首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Adipose-derived mesenchymal stem cells (AD-MSCs) are abundant in adipose tissue from animals of all ages, are easily isolated, can differentiate into multi-lineage cells, and have a clinical application. This promising potential may only be achieved if the cells are expanding in a large number while maintaining their stemness in sequential passages. In this study, canine AD-MSCs (cAD-MSCs) were individually isolated from five dogs and subjected to proliferative culture with seven sub-passages. The cells at each sub-passage were characterized for properties associated with multipotent MSCs such as proliferation kinetics, expression of MSCs-specific surface markers, expression of molecules associated with self-renewal and differentiation capabilities into mesodermal lineage cells. Proliferation of the cells plateaued at passage 5 by cumulative population doubling level, while cell doubling time gradually increased with passage. MSCs surface markers (CD44, CD90, and CD105) and molecules (Oct 3/4, Sox-2, Nanog and HMGA2) associated with self-renewal were all expressed in the cells between passages 1 to 6 by RT-PCR. In addition, the cells at passage 1, 3 or 6 underwent adipogenic and chondrogenic differentiation under specific induction conditions. However, the level of adipogenic and chondrogenic differentiation was negatively correlated with the number of sub-passage. The present study suggests that sequential sub-passages affect multipotent properties of cAD-MSCs, which should be considered in their therapeutic application in regenerative medicine.  相似文献   

2.
The aim of the present study was to compare canine adipose tissue mesenchymal stem cells cultured under normoxic (20% O2) and not severe hypoxic (7% O2) conditions in terms of marker expression, proliferation rate, differentiation potential and cell morphology. Intra-abdominal fat tissue samples were recovered from 4 dogs and cells isolated from each sample were cultured under hypoxic and normoxic conditions. Proliferation rate and adhesion ability were determined, differentiation towards chondrogenic, osteogenic and adipogenic lineages was induced; the expression of CD44, CD34, DLA-DQA1, DLA-DRA1 was determined by PCR, while flow cytometry analysis for CD90, CD105, CD45 and CD14 was carried out. The morphological study was performed by transmission electron microscopy. Canine AT-MSCs, cultured under different oxygen tensions, maintained their basic biological features. However, under hypoxia, cells were not able to form spheroid aggregates revealing a reduction of their adhesivness. In both conditions, MSCs mainly displayed the same ultrastructural morphology and retained the ability to produce membrane vesicles. Noteworthy, MSCs cultivated under hypoxya revealed a huge shedding of large complex vesicles, containing smaller round-shaped vesicles. In our study, hypoxia partially influences the basic biological properties and the ultrastructural features of canine mesenchymal stem /stromal cells. Further studies are needed to clarify how hypoxia affects EVs production in term of amount and content in order to understand its contribution in tissue regenerative mechanisms and the possible employment in clinical applications. The findings of the present work could be noteworthy for canine as well as for other mammalian species.  相似文献   

3.
Equine multipotent mesenchymal stem cells can be isolated from different tissues and are capable of differentiating into various organ progenitor cells. Physiological oxygen conditions in diverse tissues in vivo are hypoxic, even when standard culture conditions are normoxic. Here, equine adipose tissue-derived stem cells were used to analyze their behavior and differentiation potential into the adipogenic, osteogenic, and chondrogenic lineage under 3% and 21% oxygen tension. Hypoxia-inducible factor-1α is an indicator for hypoxic stress sensed by cells. Its expression was similar under both oxygen conditions, which could be a sign for low oxygen tension being sensed as normoxic by those stem cells. Furthermore, it was observed that hypoxia inhibits cell proliferation. Adipogenesis and chondrogenesis showed better results under 3% oxygen; for osteogenesis, an oxygen tension of 21% was more effective. This knowledge may help to improve conditions of stem cell differentiation and consequently their application in tissue engineering.  相似文献   

