed with N, P, K, Ca, Mg, and S. Using the diagnosis by subtraction, the other treatments consisted of the same solution with individual omission of each nutrient, totaling seven treatments. Supplement of different solutions took place two weeks after emergence. One week forward, visual symptoms of deficiency started to be evaluated. By the end of the experiment, the number of leaves, number of branches, shoot dry matter and leaf anatomic parameters were evaluated. Nutrient deficiency limited shoot dry matter in the following order: N?>?Ca?>?P>Mg?>?S?>?K. Subtracting Ca from the solution was most limiting to crambe growth once plants did not even reach reproductive stages. Individual subtractions of each macronutrient anatomically altered crambe leaves, especially omitting Ca, K, and S, which reduced tissue thickness.  相似文献   

7.
The objective of this study was to determine relations between Al effects and mineral concentrations in citrus seedlings. Six‐month‐old seedlings of five citrus rootstocks were grown for 60 days in supernatant nutrient solutions of Al, P, and other nutrients. The solutions contained seven levels of Al ranging from 4 to 1655 μM. Al and similar P concentrations of 28 μM P. Aluminum concentrations in roots and shoots increased with increasing Al concentration in the nutrient solution. Aluminum concentrations in roots of Al‐tolerant rootstocks were higher than those of Al‐sensitive rootstocks. When Al concentrations in nutrient solution increased from 4 to 178 μM, the K, Mg, and P concentrations in roots and the K and P levels in shoots increased. Conversely, Ca, Zn, Cu, Mn, and Fe in the roots and Ca, Mg, Cu, and Fe in the shoots decreased. The more tolerant rootstocks contained higher Fe concentrations in their roots than did the less tolerant ones when Al concentrations in solution were lower than 308 μM. Concentrations of other elements (Ca, K, P, Mg, Zn, and Mn) in roots or shoots exhibited no apparent relationship to the Al tolerance for root or shoot growth of the rootstocks. Calcium, K, Zn, Mn, and Fe concentrations in roots and Mg and K concentrations in shoots of all five rootstocks seedlings had significant negative correlations with Al concentrations in corresponding roots or shoots.  相似文献   

8.
Mineral nutrients in grains act as a source of nutrients in human diets, in which deficiencies of key minerals including calcium, magnesium, copper, iron, and zinc have prompted efforts to increase their concentrations in the edible portions of staple grain crops. Wheat (Triticum aestivum L.) crops in many regions often suffer abiotic stresses such as drought, extreme heat or frost during grain filling, which affect mineral source–sink relationships. We hypothesized that these stresses would have nutrient‐specific impacts on grain nutrient concentrations due to differences among nutrients in phloem mobility, post‐anthesis uptake and grain loading patterns. Nutrient loading patterns into wheat grains were investigated in two wheat cultivars in the field by sequentially harvesting tagged ears and analyzing tissues for key nutrients. In addition, the impact of perturbed source–sink relations during grain filling on nutrient loading was investigated by inducing post‐anthesis drought /floret abortion in a glasshouse study. Over 90% of Ca and around 70% of Na, K, and Mg accumulated in both wheat cultivars in the field during the first 14 d of grain development. The concentrations of micronutrients (Mn, Fe, Cu and Zn), Mg and P in grains generally increased when florets were aborted, and were unchanged under drought stress, while concentrations of Ca and K were highest under drought stress and lowest under the 66% floret abortion treatment. The observed changes in grain nutrient concentrations from post‐anthesis drought/floret abortion could not be fully explained by nutrient‐specific differences in phloem mobility, post‐anthesis uptake and grain loading patterns. This study will inform future research to define the precise roles of individual nutrients within developing grains and to fully understand the observed variations in grain nutrient concentrations due to source/sink modifications.  相似文献   

9.
Intercropping is of increasing interest in temperate-arable farming systems. The influence of nitrogen (N) fertilization and sowing ratio on concentrations and uptake of calcium (Ca), potassium (K), magnesium (Mg) and phosphorus (P) by oat and pea was assessed in three substitutive intercrops on a fertile soil in eastern Austria. N decreased Ca in oat grain and increased P in pea grain as well as Ca and Mg in oat residue and Mg and P in pea residue. Intercropping did not affect nutrient concentrations of oat grain, whereas a lower pea share in intercrops increased P in pea grain. In residue, Ca, K and Mg concentrations were higher in oat and Ca and K partly lower in pea with a lower share of each crop. The oat-dominated intercrops could partly achieve a slightly higher total grain nutrient yield than pure stands at no or low N; however, these benefits diminished with a higher pea share and N input. In comparison to pure stands, higher residue nutrient yields were obtained by intercropping in all sowing ratios and fertilization levels. Consequently, oat–pea intercropping can be a strategy for increasing the macronutrient yield of grain and especially of residue for ruminant feeding.  相似文献   

