首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Penaeus monodon juveniles (average WEIGHT = 1.32 g) were kept in individual 2 l perforated plastic containers, 10 of which were placed in each of the twenty-four 50 l rectangular wooden-glass aquaria supplied with seawater filtered through a sand-gravel filter (32–34 ppt; 26.5–29.0°C; pH, 7.6–8.2) at 0.8–1.01 l/min. Eight diets were prepared containing 25–60% protein and fed at 10% of the body weight/day for the first 2 weeks and 8% for the succeeding 4 weeks.

Shrimps fed the 40% protein diet produced the best growth, feed conversion ratio (FCR), protein efficiency ratio (PER) and survival rate. However, shrimps fed the 30, 35 and 45% protein diets produced comparable results. The protein content of the shrimps was directly related to the level of protein diet up to 50%; whereas fat content seemed to be inversely related up to 50% protein diet.  相似文献   


2.
We evaluated the effect of low pH and low and high total ammonia nitrogen (TAN) concentrations on the physiology, stress status and the growth performance of turbot in RAS. Two experiments were conducted. In Experiment 1, turbot (466 g) were grown at control (pH 7.5; TAN ~0.5 mg/L) or low pH and high TAN (pH 5.7; TAN ~50 mg/L) for 55 days. In Experiment 2, turbot (376 g) were grown at control (pH 7.5; TAN ~0.5 mg/L), low pH and low TAN (pH 5.7; TAN ~5 mg/L) or low pH and high TAN (pH 5.7; TAN ~50 mg/L) for 59 days. In Experiment 1, final body weight, feed intake and growth were significantly lower and FCR significantly higher in turbot exposed to low pH and high TAN. In Experiment 2, only growth was significantly lower in turbot exposed to treatment low pH and high TAN as compared to fish in the control treatment and low pH and low TAN. Osmoregulation and stress indicators measured were within normal levels. In conclusion, turbot grew equally well in a water pH of 7.5 or 5.7 provided a low TAN. In contrast, low pH combined with a high TAN impaired turbot performance.  相似文献   

3.
Reuse strategy of wastewater in prawn nursery by microbial remediation   总被引:7,自引:0,他引:7  
A strategy of reusing the prawn nursery wastewater was developed by the previous remediation with Bacillus subtilis and nutrients addition. The suggested method was preliminarily verified in rearing prawn larval. Bacteria assimilation is proved as a main and powerful mechanism for removing dissolved organic matter (DOM) and total ammonia nitrogen (TAN) in the experiments. The process of microbial remediation could be featured as two sequential stages: DOM degradation and TAN reduction. In the first stage (from day 0 to day 2), DOM was degraded directly as the bacterial carbon and nitrogen sources. The 48-h COD removal efficiencies (RCOD) in the treatment were 57.7±5.5%, showing significantly different from 12.2±4.1% in control. In the second phase (from day 2 to day 5), the deficiencies of C and P source relative to N source might limit bacteria proliferation and TAN removal. The glucose and/or phosphate addition significantly influenced the TAN removal performance, while the addition of vitamin mixture and/or microelement solution was not. When the initial TAN level was nearly 5 mg N/l, the optimal TAN removal efficiencies from day 2 to day 5 were above 85% in the treatments with both glucose and phosphate additions, where the white microbial floccules were observed to suspend. The C/N or N/P weight ratio of 5.4:1or 5–7:1 was suggested for remediating the nursery effluents. The situation that the maximum bacterial levels did not exceed 108 CFU/ml was estimated to correlate with the formation of microbial floccules. After 5 days of microbial remediation by these adequate methods, the wastewater had been became the “microbially matured” water suitable to reuse. In the practical operations, the nutrient supplements were directed by Glucose/TAN weight ratio of 13:1 and KH2PO4/TAN weight ratio of 0.6–0.9:1. The results of the application trial pointed out that the remediated water reclaimed to the larvae culture tanks did not produce observable deleterious effects on the water quality and on the mortality of the prawn larvae. The method of reusing the remediated wastewater by microbial agents and nutrients additions will be advantageous to reduce both production cost and environmental pollution in the inland hatchery and nursery for prawn.  相似文献   

