首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
目的:筛选纤维素酶辅助提取芹菜总黄酮的最优提取工艺。方法:采用单因素试验方法分别考察乙醇浓度、料液比、提取时间、提取次数以及酶用量、pH值、酶解时间、酶解温度对芹菜总黄酮提取率的影响,同时对以上因素分别进行L_9(3~4)正交试验,得到酶辅助提取芹菜总黄酮的最佳提取工艺。结果:最佳工艺条件是纤维素酶用量7.0%、pH值4.4、酶解温度45℃、酶解时间1 h、乙醇浓度60%、料液比1∶20、提取时间2 h、提取次数1次。在此工艺下,芹菜总黄酮的提取率为4.17%。结论:加入纤维素酶可以有效提高芹菜总黄酮的提取率。  相似文献   

2.
为探索超声波协同酶解法提取啤酒值花黄酮的最佳工艺,研究该方法下啤酒花黄酮的抗氧化活性,利用单因素法研究了不同酶量、酶解时间、酶解温度、酶解pH值对超声波协同酶解法提取啤酒花总黄酮含量的影响。结果表明,超声波协同酶解法明显提高啤酒花黄酮的提取率,最佳提取条件为:酶量为2 mg/g,酶解p H值为4,酶解温度30℃,酶解时间2 h,啤酒花总黄酮提取量55.7 mg/g,明显高于传统提取方法的总黄酮提取率38.5%,并对·OH和DPPH具有良好的清除效果,高于常用的抗氧化剂天然维生素C对两者的清除率。  相似文献   

3.
采用纤维素酶和乳酸菌混合制备槐树叶青贮饲料,通过正交实验L9(34)分别以还原糖糖化率和粗蛋白含量为考察指标,确定了纤维素酶降解和乳酸菌发酵槐树叶的最佳工艺条件:pH值4.4、温度50℃、纤维素酶量0.75%、酶解时间48 h、含水量70%、温度35℃、乳酸菌添加量1.5%。  相似文献   

4.
本实验采用还原糖法研究了不同酶解时间、温度、pH值及酶浓度条件对纤维素酶酶解小麦麸皮效果的影响。结果表明,纤维素酶酶解小麦麸皮的最适条件为:酶解时间15min,温度37℃,pH值6,最适酶浓度0.04IU/mL。  相似文献   

5.
为了研究葛花总黄酮最佳工艺,试验采用酶解辅助超声的方法提取葛花总黄酮,确定最佳的提取工艺条件。结果表明:酶解时间为5 h,酶解温度为55℃,酶浓度为1.2%,料液比为1∶30时,葛花总黄酮的提取效果最好。以葛花总黄酮提取液吸光度值为考查标准,得出吸光度值为0.043 6。说明优选的提取工艺简单可行,速度快,可为葛花人参解酒颗粒剂的制备奠定基础。  相似文献   

6.
试验以油莎豆粕为原料,采用纤维素酶辅助提取油莎豆粕中的淀粉,并对提取条件进行优化,获得高提取率淀粉。以淀粉提取率为评价指标,在单因素试验的基础上选择加酶量、酶解时间、酶解温度、pH 4个主要影响因素进行正交试验,确定最佳的提取工艺条件。结果表明:加酶量、酶解温度以及酶解时间与酶解温度的交互作用对淀粉提取率有显著影响,油莎豆粕淀粉的最佳提取工艺条件为加酶量1.25%、酶解温度47℃、pH 5.5、酶解时间为5 h,淀粉提取率为77.67%。  相似文献   

7.
黑曲霉酶解提取葛根黄酮的研究   总被引:1,自引:0,他引:1  
试验以产高活性纤维素酶、果胶酶、蛋白酶的黑曲霉ANO2鲜曲对葛根进行酶解处理,然后对葛根进行常规提取,测定其有效成分黄酮的提取量,并与未加黑曲霉组进行了对比分析。结果表明:葛根黄酮的提取量提高21.1%,经t检验分析,加黑曲霉前后提取量均数差异极显著(P<0.01)。对酶解条件进行了优化,确定黑曲霉酶解法提取葛根的最佳条件为:最佳温度40℃、pH值4.0、酶解作用时间6h、加黑曲霉量为6%。研究表明,在最佳酶解条件下,黑曲霉ANO2鲜曲能显著提高葛根有效成分的释放提取。  相似文献   