10.
Quality (color and density) of tall fescue (Festuca arundinacea Schreb.) as a turfgrass is reduced during both the winter and summer in Japan. Seasonal variations in nutrient and carbohydrate levels of six cultivars of tall fescue were measured to determine if these changes are related to the reduction in the turf quality. There were significant differences among the cultivars in nutrient and carbohydrate levels. The nutrient and carbohydrate levels of tall fescue cultivars changed seasonally. Levels of calcium (Ca) and zinc (Zn) were below the sufficiency, but the concentrations of other nutrients were sufficient during the summer suggesting that the reduction in the quality of tall fescue cultivars during the summer in Japan may not be related to the lack of these nutrients in the plant tissues. The nitrogen (N), Ca, magnesium (Mg), phosphorus (P), Zn, iron (Fe), and copper (Cu) levels in the plant tissues were below the adequate range in the spring which could be attributed to high growth rate since no deficiency symptom was observed. With exception of Ca content, plants contained sufficient or more than sufficient nutrients in their tissues during the fall. Though concentrations of other nutrients were sufficient in the plant tissues in the winter, levels of N, Ca, Mg, P, molybdenum (Mo), Zn, and Cu were lower than plant's requirement which could be due to low temperature since availability of the nutrients reduces under low temperature. There were no deficiency symptoms of these nutrients, but lack of N in the plant tissue could be the cause of the reduction in the color of the tall fescue cultivare in winter. Levels of glucose, fructose, sucrose, fructan, and starch in the summer were higher or equal to those carbohydrate levels in the spring or fall suggesting that decline in tall fescue quality in Japan during the summer may not be related to carbohydrates shortages. Though starch levels were lower in the winter than other seasons, other carbohydrate levels were equal or higher than the levels in the spring and the total carbohydrate content was much higher in the winter than other seasons, suggesting that reduction in tall fescue quality in Japan during the winter may not be related to carbohydrates shortages.  相似文献   

11.
Mineral‐nutrient stress is one of the main factors limiting crop production, especially in arid lands. The mineral requirement of a crop is difficult to determine, and the interpretation of foliar chemistry composition is not easy. This study was conducted to compute the minimum yield target for fresh fruit of yellow pepper (Capsicum annuum L.) and the corresponding Compositional Nutrient Diagnosis (CND) as well as to identify significant nutrient interactions of this crop in desert calcareous soils. Preliminary CND norms were developed using a cumulative variance‐ratio function and the chi‐square distribution function. From a small database, we computed means and standard deviations of row‐centered log ratios, VX, of five nutrients (N, P, K, Ca, and Mg) and a filling value, R, which comprises all nutrients not chemically analyzed and quantified them in 54 foliar samples of the popular yellow pepper cv. ‘Santa Fé’. This cultivar is widely grown in northwest Mexico under arid conditions. These norms are associated to fresh fruit yields higher than 15.04 t ha–1. Principal‐component analyses, performed using estimated CND nutrient indexes, allowed us to identify four interactions: negative P‐Ca, P‐Mg, and N‐K, and positive Ca‐Mg. Pepper plants growing on calcareous soils tend to take up more Ca and Mg than considered as optimum in other soil conditions.  相似文献   

12.
This study aims to describe macronutrient and boron deficiencies in pepper grown in a hydroponic system in the presence of a substrate during the vegetative and fruiting phases. The experiments were carried out into a greenhouse, and consisted of a randomized block design with eight treatments: complete solution (control) and nitrogen (-N), phosphorus (-P), potassium (-K), calcium (-Ca), magnesium (-Mg), sulfur (-S) and boron (-B) deficient solutions, with four repetitions for each assay. Visual diagnoses of certain macronutrient and boron deficiencies can be applied by farmers to aid in soil management, since they are observed in leaves, while N, P, Ca, S and B deficiencies led to roots symptoms. Pepper fruits showed nutritional deficiency symptoms when grown under N, K, Ca, Mg, S and B deficits. The appearance of nutrient deficiency symptoms in pepper plants occurs in the following order: N, K, P, Mg, S, Ca and B.  相似文献   

