首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During 7 years (1979–1985) cacao harvests (beans and husks) have been recorded for the agroforestry systems ofTheobroma cacao underCordia alliodora andErythrina poeppigiana shade trees. The mean oven dry cacao yields were 626 and 712 kg.ha–1.a–1 cocoa beans underC. alliodora andE. poeppigiana respectively. Harvests have gradually increased over the years and the plantation has now reached maturity.Annual extraction of N, P, K, Ca and Mg in fruits, which is relatively small, was calculated on the basis of chemical analyses. The following average values were found (kg.ha–1.a–1): At the age of 8 years, theC. alliodora trees have reached 26.7 cm diameter (DBH) and 14.0 m in height. Mean annual growth (from age 5 to 7) is 14.6 m3.ha–1.a–1.Natural plant residue production has been measured for 4 years (Nov. 1981–Oct. 1985). UnderE. poeppigiana it has reached a value of 8.91 t.ha–1.a–1 and underC. alliodora 7.07 t.ha–1.a–1. The shade trees have contributed 57 and 47% respectively. Transference and decomposition rates are high and important in the nutrient cycles.The nutrient content of the litter was analysed and corresponding average yearly transfers were (kg.ha–1.a–1): For part I see Vol. 4, No. 3, 1986.Agroforestry Project, CATIE/GTZ (Tropical Agricultural Research and Training Center/Gesselschaft für Technische Zusammenarbeit), Turrialba, Costa Rica  相似文献   

2.
Predictive models were developed for Cordia alliodora branch and Theobroma cacao branch or leaf biomass,based on branch basal areas (r2 0.79) but the model of C. alliodora leaf biomass, although significant, was of very low accuracy (r2 = 0.09) due to annual leaf fall. At age 10 years, shade tree stem biomass accounted for 80% of the total above-ground biomass of either tree. However, between the ages of 6 and 10 years, the biomass increment of T. cacao branches (3–4t.ha–1.a–1) was similar to that of the shade tree stems. During the same period, the net primary productivity was 35 and 28 t.ha–1.a–1, for the Erythrina poepigiana and and C. alliodora systems, respectively.Cocoa production under either of the shade trees C. alliodora or E. poeppigiana was 1000 kg.ha–1.a–1 (oven-dry; ages 6–10 yr). During the same period, C. alliodora timber production was 9 m3.ha–1.a–1 whilst the leguminous shade tree E. poeppigiana does not produce timber. Litterfall over the same 5 years, including crop and/or shade tree pruning residues, averages 11 and 23 t.ha–1.a–1, respectively. The main difference was due to E. poeppigiana pruning residues (10t.ha–1.a–1).Soil organic material reserves (0–45 cm) increased over 10 years from 198 to 240 t.ha–1 in the E. poeppigiana plots and from 168–184 t.ha–1 in the C. alliodora plots. These values, together with the productivity indices presented, provide evidence that the systems are sustainable.For economic reasons, the use of C. alliodora is recommended under the experimental conditions. however, on less fertile soils without fertilization, the greater biomass and hence nutrient return to the soil surface under E. poeppigiana, might make this the preferable shade tree.  相似文献   

3.
Fine root dynamics of shaded cacao plantations in Costa Rica   总被引:1,自引:0,他引:1  
Root turnover may contribute a significant proportion of recycled nutrients in agroforestry systems and competition between trees and crops for nutrients and water may depend on temporal fine root regrowth patterns. Fine root biomass ( 2 mm) and fine root productivity were measured during one year in plantations of cacao (Theobroma cacao) shaded by Erythrina poeppigiana or Cordia alliodora planted on a deep alluvial soil in Turrialba, Costa Rica. Fine root biomass of approximately 1.0 Mg ha–1 varied little during the year with maximum values at the beginning of the rainy season of 1.85 Mg ha–1 in the cacao-C. alliodora system compared to 1.20 Mg ha–1 for cacao-E. poeppigiana. Fine root productivity of C. alliodora and E. poeppigiana (maximum of 205 and 120 kg ha–1 4 week–1, respectively) was greatest at the end of the rainy season, while for cacao it was greatest at the beginning of the rainy season (34–68 kg ha–1 4 week–1), which suggests that if nutrient competition occurs between the shade trees and the cacao, it could be minimized by early fertilization during the beginning of the rains immediately after pruning the shade trees. Annual fine root turnover was close to 1.0 in both systems. Assuming that fine root biomass in these mature plantations was constant on an annual basis, nutrient inputs from fine root turnover were estimated as 23–24 (N), 2 (P), 14–16 (K), 7–11 (Ca) and 3–10 (Mg) kg ha–1 year–1, representing 6–13% and 3–6% of total nutrient input in organic matter in the C. alliodora and E. poeppigiana systems, respectively.  相似文献   

