首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 687 毫秒
1.
盐分与有机无机肥配施对土壤氮素矿化的影响   总被引:3,自引:0,他引:3  
针对有机无机肥配施在不同土壤盐分水平下所产生的氮素矿化过程,通过室内恒温培养试验,分别在4种盐分水平(0. 46、0. 98、1. 55、1. 97 dS/m)下,以0. 089 5 g/kg(纯氮施用量与风干土质量比)为相同施氮总量设置5个施肥处理(有机肥占施肥比例分别为0、25%、50%、75%、100%)及1个不施肥处理,研究了不同盐分水平下有机无机肥料配施对土壤净氨化量、净硝化量及净氮矿化量的影响。结果表明,土壤盐分含量随有机肥施入比例的增大而减小;盐分水平的增加对无机肥氨化作用的抑制较为强烈,当土壤电导率小于0. 98 dS/m时,增施有机肥会减弱盐分对氨化作用的影响,而电导率升至1. 55 dS/m以上时,则明显延缓有机肥氨化过程,但并不会完全抑制。盐分水平对土壤NO_3~--N生成速率的影响有一个阈值,当土壤电导率小于0. 98 dS/m时,随着盐分水平的升高,NO_3~--N增加速率上升;而盐分水平继续升高,则抑制土壤NO_3~--N的形成速率。相比不施肥,施肥显著提高了各盐分土壤净氮矿化量,同一盐分水平下均表现出无机肥施入比例越大、净氮矿化量越大的趋势。相较0. 46 dS/m,增施有机肥减小了0. 98 dS/m盐分水平下各处理之间净氮矿化量差异,而土壤电导率增至1. 55 dS/m及以上时,盐分水平对有机肥矿化过程产生明显的延缓作用。综合有机无机肥料配施对土壤盐分及氮素矿化过程的影响,推荐不同盐分水平下适宜的施肥模式为:50%有机肥+50%化肥(非盐渍化土壤)、100%有机肥(轻度盐渍化土壤)、25%有机肥+75%化肥(中度及重度盐渍化土壤)。  相似文献   

2.
咸水膜下滴灌对棉花生长和产量的影响   总被引:2,自引:0,他引:2  
试验研究了膜下滴灌方式下持续利用咸水灌溉对棉花生长和产量的影响.试验设置了3种灌溉水盐度水平:0.33(淡水)、3.62、6.71 dS/m.结果表明:土壤盐分表现出了不同程度的表聚;不同灌溉水盐度处理棉花的干物质积累无明显差异.咸水灌溉后,棉花的产量随着灌溉水盐度的增加有所降低,但差异不显著,说明棉花具有一定的耐盐性,少量咸水灌溉对棉花生长和产量的影响不明显.  相似文献   

3.
滴灌条件下不同盐水平对棉花根系生长的影响   总被引:2,自引:1,他引:2  
采用盆栽试验研究膜下滴灌条件下不同土壤盐水平对棉花根系生长的影响。结果表明,在盐胁迫下棉花根系感受到胁迫信号,并产生相应的适应反应,改变根系形态,增加根长、根体积、根表面积和根冠比,而且随盐度的增加,这种趋势更加明显。进入铃期以后,0.32 dS/m和1.12 dS/m处理棉花的根量开始下降,而1.90 dS/m处理棉花根量没有相应的减少,仍保持较高生长活力。  相似文献   

4.
研究选择2种不同盐分含量土壤(中度盐渍化EC25:3~7dS/m和轻度盐渍化EC25:1~3dS/m),通过对棉田整个生育期的土壤盐分和水分含量测定,研究棉田不同土层水分、盐分变化及其对棉花干物质积累的影响。结果表明:两种不同盐分含量土壤,盐分降幅较大的在0~20,40~80cm土层为膜下滴灌棉田盐分积累区,中度和轻度土壤在0~20cm土层分别下降1.73dS/m和1.04dS/m。整个生育期土壤盐分变化趋势相似,都表现为土壤盐分前期(现蕾期)快速下降后期有所增加,中度土壤和轻度土壤的各层含盐量都有着极显著的差异;中度盐渍化和轻度盐渍化棉田的单株干物质积累量在生长前期差异显著,后期差异不显著。  相似文献   