13.
A greenhouse experiment was conducted to study the effect of mycorrhizal colonization by Gigaspora margarita, Glomus intraradices, and Acaulospora laevis on nutrient uptake of K, Ca, Mg, Cu, Zn, Fe, and Mn by Astragalus sinicus L. in soils spiked with lanthanum at five rates (0, 1, 5, 10, and 20 mg kg−1). Lanthanum application significantly decreased the concentrations of K, Ca, Mg, Cu, Zn, and Fe in shoots and the concentrations of Cu and Zn in roots. Mycorrhizal treatments markedly improved uptake of nutrients, and these results are important since nutrient deficiency often occurs in contaminated sites.  相似文献   

14.
Narcissus cv. “Garden Giant” bulbs were grown in N, P, K, Ca, Mg, or Fe-deficient solutions and compared with bulbs grown in the control solution containing all these nutrients. Plants were sampled at 4 stages: (I) at planting, (II) at sprouting, (III) after flower senescence and/or after visible deficiency symptoms developed, and (IV) at lifting. Observation of visible deficiency symptoms showed that leaves of narcissus displayed chlorosis in the —N, —Mg, and —Fe treatments, while roots were most susceptible to Ca-deficient conditions. Root tips in the —Ca treatment showed brown in followed by root rot. In the —N treatment, shoot growth was markedly retarded and leaves were small and yellow. On the other hand, visible deficiency symptoms were not evident in the —P treatment except for early senescence. K deficiency symptoms were also not evident. Narcissus flowers were not affected by the mineral deficiencies and mineral contents in full-bloom flowers were not different between samples.

In the control plants, there was a large accumulation of N in the roots at sprouting and the content decreased thereafter. Large amounts of K accumulated in roots more than in any other organs. On the other hand the Ca content was high in the tunic and Ca in the scales was hardly mobilized thoughout the growth period. A large proportion of each element eventually accumulated in new inner scales whereas only a small fraction in the old outer scales. The -N, -Ca, and -Mg treatments severely depressed dry matter accumulation, unlike the -P, -K, and -Fe treatments. The -N treatment did not affect the concentration of other minerals, but the -P treatment tended to decrease N, K, Ca, and Mg concentrations. On the other hand, the -K treatment increased Ca and Mg concentrations. -Ca caused an increase in Mg concentration and -Mg raised Ca concentration. These results may be due to compensation effects of cation absorption for the maintenance of the cation/anion balance.  相似文献   

15.
The grass, Festuca ovina, was grown in a nutrient‐poor medium with three levels of nitrogen (N) fertilization, four of phosphorus (P), and three of potassium (K), in factorial combination. Overall, there were considerable nutrient responses with evidence of toxicity at high levels of all three nutrients. However the nutrients interacted in all possible combinations, such that toxicity effects were seen only when levels of the other nutrients were low. This is the first report of N, P, and K toxicity for a single species, and the first report of N x P x K interactions in macronutrient toxicity. The occurrence of toxicity interactions between all three possible pairs of macronutrients, reported here for the first time from a single species, supports the osmotic theory of macronutrient toxicity.  相似文献   

16.
Zoysiagrass has more potential for utilization in the Gulf Coast states. There has been minimal research on the nitrogen (N) and potassium (K) fertility response of zoysiagrass and the resulting effect they have on the macronutrient and micronutrient content. The objective of this study was to evaluate the effects of N and K fertility on the nutrient content of zoysiagrass. A study was conducted on four zoysiagrasses: Zoysiajaponica x Z. tenuifolia Willd. ex Trin. ('Emerald'); Z. japonica Steud. ('El Toro’ and ‘Meyer'); and Z. matrella. The study was a completely randomized design with 3 replications. It was a 2x2 factorial with the factors being N and K at two levels that were imposed on the four zoysiagrass cultivars. The N and K treatment combinations consisted of high (H) and low (L) rates of N and K at the following levels: N levels of 454 and 227 g N 93 m‐2 month‐1 and K levels of 454 and 227 g K 93 m‐2month‐1. The treatment combinations were (N and K): HH, HL, LH, and LL and were applied in 2 split applications monthly from July through November. All plots received two applications of a micronutrient fertilizer (June and August), were irrigated as needed, and maintained at a height of 3.8 cm weekly. Plant tissue samples were collected in September and analyzed for nitrogen (N), phosphorus (P), K, calcium (Ca), magnesium (Mg), sulfur (S), boron (B), copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn) concentrations. There were significant differences for the concentrations of N, K, P, Ca, Mg, B, Cu, Fe, Mn, and Zn. The concentrations of K, Ca, and Mg were below the sufficiency range for these nutrients for all cultivars and treatments.  相似文献   