4.
The relative importance of N fixation, organic material inputs and nutrient inputs in litterfall, as justifications for including shade trees in plantations of coffee or cacao, is discussed. According to existing data, N fixation by leguminous shade trees does not exceed 60 kg.N/ha/a. However, these trees contribute 5,000–10,000 kg. organic material/ha/a.Comparisons are made between the leguminous shade tree Erythrina poeppigiana and the non-leguminous timber tree Cordia alliodora. The former, when pruned 2 or 3 times/a., can return to the litter layer the same amount of nutrients that are applied to coffee plantations via inorganic fertilizers, even at the highest recommended rates for Costa Rica of 270 kg.N, 60 kg.P, 150 kg.K/ha/a. The annual nutrient return in this litterfall represents 90–100 percent of the nutrient store in above-ground biomass of E. poeppigiana, and hence the consequences of competition with the crop should not be a serious limitation. In the case of C. alliodora, which is not pruned, nutrient storage in the tree stems, especially of K, is a potential limiting factor to both crop and tree productivity.It is concluded that, in fertilized plantations of cacao and coffee, litter productivity is a more important shade tree characteristic than N fixation.An early version of this review was presented at the CATIE-IUFRO meeting Los Arboles de Uso Multiple en Sistemas Agroforestales, June 1985, Turrialba, Costa Rica.  相似文献   

5.
Arazá (Eugenia stipitata), a fruit shrub originating from Western Amazonia, was evaluated growing in association with timber shade trees (Acacia mangium or Cordia alliodora) or with plantain (Musa sp.) as a potential commercial species for the tropical moist lowlands of Talamanca, Costa Rica. Height and crown width of the four-year-old shrubs varied between 2.7–2.8 m and 2.9–3.1 m, respectively. Flowering was positively correlated with initial fruit formation 1 month later and initial fruit formation with fully developed fruits a subsequent month after that. Three to four-year-old plants produced 20.0, 20.0, and 24.5 t ha−1 yr−1 (fresh fruits) in associations with A. mangium, C. alliodora and plantain, respectively, with higher production in rainy months. Fruit production in later years under C. alliodora (six to eight-year-old shrubs) was 26.5 t ha−1 yr−1. Where markets exist for E. stipitata fruit, the association can be recommended for tropical humid lowlands of Central America.  相似文献   

6.
Models for cycles for organic matter and nutrients element (N, P, K, Ca and Mg) are presented for the agroforestry systems of cacao (Theobroma cacao) withCordia alliodora orErythrina poeppigiana in Turrialba, Costa Rica.For the models, system reserves (soil, humus, vegetation divided into leaves, branches, stems, fine roots, fruits) and transference between compartments (production and decomposition of litter residues) inputs (fertilizer, rainfall) and outputs (harvests) of the system are considered.The implications of the models are discussed in detail.Aspects of net primary production in the systems studied are considered.N fixation is calculated on the basis of balances. Analysis of soil water showed high variations that coincided with rainfall patterns and pruning of theE. poeppigiana.For part I see Vol. 4, No. 3, 1986 For part II see this issueAgroforestry Project, CATIE/GTZ (Tropical Agricultural Research and Training Center/Gesellschaft für Technische Zusammenarbeit), Turrialba, Costa Rica  相似文献   

