首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium and sodium channels in spontaneously contracting vascular muscle cells   总被引:10,自引:0,他引:10  
Electrophysiological recordings of inward currents from whole cells showed that vascular muscle cells have one type of sodium channel and two types of calcium channels. One of the calcium channels, the transient calcium channel, was activated by small depolarizations but then rapidly inactivated. It was equally permeable to calcium and barium and was blocked by cadmium, but not by tetrodotoxin. The other type, the sustained calcium channel, was activated by larger depolarizations, but inactivated very little; it was more permeable to barium than calcium. The sustained calcium channel was more sensitive to block by cadmium than the transient channel, but also was not blocked by tetrodotoxin. The sodium channel inactivated 15 times more rapidly than the transient calcium channel and at more negative voltages. This sodium channel, which is unusual because it is only blocked by a very high (60 microM) tetrodotoxin concentration but not by cadmium, is the first to be characterized in vascular muscle, and together with the two calcium channels, provides a basis for different patterns of excitation in vascular muscles.  相似文献   

2.
Two different divalent cation-selective channels from Paramecium cilia were incorporated into planar lipid bilayers. Both channels were much more permeable to divalent than univalent cations, and one of them discriminated significantly among the divalent cations. The selectivity and voltage dependence of the latter channel are comparable to those of voltage-dependent calcium channels found in a variety of cells. A combined biochemical, biophysical, and genetic study of calcium channels is now possible.  相似文献   

3.
镉胁迫下NO对胡杨细胞Cd2+吸收调控机制的研究   总被引:1,自引:1,他引:0  
本文研究了NO对胡杨愈伤细胞Cd2+耐受性的影响。结果表明:Cd2+(50 μmol/L)显著抑制了胡杨细胞的生长,而硝普钠SNP(NO供体,25 μmol/L)能明显缓解Cd2+对胡杨细胞生长的抑制作用,并减轻镉对细胞膜的伤害以及镉胁迫导致的细胞活力下降。利用非损伤微测技术等研究了NO对Cd2+动态吸收的影响。CdCl2(50 μmol/L)处理之后,胡杨细胞表现出Cd2+内流,而SNP(25 μmol/L,6 h)显著抑制了Cd2+的内流,并降低了Cd2+在细胞内的积累。研究发现,NO是通过调控钙离子通道来抑制胡杨细胞对Cd2+的吸收。镉胁迫下Cd2+内流被钙离子通道专一性抑制剂氯化镧明显抑制,表明Cd2+是通过钙离子通道转运进入细胞。并且发现,NO是通过促进Ca2+的内流来竞争性地抑制胡杨细胞对Cd2+的吸收,从而缓解了镉胁迫对胡杨细胞造成的生长抑制。   相似文献   

4.
Transmitter sensitivity of neurons assayed by autoradiography   总被引:4,自引:0,他引:4  
Ionic conductance channels that are opened by activating nicotinic acetylcholine receptors at synapses of sympathetic neurons are permeable to small organic amines. Uptake of a tritium-labeled amine through these channels can be measured by autoradiography. This provides a simple and direct way to assess the sensitivity of individual neurons to acetylcholine without using microelectrodes.  相似文献   

5.
6.
Single channel studies on inactivation of calcium currents   总被引:1,自引:0,他引:1  
Inactivation of calcium channels has been attributed to a direct reaction of calcium ions entering the cell with the calcium channel. For a single channel this hypothesis predicts a correlation between the amount of calcium entering during an opening or a burst of openings and the subsequent closed times. No such correlation was found, and the possibility that, upon entry, calcium ions produce inactivation is excluded.  相似文献   

7.
Large-conductance calcium- and voltage-activated potassium channels (BKCa) are dually activated by membrane depolarization and elevation of cytosolic calcium ions (Ca2+). Under normal cellular conditions, BKCa channel activation requires Ca2+ concentrations that typically occur in close proximity to Ca2+ sources. We show that BKCa channels affinity-purified from rat brain are assembled into macromolecular complexes with the voltage-gated calcium channels Cav1.2 (L-type), Cav2.1 (P/Q-type), and Cav2.2 (N-type). Heterologously expressed BKCa-Cav complexes reconstitute a functional "Ca2+ nanodomain" where Ca2+ influx through the Cav channel activates BKCa in the physiological voltage range with submillisecond kinetics. Complex formation with distinct Cav channels enables BKCa-mediated membrane hyperpolarization that controls neuronal firing pattern and release of hormones and transmitters in the central nervous system.  相似文献   

8.
The transport of ions across the membranes of cells and organelles is a prerequisite for many of life's processes. Transport often involves very precise selectivity for specific ions. Recently, atomic-resolution structures have been determined for channels or pumps that are selective for sodium, potassium, calcium, and chloride: four of the most abundant ions in biology. From these structures we can begin to understand the principles of selective ion transport in terms of the architecture and detailed chemistry of the ion conduction pathways.  相似文献   