4.
For large-scale seed production of sea cucumbers through a hatchery system, it is imperative to know the effects of environmental parameters on larval rearing. Auricularia larvae (48 h post-fertilization) were obtained from induced spawning of Holothuria spinifera and used in experiments to ascertain the effects of temperature, salinity and pH on the growth and survivorship of the larvae. The larvae were reared for 12 days at temperatures of 20, 25, 28 and 32 °C; salinities of 15, 20, 25, 30, 35 and 40 ppt; and pH of 6.5, 7.0, 7.5, 7.8, 8.0, 8.5 and 9.0. The highest survivorship and growth rate and fastest development of auricularia indicated that water temperature of 28–32 °C, salinity of 35 ppt and pH of 7.8 were the most suitable conditions for rearing larvae of H. spinifera.  相似文献   

5.
Atlantic salmon (Salmo salar L.) postsmolts (0.17–0.26 kg) were exposed to four different levels of carbon dioxide partial pressure for 43 days in an open flow system: 0.6 mm Hg (control), 4.9 mm Hg (low), 12 mm Hg (medium), and 20 mm Hg (high). The water temperature was 15–16°C and the salinity 34‰. In the low carbon dioxide group (PCO2=4.9 mm Hg; 10.6 mg/l), no significant differences were found in blood parameters (haematocrit, plasma chloride and plasma sodium) or in growth parameters (weight, length and condition factor) when compared to the control group. After 43 days, the mean plasma chloride concentration for the medium group (PCO2=12 mm Hg; 26 mg/l) was significantly reduced, while weight and condition factor were slightly, although not significantly, lowered. For the high carbon dioxide group (PCO2=20 mm Hg; 44 mg/l) plasma sodium and plasma pH were significantly increased and plasma chloride, oxygen consumption, weight, length and condition factor were significantly reduced at the end of exposure. There was no mortality in the control group or in the low carbon dioxide group. The mortalities in the medium and high carbon dioxide groups were 1.1 and 4.3%, respectively. Nephrocalsinosis was not observed in any of the groups. The results of the present investigation indicate that the CO2 concentration of the low group may represent a safe level for Atlantic salmon postsmolts when the temperature is 15–16°C and the oxygen level is 6–7 mg/l. Further studies are required.  相似文献   

6.
Water recirculating systems have been used in the shellfish industry for depuration and wet-storage. Knowledge of shellfish excretion characteristics is critical to recirculating system design. In this study, the excretion rate of total ammonia nitrogen (TAN), total Kjeldahl nitrogen (TKN), and 5-day biochemical oxygen demand (BOD5) from Manila clams (Tapes philippinarum) were investigated under both laboratory and commercial conditions. The laboratory tests were conducted under temperatures ranging from 3 to 30°C. The experimental results showed that temperature was a key factor in determining the excretion rate of all the above parameters. The relationship between TAN excretion rate (RTAN) and temperature (T) can be represented by an exponential function (RTAN=0.57×1.25T). For the temperature range between 3 and 20°C, the daily mean excretion rates of TAN, TKN and BOD5 ranged between 1.5–46.1, 4.8–131.0 and 57.4–219.4 mg per kilogram of the clams (wet weight with shell on), respectively. There were linear correlations between TAN, TKN and BOD5 production rates. The data presented in this paper can be used to estimate waste generation from a given shellfish processing operation and to size the waste treatment components for a recirculating depuration (or wet-storage) system.  相似文献   

7.
First-feeding chinook salmon were fed either live adult Artemia franciscana or commercial feed over a 15-week period. Unexplained mortality began occurring in the Artemia-fed fish after 35 days on the diets, with cumulative mortality reaching 34.5% in the Artemia-fed fish compared with 4.3% in feed-fed fish. Necropsy examinations revealed systemic fungal yeast infections and the causative agent was cultured from kidneys. Fungal cells were observed in the transport water of Artemia shipments and within the Artemia. The Artemia were purchased from a retail supplier, and originated from salt ponds in San Francisco Bay (SFB), California. Artemia infection rates ranged from 0.5% to 37.5% (mean 16.5±3.59%) in shipments received over a 5-week period. The fungus was characterized by morphological and physiological properties and was identified as Metschnikowia sp., a pathogenic yeast of aquatic invertebrates. The yeast grew at 9–27 °C, and 0–180 ppt NaCl, and could tolerate salinity of at least 270 ppt. Sequence analysis of the divergent D1/D2 domain of ascomycetous yeast 26S ribosomal DNA identified the organism as Metschnikowia bicuspidata var. bicuspidata. The organism was found in water from the salt ponds and probably entered from the bay. Mortality due to the fungal infection stopped after changes were made in the handling of incoming Artemia shipments.  相似文献   