4.
The aim of this study was to compare the osteogenic and proliferative potential of canine mesenchymal stromal cells (cMSCs) derived from bone marrow (BM-cMSCs) and adipose tissue (AT-cMSCs). Proliferation potential was determined under varying oxygen tensions (1%, 5%, and 21% O(2)). Effects of reduced oxygen levels on the osteogenic differentiation of AT-cMSCs were also investigated. AT-cMSCs proliferated at a significantly faster rate than BM-cMSCs, although both cell types showed robust osteogenic differentiation. Culture in 5% and 1% O(2) impaired proliferation in cMSC from both sources and osteogenic differentiation in AT-cMSCs. Our data suggests that AT-cMSCs might be more suitable for use in a clinical situation, where large cell numbers are required for bone repair, due to their rapid proliferation combined with robust osteogenic potential. Our data also suggests that the inhibitory effects of hypoxia on both cell proliferation and differentiation should be considered when using MSCs in a potentially hypoxic environment such as a fracture site.  相似文献   

5.
Multipotent mesenchymal stromal cells (MSCs) are a promising therapeutic tool for the treatment of equine tendon and other musculoskeletal injuries. While bone marrow is considered the ‘gold standard’ source of these cells, various other tissues contain MSCs with potentially useful features. The aim of this study was to compare clinically relevant characteristics of MSCs derived from bone marrow, umbilical cord blood and tissue and from adipose tissue and tendon. Cell yield, proliferation, migration, tendon marker expression and differentiation into adipocytes, chondrocytes and osteoblasts was assessed, quantified and compared.MSC numbers obtained from adipose, tendon or umbilical cord tissues were 222-fold higher than those obtained from bone marrow or cord blood. Cells derived from tendon and adipose tissues exhibited most rapid proliferation. Osteogenic differentiation was most prominent in MSCs derived from bone marrow, and was weak in MSCs derived from umbilical cord blood and tissue. In contrast, the highest levels of chondrogenic differentiation were observed in MSCs derived from these sources. Collagen 1A2 expression was highest in adipose- and tendon-derived MSCs, while scleraxis expression was highest in cord blood- and in tendon-derived MSCs. The findings indicate that MSCs from different sources display significantly diverse properties that may impact on their therapeutic application.  相似文献   

6.
In the dog, mesenchymal stem cells (MSCs) have been shown to reside in the bone marrow (bone marrow-derived mesenchymal stem cells: BM-MSCs) as well as in the adipose tissue (adipose tissue-derived stem cells: ADSCs). Potential application fields for these multipotent MSCs in small animal practice are joint diseases as MSCs of both sources have shown to possess chondrogenic differentiation ability. However, it is not clear whether the chondrogenic differentiation potential of cells of these two distinct tissues is truly equal. Therefore, we compared MSCs of both origins in this study in terms of their chondrogenic differentiation ability and suitability for clinical application. BM-MSCs harvested from the femoral neck and ADSCs from intra-abdominal fat tissue were examined for their morphology, population doubling time (PDT) and CD90 surface antigen expression. RT-PCR served to assess expression of pluripotency marker Oct4 and early differentiation marker genes. Chondrogenic differentiation ability was compared and validated using histochemistry, transmission electron microscopy (TEM) and quantitative RT-PCR. Both cell populations presented a highly similar morphology and marker expression in an undifferentiated stage except that freshly isolated ADSCs demonstrated a significantly faster PDT than BM-MSCs. In contrast, BM-MSCs revealed a morphological superior cartilage formation by the production of a more abundant and structured hyaline matrix and higher expression of lineage specific genes under the applied standard differentiation protocol. However, further investigations are necessary in order to find out if chondrogenic differentiation can be improved in canine ADSCs using different protocols and/or supplements.  相似文献   