7.
Models for cycles for organic matter and nutrients element (N, P, K, Ca and Mg) are presented for the agroforestry systems of cacao (Theobroma cacao) withCordia alliodora orErythrina poeppigiana in Turrialba, Costa Rica. For the models, system reserves (soil, humus, vegetation divided into leaves, branches, stems, fine roots, fruits) and transference between compartments (production and decomposition of litter residues) inputs (fertilizer, rainfall) and outputs (harvests) of the system are considered. The implications of the models are discussed in detail. Aspects of net primary production in the systems studied are considered. N fixation is calculated on the basis of balances. Analysis of soil water showed high variations that coincided with rainfall patterns and pruning of theE. poeppigiana. For part I see Vol. 4, No. 3, 1986 For part II see this issue Agroforestry Project, CATIE/GTZ (Tropical Agricultural Research and Training Center/Gesellschaft für Technische Zusammenarbeit), Turrialba, Costa Rica  相似文献   

8.
The use of organic waste materials such as milk sewage as an organic fertilizer could have the dual advantages of organic-waste disposal and reduced dependence on inorganic fertilizers. The effects of fertilization with (1) conventional mineral fertilization, (2) milk sewage sludge at 40 kg N ha−1 target rate and (3) no fertilization on pasture production and tree growth were examined in an experiment consisting of two pasture mixtures under a one-year-old Pinus radiata plantation with a density of 2500 trees ha−1. The two pasture mixtures were: (1) Dactylis glomerata L. var. saborto (25 kg ha−1) + Trifolium repens L. group Ladino (4 kg ha−1) + Trifolium pratense L. var. Marino (1 kg ha−1); (2) Lolium perenne L. var. Tove (25 kg ha−1) + Trifolium repens L. group Ladino (4 kg ha−1) + Trifolium pratense L. var. Marino (1 kg ha−1). The experiment began in the spring of 1995 using a randomized block design with three replicates in Castro Riberas de Lea (Lugo, Galicia, north-western Spain). Plot size was 12 × 8 m2, with a 1 m buffer strip between plots. Two-year data showed that fertilization with either material had a positive effect on pasture production, with no significant difference between the two fertilization treatments. Tree growth in the milk sewage sludge plot was significantly higher than in the control plots. Inorganic fertilization increased pasture production, but affected tree growth negatively. The results show that milk sewage sludge could be used as a fertilizer in silvo-pastoral systems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
A field study was conducted for six years (1981–1986) on sandy loam soil on intercropping hedgerows of Leucaena leucocephala (Lam) de Wit. with three field crops viz. maize (Zea mays L), black gram (Vigna mungo L) and cluster bean (Cyamopsis tetragonoloba L Taub.). In treatments 1 and 2 Leucaena hedges were planted as pure crops at close (25 cm × 75 cm) and wide (25 cm × 375 cm) spacings. In treatments 3, 4 and 5 the three field crops were intercropped between the hedgerows of Leucaena at the wide spacing, and in treatments 6, 7 and 8 the field crops were raised as pure crops. Leucaena was topped to 75 cm each time it attained a height of 175 cm. The pure crop of Leucaena at close spacing produced an average, over the six years, of 34 t ha−1a−1 of green fodder and 9.4 t ha−1a−1 of air dry fuelwood. The Leucaena at wide spacing produced 18.9 t ha−1a−1 of green fodder and 6.3 t ha−1a−1 of fuelwood. Intercropping with field crops decreased the yield of green fodder and fuelwood. The yield of all the field crops was less when raised as intercrops than as pure crops. Mean maximum net returns were obtained from intercrops of Leucaena and cluster bean (Rs 3540 ha−1a−1) which were significantly higher than the returns from pure crop of Leucaena at wide spacing but similar to the returns from pure crops of cluster bean. Leucaena with maize (Rs 3273 ha−1a−1) and black gram (Rs 3125 ha−1a−1) gave significantly higher net returns over pure crops of Leucaena at wide spacing, maize and black gram. ICRISAT = International Crops Research Institute for the Semi-Arid Tropics- Hyderabad, India. CIAT = Centro International de Agricultura Tropical - Cali - Columbia  相似文献   