8.
ABSTRACT

Litopenaeus vannamei postlarvae were exposed to 0, 6, 13, and 19 mg/L total ammonia nitrogen (TAN) treatments. After 45 days, shrimp weight and length were lowest under TAN concentrations of 13 and 19 mg/L (P ≤ 0.05). Maximum weight gain was observed in control and 6 mg/L treatments. Mortality was highest (80.55 ± 4.80%) under 19 mg/L reared in 35 ppt salinity. Average intermolt periods of PLs exposed to 0, 6, 13, and 19 mg/L TAN were 11.5 ± 0.7, 10.8 ± 1.3, 9.4 ± 1.0, and 8.7 ± 0.6 days under 35 ppt and 11.1 ± 0.5, 10.7 ± 0.6, 10.1 ± 0.5, and 9.5 ± 0.2 days under 45 ppt salinity. Although TAN increased postlarvae molting frequency, its negative effects on the shrimp growth and survival of PLs was directly linked to its concentration and exposure duration. Higher salinity reduces the effects of ammonia and increases the survival.  相似文献   

9.
Rapid sand filtration was explored as a means of removing Triactinomyxon actinospores (Tams), the waterborne infective stage of the salmonid parasite Myxobolus cerebralis that causes whirling disease, from contaminated water. Preliminarily, a batch of sand was sieved to create 12 size ranges from 180 to 2000 μm. These individual ranges were tested for their efficacy of removing Tams through sand beds either 2 cm or 4 cm deep. The critical size at which no Tams passed through the sand bed was 300 μm at 2 cm depth and 425 μm for 4 cm bed depth. Additional tests evaluated the passage of Tams through filter beds comprised of sand that had all particles smaller than 180 μm removed. With this sand, 0.2±0.5% of Tams passed through a 2 cm bed, and 0.0±0.0% with a 4 cm sand bed. Based on these preliminary results, small (61 cm×15 cm) rapid sand filters were placed in-line with aquaria containing rainbow trout fry. The sand bed depth was 10 cm under which lay 10 cm of aquarium gravel. Four treatments were (1) negative control, (2) positive control, (3) sand of >180 μm, (4) sand of >300 μm. Tams were regularly introduced to the rearing systems above the sand filters. After 60 days, clinical signs of whirling behavior and black tails were seen among the positive controls. A polymerase chain reaction assay for Myxobolus cerebralis 1 month after exposure proved negative for negative controls and the >180 μm group, whereas 10% of the >300 μm group and 71% of the positive controls were infected. Results from the PCR assay at the study’s conclusion indicated the negative controls and >180 μm group were still disease free. All positive control fish were infected, and 49% of >300 μm fish were infected. These results were mirrored by those obtained from a pepsin–trypsin digest assay, except one fish among the >180 μm group was found to be infected. These results demonstrate that sand filtration may be a viable option in treating hatchery water supplies that are contaminated with whirling disease.  相似文献   

10.
The aim of this study was to analyze the effect of a probiotic bacterium, Enterococcus faecium ZJ4 on growth performances and immune responses of tilapia (Oreochromis niloticus). The tilapias were treated with E. faecium ZJ4 at a final concentration of 1 × 107 cfu ml− 1 in aquaria water every 4 days. Six aquaria with three replicates for treated and controls were used. After 40 days, the tilapias supplemented with the probiotic showed significantly better final weight and daily weight gain (DWG) than those fed the basal diet (Control) (P < 0.05). There was no remarkable difference (P > 0.05) in the total serum protein, albumin content, globulin concentration and A/G ratio between the treated and control tilapias. The result of lysozyme activity assay was similar to these biochemical indexes. However, the complement component 3 content, myeloperoxidase (MPO) activity and the respiratory burst activity of blood phagocytes were higher (P < 0.05) in E. faecium treated tilapias (trial 1) than the controls.  相似文献   