8.
采用微波协同酶法提取甜地丁槲皮素,分别利用单因素试验和正交试验设计优化提取工艺参数条件。结果表明,酶解pH值对槲皮素得率有显著性影响,微波协同酶法的最佳酶解工艺条件为:酶解pH值4.5,酶解温度50℃、酶解时间70 min、复合酶(纤维素酶∶果胶酶=2∶1)用量0.8%,在此条件下槲皮素得率达到1.20 mg/g。优化得到的微波协同酶法提取工艺稳定、可行,可作为甜地丁槲皮素提取的一种有效手段,为工业化生产提供参考。  相似文献   

9.
《饲料工业》2019,(17):21-25
试验以贵州铜仁香椿子为原料,采用果胶酶协同超声波法提取香椿子总黄酮。通过单因素试验确定果胶酶的最佳作用pH值为3.5,最佳作用温度为50℃。在最佳pH值、最佳温度固定的条件下,通过单因素试验和正交试验优选香椿子总黄酮最佳提取工艺。研究结果表明:影响香椿子中总黄酮提取率的主次因素依次为提取液中乙醇浓度>酶解时间>酶用量>液料比,其最佳提取工艺条件为:乙醇浓度85%,酶解时间30 min,酶用量1.25%,液料比401。该条件下香椿子中总黄酮的提取率为26.41 mg/g,比不加酶直接提取提取率提高了17.95%。该方法稳定、重复性好,是一种高效的香椿子总黄酮提取方法,为香椿子资源的进一步开发应用打下一定的基础。  相似文献   

10.
为了优化纤维素酶辅助乙醇回流提取荷叶中荷叶碱的工艺,在单因素试验的基础上,通过正交试验设计考察了提取荷叶碱过程中的酶解p H值、酶解温度、纤维素酶用量及酶解时间对荷叶碱提取率的影响,得出优化的酶解辅助提取工艺为:酶解p H值4.5、酶解温度45℃、纤维素酶用量1.5 mg/g、酶解时间50 min,在此条件下荷叶碱提取率达到0.536%。该提取工艺合理、稳定、可行,为进一步工业化生产提供理论依据。  相似文献   

11.
为改善棕榈粕的营养价值,本试验利用正交结合熵权TOPSIS法对甘露聚糖酶、酸性蛋白酶和纤维素酶组成的复合酶水解棕榈粕的条件进行了优化。以棕榈粕为原料,还原糖、三氯乙酸可溶蛋白含量为指标,筛选了复合酶的组成和各酶的最适浓度;采用单因素试验获得料水比、复合酶酶解时间、酶解pH值以及酶解温度的最适条件;在单因素试验基础上,利用正交试验结合熵权TOPSIS方法获得最佳酶解条件。结果:复合酶组成和含量分别为酸性蛋白酶250 U/g、甘露聚糖酶45 U/g、纤维素酶160 U/g;各因素最适条件为料水比1∶3、酶解时间24 h、pH值4.8、温度37℃;最佳酶解条件为料水比1∶2、酶解时间24 h、pH值4.8、温度42℃。结论:复合酶在料水比1∶2、时间24 h、pH值4.8、温度42℃条件下水解棕榈粕,反应后还原糖含量达到65.29 mg/g,酸溶蛋白含量达到3.86%,粗纤维降解至8.58%。  相似文献   

12.
为了研究藜蒿叶中总黄酮的提取工艺优化,通过乙醇回流法,采用单因素实验法和正交实验法确定藜蒿叶总黄酮的最佳提取工艺条件。单因素实验结果表明:总黄酮提取率随着液固比的增大逐渐增大,当液固比大于20mL/g时,总黄酮提取率开始减小;总黄酮提取率随着提取温度的增大逐渐增大,在提取温度为70℃时总黄酮得率达到最大值之后开始下降;总黄酮提取率随着提取时间的增大呈现先增大后减小的趋势,在提取时间为1.5h时总黄酮提取率达到最大值。正交实验结果表明:在液固比15mL/g、提取温度60℃、提取时间1.5h的条件下是乙醇回流法提取藜蒿叶中总黄酮的最佳提取工艺条件,此条件下总黄酮提取率为3.960%;在液固比、提取温度、提取时间3个因素对藜蒿叶总黄酮提取率的影响中,液固比的不同对其影响是显著的。  相似文献   