5.
风沙危害对棉花苗期生长的影响及其定量指标的构建对于评估风沙灾害对棉花产量的影响具有重要的指导意义。通过不同风速、风向、持续时间的风沙模拟试验,开展风沙灾害对棉花生长的危害程度研究,得到棉花苗期(1真叶到5真叶)风沙危害的指标。结果表明:从1真叶至3真叶,棉苗抗风沙能力随生长进程的推进不断增强,苗期的棉花幼苗对风沙的抵抗能力在5真叶期发生突变;风沙对棉花苗期的影响划分为3个阶段,8~14 m/s为影响增长阶段,14~17 m/s为影响严重阶段,>17 m/s为损毁阶段。实际生产过程中可根据具体天气预报,结合棉花苗期风沙危害指标,采取适当的风沙天气预防措施。   相似文献   

6.
滨海盐碱地微咸水滴灌水盐调控对番茄生长及品质的影响   总被引:1,自引:0,他引:1  
【目的】研究滨海缺水地区在盐碱地上利用微咸水灌溉进行绿色农业生产的可行性和安全性。【方法】以番茄为研究对象,采用"滴灌水盐调控+垄作"模式,以深层地下淡水(0.7 dS/m)为对照,田间布置了4种不同电导率(3.2、4.7、6.2、7.8 dS/m)的微咸水,研究微咸水灌溉对土壤剖面盐分分布和番茄生长、产量及品质性状等代表性指标的影响。【结果】利用3.2~7.8 dS/m的微咸水灌溉番茄,试验结束时整个土体的盐分并没有显著增加,在整个土体中进行了重新分布,在距离滴头0~10 cm远的0~60 cm深度范围存在一个明显的盐分淋洗区,盐分主要是被淋洗到70 cm深度以下和距离滴头20~40 cm远的垄坡和垄沟的表层(0~20 cm)。随着灌溉水电导率(ECi)的增加,LAI、地上部和地下部生物量先增加后减少,株高和茎粗有逐渐降低的趋势,且当ECi4.7 dS/m时,各生长指标较淡水处理显著降低。不同处理番茄叶片中叶绿素总量、类胡萝卜素、丙二醛和脯氨酸量差异不显著,但微咸水灌溉显著降低了番茄叶片中可溶性糖量。随着ECi的增加,番茄果实中可溶性固形物、还原糖、有机酸量逐渐增多,而果实糖酸比逐渐降低;番茄的产量随着ECi的增加而降低,通过公式拟合发现,当ECi1.4 dS/m时,ECi每增加1 dS/m,番茄的产量降低9.7%。【结论】总体而言,在淡水紧缺的滨海半湿润地区,盐碱地上种植番茄可以利用电导率≤4.7dS/m的微咸水进行灌溉,尽管相对于淡水灌溉,番茄的产量有所降低,但可以节省300 mm以上的淡水量,番茄的品质提高,并且整个土壤剖面盐分可以维持平衡。  相似文献   

7.
为探讨微咸水灌溉条件下,土壤残膜对棉花出苗率和出苗期土壤盐分的影响规律,分别设置残膜量、灌水控制下限、土壤容重和灌溉水电导率四因素三水平正交试验.结果表明:对棉花出苗率的影响作用强弱顺序为残膜量>灌溉水电导率>灌水控制下限>容重.土壤电导率随残膜量、灌溉水控制下限和灌溉水电导率增加而增加,随土壤容重增加而降低.增加残膜量和灌溉水电导率,土壤中Na+、K+和Cl-含量增加;增加残膜量和灌溉水量,土壤K+、Ca2+和SO42-含量增加,Mg2+含量降低;随残膜量增加,HCO3-含量降低.土壤残膜和灌溉水电导率增加会导致棉花出苗率降低并加重土壤盐渍化程度,无残膜和有残膜棉花苗期微咸水灌溉电导率上限分别为3800μS/cm和2500μS/cm.  相似文献   