11.
The influence of three different environmental salinities (seawater, SW: 38 ppt salinity; brackish water, BW: 12 ppt; and low salinity water, LSW: 6 ppt salinity) on the growth, osmoregulation and metabolism of young gilthead sea bream (Sparus aurata L.) was studied over a period of 100 days. 480 inmature fish (20 g mean body weight) were randomly divided into six tanks of 2500 l (80 fish per tank) and maintained under three different salinities (38 ppt, 12 ppt and 6 ppt) in an open system. Every three weeks, 10 fish from each tank were anesthetized, weighed and lenghed. At the end of experiment, 10 fish from each tank were anesthetized, weighed and sampled for plasma, brain, gill and liver. Gill Na+, K+-ATPase activity, plasma osmolality, ions (sodium and chloride), glucose, lactate, protein and triglyceride, and hepatosomatic index were examined. In addition, levels of glycogen, lactate, ATP and activities of potential regulatory enzymes (hexokinase, pyruvate kinase, glycogen phosphorylase, and glucose 6-phosphate dehydrogenase) were assesed in liver, brain, and gill. BW-acclimated fish showed a better growth with respect to SW- or LSW-acclimated fish (12 > 38 > 6 ppt). The same relationship was observed for weight gain and specific growth rate. Osmoregulatory parameters in plasma (osmolality, Na+ and Cl levels) were similar in SW- and BW-acclimated fish but significantly higher than those of LSW-acclimated fish. Gill Na+, K+-ATPase activity showed lower values in intermediate salinity (6 > 38 > 12 ppt). No changes were observed in metabolic parameters analyzed in plasma, whereas only minor changes were observed in metabolic parameters of liver, gills and brain that could be correlated with the higher growth rates observed in fish acclimated to BW, which do not allow us to attribute the best growth rate observed at 12 ppt to lower metabolic rates in that salinity.  相似文献   

12.
Aquaculture process waters are often scrutinized for loading phosphorus discharges into surface water. With the growing regulatory control of discharge from aquaculture process industries, it has become very important to address low cost and effective technological solution for aquaculture facilities. This study aims to investigate the effectiveness of alum residuals, which were generated during drinking water treatment for adsorption of phosphorus from aquaculture process water. Alum residuals were dried using an oven at 105 °C for 24 h. Particle size (d60) was similar to conventional adsorbent, granular activated carbon. Bench scale experiments (batch and fixed bed column tests) were conducted using oven dried alum residuals. Fixed bed column tests also looked at the effect of influent pH on the effectiveness of oven dried alum residuals. Experimental results observed phosphorus removal of 94–99% using an alum residuals concentration of 4–16 g/L. Freundlich adsorption isotherm was effective in explaining partitioning among solid and liquid phases. Oven dried alum residuals were a better adsorbent for orthophosphate phosphorus than total phosphorus. Effluent pH levels for both batch and fixed bed column tests were within range of 6–9 for most of the samples tested and therefore, suitable for surface water disposal. There were no effects of pH observed on the breakthrough pore volume processed during fixed bed column test. There was aluminum leaching from oven dried alum residuals, however, not high enough to cause toxicity for aquatic species if disposed in surface water. Oven dried alum residuals were also able to adsorb organic matter from aquaculture process water. The effluent BOD5 was below 30 mg/L for most of the samples with an exception of a few samples where BOD5 was beyond the limit for surface water disposal guidelines. The results indicated that oven dried alum residuals have potential to provide a technological solution for small aquaculture facilities.  相似文献   