10.
The above-ground biomass and production, below-ground biomass, nutrient (NPK) accumulation, fine roots and foliar characteristics of a 8-year-old silver birch (Betula pendula) natural stand, growing on abandoned agricultural land in Estonia, were investigated. Total above-ground biomass and current annual production after eight growing seasons was 31.2 and 11.9 t DM ha−1, respectively. The production of stems accounted for 62.4% and below-ground biomass accounted for 19.2% of the total biomass of the stand. Carbon sequestration in tree biomass reaches roughly 17.5 t C ha−1 during the first 8 years. The biomass of the fine roots (d < 2 mm) was 1.7 ± 0.2 t DM ha−1 and 76.2% of it was located in the 20 cm topsoil layer. The leaf area index (LAI) of the birch stand was estimated as 3.7 m2 m−2 and specific leaf area (SLA) 15.0 ± 0.1 m2 kg−1. The impact of the crown layer on SLA was significant as the leaves are markedly thicker in the upper part of the crown compared with the lower part. The short-root specific area (SRA) in the 30 cm topsoil was 182.9 ± 9.5 m2 kg−1, specific root length (SRL), root tissue density (RTD) and the number of short-root tips (>95% ectomycorrhizal) per dry mass unit of short roots were 145.3 ± 8.6 m g−1, 58.6 ± 3.0 kg m−3 and 103.7 ± 5.5 tips mg−1, respectively. In August the amount of nitrogen, phosphorus and potassium, accumulated in above ground biomass, was 192.6, 25.0 and 56.6 kg ha−1, respectively. The annual flux of N and P retranslocation from the leaves to the other tree parts was 57.2 and 3.7 kg ha−1 yr−1 (55 and 27%), respectively, of which 29.1 kg ha−1 N and 2.8 kg ha−1 P were accumulated in the above-ground part of the stand.  相似文献   

11.
Diversification of agroecosystems has long been recognized as a sound strategy to cope with price and crop yield variability, thus increasing farm income stability and lowering financial risk. In this study, the financial returns, stability and risk of six cacao (Theobroma cacao L.) – laurel (Cordia alliodora (R&P) Oken) – plantain (Musa AAB) agroforestry systems, and the corresponding monocultures, were compared. Production and cost data were obtained from an on-going eight-year old experiment. The agroforestry systems included a traditional system and a replacement series between cacao (278, 370, 556, 741 and 833 plants ha–1) and plantain (833, 741, 556, 370 and 278 plants ha–1) with a constant laurel population (timber tree; 69 trees ha–1). An ex-post analysis was conducted using experimental and secondary data to build a simulation model over a 12-year period under different price assumptions. The probability distribution functions for the three commodity prices were modeled and simulated through time, accounting for their possible autocorrelation and non-normality. The expected net incomes from the agroforestry systems were considerably higher than from monocultures. The agroforestry systems were also less risky. Agroforestry systems with proportionally more cacao than plantain were less risky, but also less stable. The timber component (C. alliodora) was a key factor in reducing farmer's financial risks. Methodologically, the study illustrates a technique to evaluate both expected returns and the corresponding financial risks to obtain a complete, comparable profile of alternative systems. It shows the need to allow for the possibility of non-normality in the statistical distributions of the variables entering a financial risk and return analysis.  相似文献   

12.
Cacao-coconut intercropping in Ghana: agronomic and economic perspectives   总被引:1,自引:0,他引:1  
In Ghana, shade for cacao (Theobroma cacao L.) is becoming a critical issue because of extensive deforestation. Unlike in some other cacao-growing countries, cacao is not grown under the shade of coconut (Cocos nucifera) in Ghana. An experiment to compare the merits of four cacao-coconut intercropping systems with the traditional cultivation of cacao under Gliricidia sepium shade was undertaken at the Cocoa Research Institute of Ghana. Cacao seedling girth was not affected when intercropped with coconut but was significantly (P = 0.01) reduced when intercropped with G. sepium. High density cacao facilitated better early canopy formation. Yield of cacao spaced at 2.5 m triangular (1739 plants ha–1) with coconut at 9.8 m triangular (105 plants ha–1) was significantly higher (P = 0.05) than from the other treatments during 1993/94 to 1995/96. There were no major disease problems associated with intercropping cacao with coconuts. Widely spaced coconuts intercropped with cacao spaced at 3 m × 3 m showed better flowering and gave higher coconut yields, but cacao spaced at 2.5 m triangular under coconuts spaced at 9.8 m triangular was more profitable than the other treatments. Moisture stress was the greatest in cacao system with G. sepium shade and this could be responsible for the low yield of cacao in that treatment. It is suggested that properly arranged high density cacao under widely spaced coconuts can be a profitable intercrop system for adoption by cacao farmers in Ghana.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