7.
8.
Human umbilical cord blood-derived mesenchymal stem cells (MSCs) are known to possess the potential for multiple differentiations abilities in vitro and in vivo. In canine system, studying stem cell therapy is important, but so far, stem cells from canine were not identified and characterized. In this study, we successfully isolated and characterized MSCs from the canine umbilical cord and its fetal blood. Canine MSCs (cMSCs) were grown in medium containing low glucose DMEM with 20% FBS. The cMSCs have stem cells expression patterns which are concerned with MSCs surface markers by fluorescence-activated cell sorter analysis. The cMSCs had multipotent abilities. In the neuronal differentiation study, the cMSCs expressed the neuronal markers glial fibrillary acidic protein (GFAP), neuronal class III β tubulin (Tuj-1), neurofilament M (NF160) in the basal culture media. After neuronal differentiation, the cMSCs expressed the neuronal markers Nestin, GFAP, Tuj-1, microtubule-associated protein 2, NF160. In the osteogenic & chondrogenic differentiation studies, cMSCs were stained with alizarin red and toluidine blue staining, respectively. With osteogenic differentiation, the cMSCs presented osteoblastic differentiation genes by RT-PCR. This finding also suggests that cMSCs might have the ability to differentiate multipotentially. It was concluded that isolated MSCs from canine cord blood have multipotential differentiation abilities. Therefore, it is suggested that cMSCs may represent a be a good model system for stem cell biology and could be useful as a therapeutic modality for canine incurable or intractable diseases, including spinal cord injuries in future regenerative medicine studies.  相似文献   

9.
Alternative sources of mesenchymal stem cells (MSCs) for replacing bone marrow (BM) have been extensively investigated in the field of bone tissue engineering. The purpose of this study was to compare the osteogenic potential of canine MSCs derived from adipose tissue (AT), BM, umbilical cord blood (UCB), and Wharton''s jelly (WJ) using in vitro culture techniques and in vivo orthotopic implantation assays. After canine MSCs were isolated from various tissues, the proliferation and osteogenic potential along with vascular endothelial growth factor (VEGF) production were measured and compared in vitro. For the in vivo assay, MSCs derived from each type of tissue were mixed with β-tricalcium phosphate and implanted into segmental bone defects in dogs. Among the different types of MSCs, AT-MSCs had a higher proliferation potential and BM-MSCs produced the most VEGF. AT-MSCs and UCB-MSCs showed greater in vitro osteogenic potential compared to the other cells. Radiographic and histological analyses showed that all tested MSCs had similar osteogenic capacities, and the level of new bone formation was much higher with implants containing MSCs than cell-free implants. These results indicate that AT-MSCs, UCB-MSCs, and WJ-MSCs can potentially be used in place of BM-MSCs for clinical bone engineering procedures.  相似文献   

10.
In this study, mesenchymal stem cells were isolated from rat adipose tissue (AD‐MSCs) to characterize and differentiate them into endothelial‐like cells. AD‐MSCs were isolated by mechanical and enzymatic treatments, and their identity was verified by colony‐forming units (CFU) test and by differentiation into cells of mesodermal lineages. The endothelial differentiation was induced by plating another aliquot of cells in EGM‐2 medium, enriched with specific endothelial growth factors. Five subcultures were performed. The expression of stemness genes (OCT4, SOX2 and NANOG) was investigated. The presence of CD90 and the absence of the CD45 were evaluated by flow cytometry. The endothelial‐like cells were characterized by the evaluation of morphological changes and gene expression analysis for endothelial markers (CD31, CD144, CD146). Characterization of AD‐MSCs showed their ability to form clones, to differentiate in vitro and the OCT‐4, SOX‐2, NANOG genes expression. Immunophenotypic characterization showed the CD90 presence and the CD45 absence. The endothelial‐like cells showed morphological changes, the expression of CD31, CD144, CD146 genes and the presence of CD31 membrane receptor. Matrigel assay showed their ability to form network and vessels‐like structures. This study lays the foundations for future evaluation of the potential AD‐MSCs pro‐angiogenic and therapeutic role.  相似文献   