8.
进行暗管排水条件下微咸水灌溉田间试验,设置3种暗管埋深,分别为80 cm(D1)、120 cm(D2)以及无暗管排水(D0),3种微咸水浓度,其电导率分别为0.78 dS/m(S1),3.75 dS/m(S2)和6.25 dS/m(S3),共9个处理,每个处理3组重复.试验结果表明:暗管排水措施可以有效排除微咸水灌溉过程中土壤中累积的盐分;在玉米全生育期内,暗管埋深D1条件下,3种浓度微咸水S1,S2和S3灌溉时根系土壤电导率分别下降了39.00%,31.56%和29.43%,暗管埋深D2条件下,根系土壤电导率则分别下降了31.91%,18.08%和7.44%;夏玉米干物质累积量、穗棒累积量和穗棒质量分配率及最终产量均随着微咸水浓度的升高而降低;在相同微咸水浓度下,不同暗管埋设条件下的夏玉米最终产量从大到小依次为D1,D2,D0;3种暗管埋设条件下的作物需水量从大到小依次为D0,D2,D1的规律;暗管埋深80 cm的处理(D1)下夏玉米水分利用效率最高,而未埋设暗管的处理(D0)水分利用效率最低;当暗管埋设条件一定时,夏玉米水分利用效率随微咸水浓度的升高呈逐渐降低的趋势.  相似文献   

9.
膜下滴灌棉花水-土壤改良剂耦合效应研究   总被引:1,自引:0,他引:1  
采用二因素五水平正交组合设计方案,建立回归模型并进行效应解析后表明:灌水对棉花产量的影响大于改良剂;灌水对棉花生育期土壤脱盐率的影响大于改良剂;水-改良剂耦合效应对棉花产量和生育期土壤脱盐率均为协同效应;按照所建立的水-土壤改良剂对棉花产量的耦合模型和水-土壤改良剂对棉花生育期土壤脱盐率的耦合模型,通过计算机模拟,提出了高产抑盐的灌水-施用土壤改良剂方案:灌水指标为3 285~4 590 m3/hm2,施用改良剂指标为112.5~120 kg/hm2。  相似文献   

10.
为了研究土壤冻结过程中土壤液态含水率和土壤质地对电导率变化特征的影响,采用TDR对恒温冻结过程中3种质地(沙土、沙壤土、黏土)土壤在3种初始土壤含水率(10%、15%、20%)条件下的土壤液态含水率和电导率进行了监测。结果表明:在恒温冻结过程中,土壤液态含水率随冻结时间的增加而减小;土壤电导率随液态含水率的降低而减小,初始土壤含水率越高,电导率降低值越大,S20、R20和N20降低值分别为2.11、2.50和2.47 dS/m;土壤黏粒含量越多,土壤电导率越高。冻结过程中土壤电导率与土壤液态含水率较好地符合对数函数关系,沙壤土拟合效果较好,R~2均大于0.945。研究结果可为我国季节性冻土区农业生产和土壤盐渍化防治提供参考。  相似文献   

11.
A validated agro-hydrological model soil water atmosphere plant (SWAP) was applied to formulate guidelines for irrigation planning in cotton–wheat crop rotation using saline ground water as such and in alternation with canal water for sustainable crop production. Six ground water qualities (4, 6, 8, 10, 12 and 14 dS/m), four irrigation schedules with different irrigation depths (4, 6, 8 and 10  cm) and two soil types (sandy loam and loamy sand) were considered for each simulation. The impact of the each irrigation scenario on crop performance, and salinization/desalinisation processes occurring in the soil profile (0–2 m) was evaluated through Water Management Response Indicators (WMRIs). The criterion adopted for sustainable crop production was a minimum of pre-specified values of ETrel (≥0.75 and ≥0.65 for wheat and cotton, respectively) at the end of the 5th year of simulation corresponding to minimum deep percolation loss of applied water. The extended simulation study revealed that it was possible to use the saline water upto 14 dS/m alternatively with canal water for cotton–wheat rotation in both sandy loam and loamy sand soils. In all situations pre-sown irrigation must be accomplished with canal water (0.3–0.4 dS/m). Also when the quality of ground water deteriorates beyond 10 dS/m, it was suggested to use groundwater for post-sown irrigations alternately with canal water. Generally, percolation losses increased with the increase in level of salinity of ground water to account for leaching and thus maintain a favourable salt balance in the root zone to achieve pre-specified values of ETrel.  相似文献   