13.
Coffee (Coffea canephora var robusta) is grown in Southwestern Togo under shade of native Albizia adianthifolia as a low input cropping system. However, there is no information on carbon and nutrient cycling in these shaded coffee systems. Hence, a study was conducted in a mature coffee plantation in Southwestern Togo to determine carbon and nutrient stocks in shaded versus open-grown coffee systems. Biomass of Albizia trees was predicted by allometry, whereas biomass of coffee bushes was estimated through destructive sampling. Above- and belowground biomass estimates were respectively, 140 Mg ha−1 and 32 Mg ha−1 in the coffee–Albizia association, and 29.7 Mg ha−1 and 18.7 Mg ha−1 in the open-grown system. Albizia trees contributed 87% of total aboveground biomass and 55% of total root biomass in the shaded coffee system. Individual coffee bushes consistently had higher biomass in the open-grown than in the shaded coffee system. Total C stock was 81 Mg ha−1 in the shaded coffee system and only 22.9 Mg ha−1 for coffee grown in the open. Apart from P and Mg, considerable amounts of major nutrients were stored in the shade tree biomass in non-easily recyclable fractions. Plant tissues in the shaded coffee system had higher N concentration, suggesting possible N fixation. Given the potential for competition between the shade trees and coffee for nutrients, particularly in low soil fertility conditions, it is suggested that the shade trees be periodically pruned in order to increase organic matter addition and nutrient return to the soil. An erratum to this article can be found at  相似文献   

14.
Natural abundance of 15N was sampled in young and mature leaves, branches, stem, and coarse roots of trees in a cacao (Theobroma cacao) plantation shaded by legume tree Inga edulis and scattered non-legumes, in a cacao plantation with mixed-species shade (legume Gliricidia sepium and several non-legumes), and in a tree hedgerow bordering the plantations in Guácimo, in the humid Caribbean lowlands of Costa Rica. The deviation of the sample 15N proportion from that of atmosphere (δ15N) was similar in non-legumes Cordia alliodora, Posoqueria latifolia, Rollinia pittieri, and T. cacao. Deep-rooted Hieronyma alchorneoides had lower δ15N than other non-N2-fixers, which probably reflected uptake from a partially different soil N pool. Gliricidia sepium had low δ15N. Inga edulis had high δ15N in leaves and branches but low in stem and coarse roots. The percentage of N fixed from atmosphere out of total tree N (%Nf) in G. sepium varied 56–74%; N2 fixation was more active in July (the rainiest season) than in March (the relatively dry season). The variation of δ15N between organs in I. edulis was probably associated to 15N fractionation in leaves. Stem and coarse root δ15N was assumed to reflect the actual ratio of N2 fixation to soil N uptake; stem-based estimates of %Nf in I. edulis were 48–63%. Theobroma cacao below I. edulis had lower δ15N than T. cacao below mixed-species shade, which may indicate direct N transfer from I. edulis to T. cacao but results so far were inconclusive. Further research should address the 15N fractionation in the studied species for improving the accuracy of the N transfer estimates. The δ15N appeared to vary according to ecophysiological characteristics of the trees.  相似文献   