13.
We describe an instrument prototype that measures dissolved carbon dioxide (DC) without need for standard wetted probe membranes or titration. DC is calculated using Henry’s Law, water temperature, and the steady-state partial pressure of carbon dioxide that develops within the instrument’s vertical gas–liquid contacting chamber. Gas-phase partial pressures were determined with either an infrared detector (ID) or by measuring voltage developed by a pH electrode immersed in an isolated sodium carbonate solution (SC) sparged with recirculated head space gas. Calculated DC concentrations were compared with those obtained by titration over a range of DC (2, 4, 8, 12, 16, 20, 24, and 28 mg/l), total alkalinity (35, 120, and 250 mg/l as CaCO3), total dissolved gas pressure (−178 to 120 mmHg), and dissolved oxygen concentrations (7, 14, and 18 mg/l). Statistically significant (P<0.001) correlations were established between head space (ID) and titrimetrically determined DC concentrations (R2=0.987–0.999, N=96). Millivolt and titrimetric values from the SC solution tests were also correlated (P<0.001, R2=0.997, N=16). The absolute and relative error associated with the use of the ID and SC solution averaged 0.9 mg/l DC and 7.0% and 0.6 mg/l DC and 9.6%, respectively. The precision of DC estimates established in a second test series was good; coefficients of variation (100(SD/mean)) for the head space (ID) and titration analyses were 0.99% and 1.7%. Precision of the SC solution method was 1.3%. In a third test series, a single ID was coupled with four replicate head space units so as to permit sequential monitoring (15 min intervals) of a common water source. Here, appropriate gas samples were secured using a series of solenoid valves (1.6 mm bore) activated by a time-based controller. This system configuration reduced the capital cost per sample site from US$ 2695 to 876. Absolute error averaged 2.9, 3.1, 3.7, and 2.7 mg/l for replicates 1–4 (N=36) during a 21-day test period (DC range, 36–40 mg/l). The ID meter was then modified so as to provide for DO as well as DC measurements across components of an intensive fish production system.  相似文献   

14.
The blue swimmer crab, Portunus pelagicus, is an emerging aquaculture species in the Indo-Pacific. Two experiments were performed to determine the effects of salinity on survival, growth and haemolymph osmolality of early juvenile P. pelagicus crabs. The salinities tested for the first experiment were 10, 15, 25 and 40 ppt, and for the second experiment 5, 20, 30, 35 and 45 ppt. Each salinity experiment was triplicated, with each replicate consisting of 10 stage 4 juveniles. Each experiment lasted 45 days. Mortalities and incidence of “molt death syndrome” were recorded daily, while the intermolt period, carapace length, carapace width and wet weight were measured at each molt. At the end of the experiments the haemolymph osmolality and dry weights were measured.

Results demonstrate that salinity significantly affects both the survival and growth of early P. pelagicus juveniles. Mortality was significantly higher (p < 0.01) for juveniles cultured at salinities ≤ 15 ppt and at 45 ppt. At a salinity of 5 ppt a complete mortality occurred on day 20. In all salinity treatments, the majority of mortalities were due to “molt death syndrome”. In experiment 1, immediate effects of salinity on growth and development were seen at 10 ppt as the intermolt period was significantly longer (p < 0.01) and the mean carapace size increase was significantly less (p < 0.01) at the first molt compared to the other treatments. Meanwhile, the specific growth rates (carapace length, width and wet weight) were significantly lower (p < 0.05) at high salinities (≥ 40 ppt) due to longer intermolt periods and significantly lower (p < 0.05) carapace size or wet weight increases.

The haemolymph osmolality exhibited a positive linear relationship with the culture medium with an isosmotic point of 1106 mOsm/kg, equal to a salinity of approximately 38 ppt. Based on the osmolality graph, high metabolic cost for osmoregulation due to increased hyper- and hypo-osmotic stress appeared to cause lower survival and specific growth rates of the crabs. The results demonstrate that a salinity range of 20–35 ppt is suitable for the culture of early juvenile P. pelagicus.  相似文献   


15.
The effects of body weight, water temperature and ration size on ammonia excretion rates of the areolated grouper Epinephelus areolatus and the mangrove snapper Lutjanus argentimaculatus were investigated. Under given experimental conditions, L. argentimaculatus had a higher weight-specific ammonia excretion rate than E. areolatus. Weight-specific ammonia excretion rates of fasted individuals of both species showed an inverse relationship with body weight (W, g wet wt.), but a positive relationship with water temperature (t, °C). The relationships for total ammonia nitrogen (TAN) were: E. areolatus: TAN (mg N kg−1 d−1)=21.4·exp0.11t·W−0.43 (r2=0.919, n=60); L. argentimaculatus: TAN (mg N kg−1 d−1)=121.5·exp0.12t·W−0.55 (r2=0.931, n=60). Following feeding, the weight-specific ammonia excretion rate of E. areolatus increased, peaked at 2 to 12 h (depending on temperature), and returned to pre-feeding levels within 24 h. A similar pattern was observed for L. argentimaculatus, with a peak of TAN excretion being found 6 to 12 h after feeding. Stepwise multiple regression analysis indicated that weight-specific TAN excretion rates of both species increased with increasing temperature and ration (R, percent body wt. d−1): E. areolatus: TAN (mg N kg−1 d−1)=22.8·t−28.8·R−378.2 (r2=0.832, n=24); L. argentimaculatus: TAN (mg N kg−1 d−1)=22.9·t−25.4·R−216.4 (r2=0.611, n=24). The effect of body weight on weight-specific postprandial TAN excretion was not significant in either species (p>0.05). This study provides empirical data for estimating ammonia excretion of these two species under varying conditions. This has application for culture management.  相似文献   