12.
Summary Many irrigated lands in semi-arid regions of the world are underlain with saline high water tables. Water management is critical to maintain crop productivity under these conditions. A multi-seasonal, transient state model was used to simulate cotton and alfalfa production under various irrigation management regimes. The variables included in-season water application of 1.0 or 0.6 potential evapotranspiration (PET), and 18 or 33 cm pre-irrigation amounts for cotton. The water table was initially at a 1.5m depth and a 9 dS/m salinity. A impermeable lower boundary at 2.5 m depth was imposed. Irrigation water salinity was 0.4 dS/m. Climatic conditions typical to the San Joaquin Valley of California were used for PET and precipitation values. The simulations were for no-lateral flow and also lateral flow whereby the water table was raised to its initial level prior to each irrigation event. Uniform application of 1.0 PET provided for relative cotton lint yields and alfalfa yields of 95% or more for at least 4 years. In-season irrigation of cotton with 0.6 PET had higher yields when associated with a 33 cm rather than an 18 cm pre-irrigation. Lateral flow provided for higher cotton lint yields production than the no-lateral flow case for each pre-irrigation treatment. The beneficial effects of lateral flow diminished with time because of the additional salt which accumulated and became detrimental to crop production. Substantial alfalfa yield reductions occurred after the first year when irrigation was set at 0.6 PET regardless of other conditions. Evaporation losses from the soil during the cotton fallow season were higher when the soil water content entering the fallow season were higher.Research was supported by the University of California Salinity/ Drainage Task Force  相似文献   

13.
膜下滴灌不同盐度土壤棉田水盐运移规律研究   总被引:1,自引:0,他引:1  
李冬冬  王海江  吕新 《灌溉排水学报》2012,31(4):108-110,135
通过对棉田整个生育期的土壤盐分和土壤水分测定,研究不同盐度土壤膜下滴灌棉田不同土层水分和盐分变化及其对棉花生长的影响。结果表明,盐分在0~20cm土层降幅较大;40~80cm土层为膜下滴灌棉田盐分积聚区。整个生育期2种土壤盐分在前期(现蕾期)快速下降,后期有所增加,中度土壤和轻度土壤的各层平均含盐量都有着极显著的差异。中度和轻度盐渍化土壤在棉花整个生育期内平均土壤含水率变化无显著差异。中度盐渍化和轻度盐渍化棉田的单株干物质积累量在生长前期差异显著,后期不显著。  相似文献   

14.
Two-year lysimeter experiments were conducted to determine groundwater contributions by safflower (Carthamus tinctorius L.) crop. The plants were grown in twenty columns each with a diameter of 0.40 m packed with Silty Clay soil. The experiments were carried out in a complete randomized blocks design with four replicates. In each experiment, five treatments were applied by maintaining groundwater salinity to a control treatment with EC 1 dS/m, while the groundwater salinity of the other treatments was 2, 5, 8 and 10 dS/m, and 0.8 m water table level, respectively. The use of groundwater as a part of crop evapotranspiration was characterized by using daily measurements of the water level in Mariotte tubes. The extra magnitude of irrigation water requirement for each treatment was applied by water with EC of 1 dS/m. The results of experiments showed that for different control treatments with 1 dS/m, 2, 5, 8 and 10 dS/m, the groundwater contributions were achieved as 59, 51, 38, 32 and 19% of the total plant water requirements, respectively.  相似文献   

15.
Long term use of saline water for irrigation   总被引:1,自引:0,他引:1  
Use of saline drainage water in irrigated agriculture, as a means of its disposal, was evaluated on a 60 ha site on the west side of the San Joaquin Valley. In the drip irrigation treatments, 50 to 59% of the irrigation water applied during the six-year rotation was saline with an ECw ranging from 7 to 8 dS/m, and containing 5 to 7 mg/L boron and 220 to 310 g/L total selenium. Low salinity water with an ECw of 0.4 to 0.5 dS/m and B 0.4 mg/1 was used to irrigate the furrow plots from 1982 to 1985 after which a blend of good quality water and saline drainage water was used. A six-year rotation of cotton, cotton, cotton, wheat, sugar beet and cotton was used. While the cotton and sugar beet yields were not affected during the initial six years, the levels of boron (B) in the soil became quite high and were accumulated in plant tissue to near toxic levels. During the six year period, for treatments surface irrigated with saline drainage water or a blend of saline and low salinity water, the B concentration in the soil increased throughout the 1.5 m soil profile while the electrical conductivity (ECe) increased primarily in the upper l m of the profile. Increaszs in soil ECe during the entire rotation occurred on plots where minimal leaching was practiced. Potential problems with germination and seedling establishment associated with increased surface soil salinity were avoided by leaching with rainfall and low-salinity pre-plant irrigations of 150 mm or more. Accumulation of boron and selenium poses a major threat to the sustainability of agriculture if drainage volumes are to be reduced by using drainage water for irrigation. This is particularly true in areas where toxic materials (salt, boron, other toxic minor elements) cannot be removed from the irrigated area. Continual storage within the root zone of the cropped soil is not sustainable.  相似文献   