15.
A preliminary nutrient cycling study quantified total and temporal nutrient inputs via litterfall and pruning residues in two agroforestry systems: (1) Coffea arabica (perennial crop)-Erythrina poeppigiana (leguminous shade tree); and (2) C. arabica-E. poeppigiana-Cordia alliodora with emphasis on the effect of the timber tree C. alliodora. The total annual input of litterfall plus pruning residues was similar in both associations. Total annual input from E. poeppigiana was less than half in the association with C. alliodora than without, but the litterfall from this latter species compensated for the loss. Large differences in the total annual nutrient input of K, Ca and Mg was found between associations, but not for N or P. The amount of nutrients recycled by the associated trees reached the recommended level of fertilizer required for coffee production. The inclusion of C. alliodora within the C. arabica-E. poeppigiana association resulted in a more evenly distributed annual nutrient input.  相似文献   

16.
Summary An investigation has been carried out in the forest of Latemar (the Italian central eastern Alps), dominated byPicea excelsa withAbies alba, Larix europaea andPinus cembra, on the interactions between humus type (tabs 1, 2), litter and understory (including natural regeneration) composition on one hand and tree layer canopy and altitude on the other hand. Starting from ecological profiles, entropy-species (fig. 2, tab. 3) and entropy-factor have been calculated for the factors examined (tab. 4). This way it has been possible to determine the mutual information, the correct ecological profiles and the species groups index for the humus type (tab. 5), height (tab. 6) and canopy (tab. 7), which has allowed to grade species behaviour as regards investigated factors and consequently to single out three groups of species with similar ecological requirements (tab. 8). Moreover litter-humus entropy (tab. 9) and the same cybernetic parameters have been determined for the factor humus. The distribution of each group of species index is characterized by different combination of local factors (tab. 8): Humus type variations depend to a great extent on tree layer canopy and, through this layer, on the resulting litter composition and density: the “correcting” action of grasses with a low C:N on humus evolution is evident (tab. 10). From the silvicultural standpoint, leaving out uniform methods on large areas and chiefly clearcuts, an elastic treatment seems to be recommended, adhering to the actual conditions of forest and soil structure in order to achieve the density with major chances to secure favourable conditions of bioclimate, understory, humus and consequently regeneration. In the “semplified” forest ecosystem, as the investigated one, where natural levels of consumers (herbivores and carnivores) are actually missing, functionality may be secured through proper cuts only and by regularly restoring the nutrients of the litter, here almost entirely vegetal, to the cycle.   相似文献   

17.
The relative effects of irradiance and soil water on alley-cropped herbage are poorly understood. Our objective was to determine effects of irrigation on herbage productivity when tall fescue [Lolium arundinaceum (Schreb.) Darbysh.] was grown in two sites, a meadow and a loblolly pine (Pinus taeda L.) alley (620 trees ha−1), near Booneville, Arkansas. Three tall fescue entries were space planted in the meadow and pine alley with or without irrigation. Herbage mass and nutritive value were determined at 8-week intervals for 2 years. Mean daily PAR was 33.9 (2004) and 37.5 mol m−2 d−1 (2005) in the meadow, while the pine alley received 5.6 mol m−2 d−1 (17% of the meadow) in 2004 and 4.3 mol m−2 d−1 (11% of meadow) in 2005. Effect of tall fescue entry tended to be small relative to site and irrigation. Irrigation compensated for evapotranspiration in the meadow, but not in the pine alley when summer rainfall was about normal (2004) or low (2005). Nevertheless, site (PAR) had a greater effect on herbage specific leaf weight, leaf elongation rate, tillers plant−1, mass tiller−1, and total nonstructural carbohydrate concentration than soil water. Irrigation might have had greater impact on herbage productivity if more water had been applied or if canopy cover had been less extreme. Silvicultural practices should be imposed to improve penetration of solar irradiance to the alley crop.  相似文献   