16.
Abstract

The effects of four biofilter volume (BFV)/culture tank volume ratios (0.67/1, 1.00/1, 1.50/1, and 2.25/1) on biofilter function were examined in a recirculating fish/vegetable production system in a greenhouse. Sand beds served as biofilters, as substrate for vegetable growth, and as location for decomposition of waste solids. No fertilizer was used. Three experiments were conducted over the course of one year. In Experiment 1, as the BF V/tank volume ratio increased, total ammoniacal nitrogen (TAN) and nitrite concentrations decreased (9.0 to 3.6 mg/L and 0.39 to 0.20 mg/L, respectively), and biomass increase over the culture period and oxygen levels increased significantly (13.34 to 16.03 kg/m3 and 6.03 to 6.47 mg/L, respectively). pH was maintained at 5.8-6.2 without the addition of lime. Yield per plant of the tomato variety ‘Laura’ tended to decrease (3.4 to 2.3 kg/plant), and yield per plot increased (13.6 to 31.6 kg/plant) with increasing BFV/tank ratio. In Experiment 2, the system was operated for 42 days without plants. pH dropped rapidly to near 4.0. Cucumbers were then planted, and weekly additions of lime and CaO were made. Significantly less CaO was required to achieve target pH in systems with the largest BFV/tank ratios. pH levels conducive to good plant growth were only slowly stabilized, and cucumber yields were erratic. TAN and nitrite levels were not measured, but fish grew well (5.2 to 7.2 kg/m3 with increasing BFV/tank ratio). By Experiment 3, with the tomato variety ‘Kewalo,’ TAN and nitrite concentrations decreased from 0.96 to 0.48 mg/L and from 0.06 to 0.02 mg/L, respectively, with increasing BFV/tank ratio, and in the latter part of the experiment, pH was stabilized at 6.3-6.5 without lime. Yield/plant decreased from 5.0 to 2.4 kg/plant and yield per plot increased from 19.9 to 33.1 kg/plot with increasing BFV/tank ratio. Daily water exchanges averaged 2.8%. Nutrient concentrations of the irrigation water after a year's operation were low overall. Although plants showed no deficiency or toxicity symptoms, K+ was found to be low and Zn++ high relative to other ions. No clogging was observed in the sand beds. Carbon measurements ± SEM of the sand medium at the wastewater inlet of the smallest and largest BFV/tank ratio systems were 0.23 ±0.03%, and 0.15 ±0.01%, respectively. Nitrogen was below detectable levels (<0.04%). The enhanced biofil-ter/culture tank ratios used here resulted in a functionally well balanced fish/vegetable co-culture system. While needing refinement, this design represents a step towards a highly productive, low-tech system with efficient use of water, chemical, and labor resources.  相似文献   

17.
Three different commercially available structural plastic media were evaluated in triplicate in moving bed biofilters under low salinity (11–12 ppt) warm water culture conditions and two different feed loading rates. The culture system consisted of nine separate modules that include a double drain fish culture tank paired to a moving bed biofilter. The biofilters were filled with 0.11 m3 of one of three different types of floating plastic structured media. The three types of media evaluated were K1 kaldnes media, MB3 media, and AMB media. Volumetric total ammonia nitrogen (TAN) removal rates (g TAN removed/m3 media-day), TAN removal efficiency, and biofilm kinetic constants, Ki (h−1) were determined for the three media types at two different daily feed load rates of 3.5 and 8.2 kg feed/m3 media. The feed provided was a 4.8 mm slow sinking marine grower diet pellet (45% protein, 17% fat). Average (±standard deviation, SD) volumetric TAN removal rates (VTR) at the lower feed load for the three media types were 92.2 ± 26.3, 86.1 ± 27.5, and 82.5 ± 25.9 for the MB3, AMB, and K1 kaldnes media, respectively. At the higher feed load the average VTR for the three media types was 186.4 ± 53.7, 172.9 ± 47.8, and 139.9 ± 38.9 for the MB3, AMB, and K1 kaldnes media, respectively. Influent TAN concentrations varied by the feed load rate and ranged from 0.55 to 0.93 mg/L and 0.83 to 1.87 mg/L for the low and higher feed loads, respectively. The percent TAN removal rates for the MB3 media was the highest of the three media types at both the low and high feed load rates averaging 12.3% and 14.4%, respectively. The MB3 media was selected for use in the moving bed biofilters because of the greater VTR and removal efficiency results for use in the 0.11 m3 moving bed biofilters of the hatchery recirculating aquaculture system.  相似文献   