16.
基于宜耕性评价的耕地利用效率分区与提升路径   总被引:2,自引:0,他引:2  
在宜耕性的基础上,为合理提高耕地利用效率、加强生态文明建设和资源可持续利用,以原阳县为例,综合考虑耕地利用效率与宜耕性评价结果,对耕地利用效率进行分区,提出各区域耕地利用效率提升路径。结果表明:从耕地利用效率来看,原阳县耕地利用整体水平不高,其综合效率均值为0.837,纯技术效率和规模效率均有较大的提升空间;从宜耕性评价结果来看,原阳县耕地的适宜宜耕区、基本适宜宜耕区、低适宜宜耕区、流域保护区面积分别占耕地总面积的37.84%、41.36%、19.09%、1.71%,整体宜耕性较强。叠加组合耕地利用效率和宜耕性评价结果,将原阳县耕地利用效率分为保持区、提升区、调整区、保护区。从可持续利用和生态保护角度考虑,结合差异化的整治措施,保持区宜耕性和耕地利用效率均较高,应以维持现有耕地利用效率、延伸耕地的生态和经济价值为重点;提升区宜耕性强、耕地利用效率较低,应通过规模化经营最大限度地提高其有效利用效率;调整区宜耕性差,不宜提升耕地利用效率,应发展生态农业或设施水培农业,在提高耕地经济效益的同时,缓解耕地与生态保护压力;保护区内耕地应逐步退出,充分发挥其湿地功能与生态功能。本研究可为耕地资源的可持续利用提供决策参考。  相似文献   

17.
A field experiment was conducted for 10 years in the Nile Delta of Egypt to quantify the benefit of subsurface drainage on crop yield. During three crop rotations, subsurface drains at a spacing of 20 m and a depth of 1.5 m doubled the yield of cotton and rice and increased the yield of wheat and clover by 50%. No significant enhancement in crop yield was found from placing various envelope materials around the drains compared to no envelope. Drains of 75 mm diameter resulted in significantly lower yields (20% less) for cotton and rice than drains of 100 mm diameter but there were no yield differences for wheat and clover. Applying 10 Mg/ha of gypsum and deep plowing (25 cm deep) improved yields from 5 to 19% for all crops, cotton and clover having the largest yield improvement. Soil salinity to a depth of 1.5 m was reduced from an average 5.3–2.2 dS/m after 1 year of drainage without additional water being applied beyond the normal irrigation amounts and rainfall.  相似文献   

18.
Summary A field study was conducted on cotton (Gossypium hirsutum L. c.v. Acala SJ-2) to investigate the effects of soil salinity on the responses of stress indices derived from canopy temperature, leaf diffusion resistance and leaf water potential. The four salinity treatments used in this study were obtained by mixtures of aqueduct and well water to provide mean soil water electrical conductivities of 17, 27, 32 and 38 dS/m in the upper 0.6 m of soil profile. The study was conducted on a sandy loam saline-alkali soil in the lower San Joaquin Valley of California on 30 July 1981, when the soil profile was adequately irrigated to remove any interference of soil matric potential on the stress measurements. Measurements of canopy temperature, leaf water potential and leaf diffusion resistance were made hourly throughout the day.Crop water stress index (CWSI) estimates derived from canopy temperature measurements in the least saline treatment had values similar to those found for cotton grown under minimum salinity profiles. Throughout the course of the day the treatments affected CWSI values with the maximum differences occurring in mid-afternoon. Salinity induced differences were also evident in the leaf diffusion resistance and leaf water potential measurements. Vapor pressure deficit was found to indicate the evaporative demand at which cotton could maintain potential water use for the various soil salinity levels studied. At vapor pressure deficits greater than 5 kPa, cotton would appear stressed at in situ soil water electrical conductivities exceeding 15 dS/m. The CWSI was as sensitive to osmotic stress as other, more traditional plant measures, provided a broader spatial resolution and appeared to be a practical tool for assessing osmotic stress occurring within irrigated cotton fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号