18.
We analyzed the growth patterns of Thujopsis dolabrata var. hondai trees in an old plantation (161 years old), where no silvicultural treatments (e.g., thinning) have been conducted since the initial planting. The analysis focused on understanding individual growth under a long-term self-thinning process, and the stand-level stemwood production at the mature stage was evaluated. Nine canopy-layer trees and one suppressed tree were used for the analysis of annual increments in stem diameters, heights, and stemwood volumes for a given past year using the ring-width data. Both the diameter (at basal portion) and height of all the canopy-layer trees increased at similar rates during the early stage (i.e., 60–70 years after planting); however, after this period, only the height growth rates declined sharply. The annual growth rates of stemwood volume also simultaneously leveled off at the stand age of 40–60 years. Subsequently, the patterns diverged conspicuously, e.g., the growth rates were maintained or increased in some individuals, while it gradually decreased in the case of others until the present year. The divergence of growth pattern was likely to be triggered by intertree competition at several decades after the onset of canopy closure. The current stemwood production of the sample trees, including the suppressed one, was positively correlated with certain size parameters such as stem diameter at breast height and sapwood area at a height of 4 m. Based on the diameter-base allometry, the total stand stemwood production was estimated to be about 12.8 m3 ha−1 year−1. This estimate was higher than those of some old natural T. dolabrata forests (2.0–8.6 m3 ha−1 year−1) that have been well managed by repetitive selection thinning. Furthermore, individual mean stemwood production of the study plantation (0.03 m3 tree−1 year−1) was within the range of these natural stands (0.01–0.05 m3 tree−1 year−1). These comparisons suggested that the old T. dolabrata plantation still maintained a relatively high stemwood production potential despite the absence of artificial controls of tree density in the past. In terms of timber production, this fact implied that a rather long rotation (>100 years) can be applicable in the management of T. dolabrata plantations.  相似文献   

19.
Tree growth was measured before, and 9 years after draining a boreal fen that supported a 50- to 60-year-old stand of tamarack (Larix laricina (Du Roi) K. Koch) and black spruce (Picea mariana (Mill.) B.S.P.). Treatments consisted of a series of ditches spaced 30, 40 or 50 m apart, and an undrained control. Nine years after drainage, the diameter, height, basal area, and volume growth of tamarack had increased by 2–5 times that on the control site. Black spruce growth on the drained site was 1.6–5 times that on the control. Tamarack average volume growth (1.20 m3 ha−1 year−1) on the drained site was superior to that of black spruce (0.21 m3 ha−1 year−1). In general for both species, there were no significant differences in growth between trees on the different ditch spacings. This result was attributed to the water table being low enough that adequate aeration zones existed across the strips between ditches on all spacings. Regeneration after treatment was greater on the drained than on the control plots, particularly in the disturbed areas near the ditches where new tamarack seedlings reached densities between 9400 and 12,000 stems ha−1. There was no relationship between increased tree growth and tree distance from the ditches for both species, probably because the water table had been lowered sufficiently so that inadequate substrate aeration was no longer a limiting factor.  相似文献   

20.
The ability of multipurpose hedgerow tree species to out-compete undesired regrowth during fallow phases was examined. Biomass and spatial distribution of grass and broad leaf volunteers was measured after two years of fallow, in two alley cropping systems planted at six m interrow distance, at the Humid Forest Ecoregional Centre Research Station, Mbalmayo, southern Cameroon. The two experiments had been continuously cropped for five and six years previously. In the experiment cropped for six years, the presence of Senna spectabilis [(DC.) Irwin and Barnaby] hedgerows reduced the biomass of the volunteer regrowth from 9.2 to 4.3 Mg ha−1. Tillage during the previous cropping phase increased the broad leaf biomass from 3.0 to 4.4 Mg ha−1, reduced the biomass of grasses from 3.4 to 2.7 Mg ha−1 but had no effect on the total volunteer biomass. Volunteer biomass was significantly lower within 1.5 m of the S. spectabilis hedgerows than at positions further away. In the experiment cropped for five years, S. spectabilis reduced the volunteer regrowth biomass significantly. Two other hedgerow species, Dactyladenia barteri [(Hook f ex Oliv.) Engl.] and Flemingia macrophylla [(Willd.) Merrill] had no effect on the total amount of volunteer regrowth but did reduce volunteer biomass within 0.5 m of the hedgerows. S. spectabilis caused a stronger reduction of volunteer biomass than D. barteri and F. macrophylla at almost all distances from the hedgerows. The competitiveness of D. barteri and F. macrophylla is insufficient and their growth habit is unsuitable to out-compete undesired species in this alley cropping system. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号