13.
此试验以产高活性纤维素酶、果胶酶、蛋白酶的复合酶发酵液对葛根进行酶解处理,然后对葛根进行常规提取,测定其有效成分黄酮的提取量,并与未加酶组进行了对比分析。结果表明:葛根黄酮的提取量提高21.1%;经t检验分析,加酶前后提取量均数差异极显著(P0.01)。对酶解条件进行了优化,确定复合酶发酵液酶解法提取松针粉的最佳条件为:最佳温度40℃,pH=4.0,而酶解作用时间和加酶量分别为6h和6%。研究表明在最佳酶解条件下,复合酶发酵液能显著的提高葛根有效成分的释放提取。  相似文献   

14.
本试验用纤维素酶和果胶酶的复合酶提取葡萄籽中原花青素,探究了纤维素酶和果胶酶的质量比、复合酶浓度、酶解时间、酶解温度、pH和料液比对葡萄籽中原花青素提取的影响,并通过正交实验优化了提取工艺,得到最佳的提取工艺参数为:当纤维素酶和果胶酶的质量比为1︰1时,复合酶浓度1.0%,酶解时间60min,酶解温度50℃,pH=5,料液比1:21g/m L,原花青素得率最高,达3.805%。原花青素提取液的稳定性研究结果表明,在弱酸、暗光、50℃左右的环境下保存和使用稳定性最好。酶解法提取葡萄籽中原花青素条件温和,利于其在饲料中的进一步应用。  相似文献   

15.
为优化纤维素酶辅助提取金樱子总黄酮的提取工艺,通过单因素试验考察乙醇浓度、液料比、提取时间、纤维素酶用量、p H值、提取次数等6个因素对金樱子总黄酮得率的影响,结果其最佳提取工艺条件为:乙醇浓度40%、液料比30∶1、提取时间120 min、纤维素酶用量1.0%、p H值6、提取温度60℃、提取2次,在该提取条件下,金樱子总黄酮得率为(79.30±1.59)mg/g。提示纤维素酶辅助提取金樱子总黄酮可行、得率较高。  相似文献   

16.
用酸水提取法提取红茂草总生物碱。先分别进行提取时间、料液比、pH值和温度对红茂草总生物碱提取率影响的单因素实验,在此基础上从每个单因素中选出3个较好水平进行正交试验,从而得出酸水提取红茂草总生物碱的最佳条件。结果表明,温度80℃、提取时间4 h、料液比1∶50、pH值1.5为提取红茂草总生物碱的最佳条件。  相似文献   

17.
为建立高得率的山豆根多糖提取工艺,试验以山豆根为原料,采用木瓜蛋白酶酶解法提取多糖。通过单因素试验和正交试验研究最佳提取工艺,采用苯酚-硫酸比色法测定多糖含量。结果表明:4个因素对山豆根多糖提取率的影响依次为酶浓度酶解温度酶解时间酶解pH值。山豆根多糖最佳提取工艺条件为酶浓度2%、酶解温度55℃、酶解时间3 h、酶解pH值5,山豆根粗多糖含量为88.48%,多糖的提取率为5.11%,明显高于水提醇沉法提取的粗多糖得率(3.54%)。该方法简便、成本低、提取率高,适用于山豆根多糖的提取。  相似文献   

18.
为了优化酶解辅助提取高良姜中高良姜素的工艺,试验通过单因素试验及响应面法考察了酶解温度、酶用量、酶解pH值及酶解时间各因素及各因素交互作用对高良姜素得率的影响。结果表明:最佳酶解辅助提取工艺为酶解温度47℃、酶用量1.2%、酶解pH值5.0、酶解时间60 min。在此最佳条件下,高良姜素得率为10.53 mg/g。说明该提取工艺合理、稳定、可行。  相似文献   

19.
试验以肝素加工废水为原料,利用水解蛋白酶、风味蛋白酶、复合蛋白酶及水解-风味复合酶提取肠膜肽,以水解度表征其反应程度。研究表明,风味-水解复合酶组效果最优,最佳酶解条件为:温度50℃、pH值5.0、酶总浓度3%、风味蛋白酶:水解蛋白酶为1:1、酶解时间2h。在此条件下水解度为17.45%。  相似文献   

20.
为了研究酶解法辅助提取地锦草中槲皮素的工艺,试验采用Box-Behnken试验设计和响应面法研究了纤维素酶用量、酶解温度、酶解p H值、酶解时间对槲皮素得率的影响。结果表明:最佳酶解提取工艺条件为纤维素酶用量0.6%、酶解温度50℃、酶解p H值4.5、酶解时间45 min。在该酶解条件下,槲皮素得率为1.87 mg/g,与理论预测值(1.88 mg/g)的相对误差仅为0.63%。说明通过Box-Behnken试验设计和响应面法得到的优化工艺参数比较准确,具有实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号