9.
Resistance of nematodes to anthelmintics such as avermectins has emerged as a major global health and agricultural problem, but genes conferring natural resistance to avermectins are unknown. We show that a naturally occurring four-amino-acid deletion in the ligand-binding domain of GLC-1, the alpha-subunit of a glutamate-gated chloride channel, confers resistance to avermectins in the model nematode Caenorhabditis elegans. We also find that the same variant confers resistance to the avermectin-producing bacterium Streptomyces avermitilis. Population-genetic analyses identified two highly divergent haplotypes at the glc-1 locus that have been maintained at intermediate frequencies by long-term balancing selection. These results implicate variation in glutamate-gated chloride channels in avermectin resistance and provide a mechanism by which such resistance can be maintained.  相似文献   

10.
Neurotransmitter release is triggered by calcium ions and depends critically on the correct function of three types of SNARE [soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor] proteins. With use of the large calyx of Held presynaptic terminal from rats, we found that cleavage of different SNARE proteins by clostridial neurotoxins caused distinct kinetic changes in neurotransmitter release. When elevating calcium ion concentration directly at the presynaptic terminal with the use of caged calcium, cleavage of SNAP-25 by botulinum toxin A (BoNT/A) produced a strong reduction in the calcium sensitivity for release, whereas cleavage of syntaxin using BoNT/C1 and synaptobrevin using tetanus toxin (TeNT) produced an all-or-nothing block without changing the kinetics of remaining vesicles. When stimulating release by calcium influx through channels, a difference between BoNT/C1 and TeNT emerged, which suggests that cleavage of synaptobrevin modifies the coupling between channels and release-competent vesicles.  相似文献   

11.
Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum   总被引:52,自引:0,他引:52  
The role of sodium-calcium exchange at the sarcolemma in the release of calcium from cardiac sarcoplasmic reticulum was investigated in voltage-clamped, isolated cardiac myocytes. In the absence of calcium entry through voltage-dependent calcium channels, membrane depolarization elicited release of calcium from ryanodine-sensitive internal stores. This process was dependent on sodium entry through tetrodotoxin-sensitive sodium channels. Calcium release under these conditions was also dependent on extracellular calcium concentration, suggesting a calcium-induced trigger release mechanism that involves calcium entry into the cell by sodium-calcium exchange. This sodium current-induced calcium release mechanism may explain, in part, the positive inotropic effects of cardiac glycosides and the negative inotropic effects of a variety of antiarrhythmic drugs that interact with cardiac sodium channels. In response to a transient rise of intracellular sodium, sodium-calcium exchange may promote calcium entry into cardiac cells and trigger sarcoplasmic calcium release during physiologic action potentials.  相似文献   

12.
Glutamate activates a number of different receptor-channel complexes, each of which may contribute to generation of excitatory postsynaptic potentials in the mammalian central nervous system. The rapid application of the selective glutamate agonist, quisqualate, activates a large rapidly inactivating current (3 to 8 milliseconds), which is mediated by a neuronal ionic channel with high unitary conductance (35 picosiemens). The current through this channel shows pharmacologic characteristics similar to those observed for the fast excitatory postsynaptic current (EPSC); it reverses near 0 millivolts and shows no significant voltage dependence. The amplitude of the current through this channel is many times larger than that through the other non-NMDA (N-methyl-D-aspartate) channels. These results suggest that this high-conductance quisqualate-activated channel may mediate the fast EPSC in the mammalian central nervous system.  相似文献   

13.
非选择性阳离子通道(NSCCs)是生物膜上能同时允许不通价态的阳离子通过的多种通道蛋白的集合体,参与了细胞的营养吸收、膨压控制、信号传导等许多生理过程。NSCCs能够快速转运Ca2+、K+、Mg2+等细胞代谢必需的营养元素,也能转运有毒重金属离子。了解重金属离子与NSCCs的互作关系,对于调控植物对污染环境中有害重金属的吸收和转运过程具有重要意义。本文综述了重金属离子类型和浓度影响NSCCs门控机制的研究进展,为探索新型离子通道调控剂及其调控机理提供参考。  相似文献   

14.
Voltage- and store-operated calcium (Ca(2+)) channels are the major routes of Ca(2+) entry in mammalian cells, but little is known about how cells coordinate the activity of these channels to generate coherent calcium signals. We found that STIM1 (stromal interaction molecule 1), the main activator of store-operated Ca(2+) channels, directly suppresses depolarization-induced opening of the voltage-gated Ca(2+) channel Ca(V)1.2. STIM1 binds to the C terminus of Ca(V)1.2 through its Ca(2+) release-activated Ca(2+) activation domain, acutely inhibits gating, and causes long-term internalization of the channel from the membrane. This establishes a previously unknown function for STIM1 and provides a molecular mechanism to explain the reciprocal regulation of these two channels in cells.  相似文献   