18.
The aim of the present study was to assess the effect of ammonia exposure at different pH on survivorship and metabolic parameters in the liver, muscle and gill histology of silver catfish (Rhamdia quelen). The 96 h-LC50 of un-ionized ammonia (mg L− 1) at pH 6.0, 7.5 and 8.2 were: 0.44 (C.I. 0.38–0.49), 1.45 (C.I. 1.25–1.65) and 2.09 (C.I. 1.85–2.36), respectively. Survival of juveniles exposed to different ammonia levels was altered by pH, and fish exposed to all ammonia levels and different pH showed muscle glucose, muscle and liver glycogen reduction. Liver glucose and muscle and liver lactate levels increased in all fish exposed to ammonia as compared to the control. Exposure to waterborne ammonia increased total ammonia levels in both tissues and also induced gill epithelium damages such as lamellar fusion and edema as compared with controls at different pH. Silver catfish exposed to pH 6.0 and different NH3 levels presented significantly higher hepatic glucose and protein levels when compared to those maintained at low NH3 levels. Juveniles exposed to NH3 levels at pH 7.5 and 8.2 showed lower hepatic protein levels compared to those maintained at low NH3 levels. These parameters are indicative of pH dependence on ammonia toxicity in silver catfish. The metabolic parameters and gill histology may be used as early indicators of ammonia toxicity in silver catfish.  相似文献   

19.
Total ammonia nitrogen (TAN) concentration is often a key limiting water quality parameter in intensive aquaculture systems. Removing ammonia through biological filtration is thus the first objective in recirculating aquaculture system design. In this study, the performance characteristics of a steady-state nitrification biofilm were explored using a series of reactors. Four nitrification kinetics parameters were estimated using the data collected from the experimental system, including minimum TAN concentration, half saturation constant, maximum TAN removal rate and maximum specific bacterial growth rate. Experimental data showed that a minimum TAN concentration was needed to support a steady-state nitrification biofilm. For the temperature of 27.2°C, the mean minimum TAN concentration was 0.07 mg/l. For a single substrate-limiting factor, the relationship between TAN removal rate (R) and TAN concentration (S) was represented by an empirical equation [R=1859(S−0.07)/(S+1.93)]. The characteristics of nitrite oxidation were also demonstrated by the experiment system. The results of this study will help to better understand the characteristics of nitrification biofilters applied in recirculating aquaculture systems.  相似文献   

20.
The technical features of a laboratory scale water recycling unit for experimental small scale tilapia breeding are described. Two units (1 and 2) were operated during a 6 month period, carrying a similar fish load (7·5 kg) and feeding rate (2% fish body weight/day). Unit 1 received natural illumination, while unit 2 was artificially illuminated (14/10 - light/dark cycle). Both units were equipped with a biological filter bed (substrate surface area, 3500 cm2). In unit 1, total ammonium and nitrite concentrations ranged from 0·05 to 0·5 mg liter−1, while nitrate varied between 10–40 mg liter−1. In unit 2 corresponding values were 0·15-3 mg liter−1, 0·05–0·8 mg liter−1 and 10–40 mg liter−1. Temperatures ranged between 20–29°C and pH values between 7·5–6·9 in both units. Dissolved oxygen concentrations decreased gradually from 5·6 to 3·4 mg liter−1 in unit 1 and from 5·6 to 2·6 mg liter−1 in unit 2. Twenty-six spawnings occurred in unit 1 in March and April, while only eight spawnings occurred in unit 2, possibly because of the absence of sunlight. The significance of these results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号