17.
In separate tests, rabbiteye blueberries (Vaccinium ashei Reade) grown in sand culture were subjected to varying levels of Ca (0–81 mg/liter) and Mg (0–24 mg/liter) applied at rates of 250 ml/plant daily. Other essential nutrients were kept constant. Leaf concentrations of N, P, K, Mg, Ca, Mn, Fe, Cu, B, Zn, Co, and Al were determined. The concentration of Ca in the leaves increased linearly but that of Cu decreased in response to increasing levels of Ca fertilization. Leaf concentrations of other elements were not significantly influenced by Ca fertilization. Leaf Mg and Al concentrations increased linearly in response to increasing levels of Mg fertilization. The P content in leaves followed a quadratic curve with increased Mg fertilization. Percent P increased from the 0 to 12 mg/liter levels and then decreased from the 12 to 24 mg/liter levels of Mg. High levels of Mg fertilization resulted in reduced Cu content of leaves.

Fertilization rates of Ca or Mg had little effect on shoot dry weight except at the 0 mg/liter levels. As leaf Ca decreased below 0.20% Ca, Ca deficiency symptoms became more prevalent. Magnesium deficiency symptoms increased as leaf Mg decreased below 0.15% Mg.  相似文献   


18.
广东省柑桔园土壤养分肥力研究   总被引:11,自引:0,他引:11  
掌握土壤养分肥力状况,是制定施肥策略的基础。本研究采集了广东省柑桔主产区果园土壤样本70个,分析了土壤有机质和N、P、K、Ca、Mg、S、Fe、Mn、B、Zn含量,评价土壤养分肥力现状并探讨其时空变化概况。结果显示:目前柑桔园土壤主要障碍因素是低镁缺硼及钾、钙、镁养分不平衡;与20世纪80年代末相比,土壤有效磷、锌、钾和氮含量有较大提高,有效钙含量降低,其余养分变化不大。土壤钙、镁含量在低水平上渐趋于相对平衡,而钾、镁不平衡状态仍然存在,甚至有所加剧;柑桔园土壤pH及多个中微量元素之间存在显著或极显著正相关关系。建议在柑桔果园增施镁、硼肥及石灰或其它碱性肥料,减施磷肥。  相似文献   

19.
In arecanut, disorders like crown choking and crown bending lead to death of palms within a short span. Spatial and temporal variability in soil and leaf nutrient status was used as a tool to find out the causes for disorders in clay and laterite soils. Availability of nutrients in soils was sufficient to excess. Deviation from optimum percentage index was negative for nitrogen (N), phosphorus (P), and zinc (Zn) in both soils. Zinc deficits of –26 to –63 in higher number of palms (84–97%) indicate the reduction in Zn uptake. Regression between leaf Zn and soil fertility parameters indicated negative relation with soil Zn and calcium (Ca) in clay and soil organic carbon, soil P, and soil boron (B) in laterite soils. Multiple regression indicated negative relation of diethylenetriaminepentaacetic acid (DTPA)-extractable Zn with nutrients like Ca, magnesium (Mg), potassium (K), and iron (Fe) in soil in different years. The grouping of soil nutrients in opposite directions in first two components of principal component analysis supports negative nutrient interactions in both soil types. The results reveal that nutrient interactions in soil affect the uptake of nutrients despite sufficient nutrient availability. Zinc deficiency in arecanut may be the result of complex interactions between DTPA-extractable Zn and other nutrients in soil.  相似文献   

20.
The leaf nutrient concentrations and the N‐to‐nutrient ratios were analyzed to evaluate the nutritional status of holm oaks (Quercus ilex L.) experiencing various anthropogenic pressures. Leaves (1 year old) of Q. ilex and surface soil (0–5 cm) surrounding the trees were collected at seven natural and seven urban sites in Campania Region (Southern Italy) and analyzed for the concentrations of macro (C, N, P, S) and micronutrients (Mn, K, Na, Cu, Mg, Ca, Fe, Zn). The available soil fraction of micronutrients was also evaluated. The nutrients showed different concentration ranges for the natural and the urban sites in the soil (total and available) and in the leaves, that we reported separately. Organic‐matter content and macronutrient concentrations were higher in the natural soils, while the highest leaf N, S, and P concentrations were found at some urban sites. Concentrations of Cu, Na and Zn both in leaves and soil, and Mg and Fe in leaves from the urban sites appeared to be affected by air depositions. Manganese was the only micronutrient to show higher concentrations at the natural than at the urban sites, both in soil and leaves. For this nutrient, in addition, a relationship between leaf and available soil concentrations was found at the natural sites. The ratios between the concentrations of N and each studied nutrient in the leaves highlighted a different nutritional status between the plants from the natural and urban sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号