15.
Calcium influx through voltage-gated membrane channels plays a crucial role in a variety of neuronal processes, including long-term potentiation and epileptogenesis in the mammalian cortex. Recent studies indicate that calcium channels in some cell types are heterogeneous. This heterogeneity has now been shown for calcium channels in mammalian cortical neurons. When dissociated embryonic hippocampal neurons from rat were grown in culture they first had only low voltage-activated, fully inactivating somatic calcium channels. These channels were metabolically stable and conducted calcium better than barium. Appearing later in conjunction with neurite outgrowth and eventually predominating in the dendrites, were high voltage-activated, slowly inactivating calcium channels. These were metabolically labile and more selective to barium than to calcium. Both types of calcium currents were reduced by classical calcium channel antagonists, but the low voltage-activated channels were more strongly blocked by the anticonvulsant drug phenytoin. These findings demonstrate the development and coexistence of two distinct types of calcium channels in mammalian cortical neurons.  相似文献   

16.
The finding that astrocytes possess glutamate-sensitive ion channels hinted at a previously unrecognized signaling role for these cells. Now it is reported that cultured hippocampal astrocytes can respond to glutamate with a prompt and oscillatory elevation of cytoplasmic free calcium, visible through use of the fluorescent calcium indicator fluo-3. Two types of glutamate receptor--one preferring quisqualate and releasing calcium from intracellular stores and the other preferring kainate and promoting surface-membrane calcium influx--appear to be involved. Moreover, glutamate-induced increases in cytoplasmic free calcium frequently propagate as waves within the cytoplasm of individual astrocytes and between adjacent astrocytes in confluent cultures. These propagating waves of calcium suggest that networks of astrocytes may constitute a long-range signaling system within the brain.  相似文献   

17.
Electrophysiological recordings were used to analyze single calcium channels in planar lipid bilayers after membranes from bovine cardiac sarcolemmal vesicles had been incorporated into the bilayer. In these cell-free conditions, channels in the bilayer showed unitary barium or calcium conductances, gating kinetics, and pharmacological responses that were similar to dihydropyridine-sensitive calcium channels in intact cells. The open channel current varied in a nonlinear manner with voltage under asymmetric (that is, physiological) ionic conditions. However, with identical solutions on both sides of the bilayer, the current-voltage relation was linear. In matched experiments, calcium channels from skeletal muscle T-tubules differed significantly from cardiac calcium channels in their conductance properties and gating kinetics.  相似文献   

18.
The cellular basis of hearing: the biophysics of hair cells   总被引:19,自引:0,他引:19  
A crucial event in the hearing process is the transduction of mechanical stimuli into electrical signals by hair cells, the sensory receptors of the internal ear. Stimulation results in the rapid opening of ionic channels in the mechanically sensitive organelles of these cells, their hair bundles. These transduction channels, which are nonselectively permeable, are directly excited by hair-bundle displacement. Hair cells are selectively responsive to particular frequencies of stimulation, both due to the mechanical properties of their hair bundles and because of an ensemble of ionic channels that constitute an electrical resonator.  相似文献   

19.
植物低温信号的感知、转导与转录调控   总被引:2,自引:0,他引:2  
低温是植物生长的主要环境胁迫因子之一。植物对低温的应激是一个复杂的过程,包括低温信号的感知、信号转导和转录调控等阶段。低温可以通过质膜流动性的改变被质膜感知,也可以通过质膜上的钙离子通透性通道、组氨酸激酶、受体激酶和磷酸酯酶感知。低温信号转导包括钙信号途径和其他信号途径,其中钙信号途径是低温应答过程中重要的信号途径。在此途径中,因低温增加的胞质钙离子能被CDPK、磷酸酶和MAPK识别并传导;其他信号途径主要与ABA有关。低温信号最终将启动CBF和非CBF介导的转录调控,提高植物的低温抗性。  相似文献   

20.
Voltage-sensitive calcium channels in different tissues have diverse functional properties. Polyclonal antibodies (PAC-2) against the alpha subunits of purified rabbit skeletal muscle calcium channels immunoprecipitated calcium channels labeled with the dihydropyridine PN200-110 from both skeletal muscle and brain. The immunoreactivity of PAC-2 with the skeletal muscle channel was greater than that with the brain calcium channel and was absorbed only partially by prior treatment with the brain channel. PAC-2 specifically recognized a large peptide in synaptic plasma membranes of rabbit brain with an apparent molecular size of 169,000 daltons. This protein resembles an alpha subunit of the skeletal muscle calcium channel in apparent molecular weight, antigenic properties, and electrophoretic behavior after reduction of disulfide bonds. Thus, the dihydropyridine-sensitive calcium channel of rabbit brain has an alpha subunit that is homologous, but not identical, to those of the skeletal muscle calcium channel. The different functional properties of these two calcium channels may result from minor variations in structurally similar components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号