11.
Background: There is considerable interest in using goats as models for genetically engineering dairy animals and also for using stem cells as therapeutics for bone and cartilage repair. Mesenchymal stem cells(MSCs) have been isolated and characterized from various species, but are poorly characterized in goats.Results: Goat MSCs isolated from bone marrow(BM-MSCs) and adipose tissue(ASCs) have the ability to undergo osteogenic, adipogenic and chondrogenic differentiation. Cytochemical staining and gene expression analysis show that ASCs have a greater capacity for adipogenic differentiation compared to BM-MSCs and fibroblasts. Different methods of inducing adipogenesis also affect the extent and profile of adipogenic differentiation in MSCs. Goat fibroblasts were not capable of osteogenesis, hence distinguishing them from the MSCs. Goat MSCs and fibroblasts express CD90, CD105, CD73 but not CD45, and exhibit cytoplasmic localization of OCT4 protein. Goat MSCs can be stably transfected by Nucleofection, but, as evidenced by colony-forming efficiency(CFE), yield significantly different levels of progenitor cells that are robust enough to proliferate into colonies of integrants following G418 selection.BM-MSCs expanded over increasing passages in vitro maintained karyotypic stability up to 20 passages in culture,exhibited an increase in adipogenic differentiation and CFE, but showed altered morphology and amenability to genetic modification by selection.Conclusions: Our findings provide characterization information on goat MSCs, and show that there can be significant differences between MSCs isolated from different tissues and from within the same tissue. Fibroblasts do not exhibit trilineage differentiation potential at the same capacity as MSCs, making it a more reliable method for distinguishing MSCs from fibroblasts, compared to cell surface marker expression.  相似文献   

12.
Background: Adult mesenchymal stem cells(MSCs) can be conveniently sampled from bone marrow, peripheral blood, muscle, adipose and connective tissue, harvested from various species, including, rodents, dogs, cats, horses,sheep, goats and human beings. The MSCs isolated from adult tissues vary in their morphological and functional properties. These variations are further complicated when cells are expanded by passaging in culture. These differences and changes in MSCs must be considered prior to their application in the clinic or in a basic research study. Goats are commonly used as animal models for bone tissue engineering to test the potential of stem cells for bone regeneration. As a result, goat MSCs isolated from bone marrow or adipose tissue should be evaluated using in vitro assays, prior to their application in a tissue engineering project.Results: In this study, we compared the stem cell properties of MSCs isolated from goat bone marrow and adipose tissue. We used quantitative and qualitative assays with a focus on osteogenesis, including, colony forming unit, rate of cell proliferation, tri-lineage differentiation and expression profiling of key signal transduction proteins to compare MSCs from low and high passages. Primary cultures generated from each source displayed the stem cell characteristics,with variations in their osteogenic potentials. Most importantly, low passaged bone marrow MSCs displayed a significantly higher and superior osteogenic potential, and hence, will be the preferred choice for bone tissue engineering in future in vivo experiments. In the bone marrow MSCs, this process is potentially mediated by the p38 MAPK pathway. On the other hand, osteogenic differentiation in the adipose tissue MSCs may involve the p44/42 MAPK pathway.Conclusions: Based on these data, we can conclude that bone marrow and fat-derived MSCs undergo osteogenesis via two distinct signaling pathways. Even though the bone marrow MSCs are the preferred source for bone tissue engineering, the adipose tissue MSCs are an attractive alternative source and undergo osteo-differentiation differently from the bone marrow MSCs and hence, might require a cell-based enhancer/inducer to improve their osteogenic regenerative capacity.  相似文献   

13.
近年来低氧细胞培养逐渐成为研究热点,低氧条件下可提高细胞体外扩增的生长动力学、细胞的增殖率及干细胞分化等功能。缺氧诱导因子-1α(hypoxia inducible factor-1α,HIF-1α)是应答低氧应激的关键因子,也是介导低氧信号的转导中枢,与其相关的血管内皮生长因(vascular endothelia growthfactor,VEGF)、低氧促有丝分裂因子(hypoxia-induced mitogenic factor,HIMF)及促红细胞生成素(erythropoietin,EPO)等是其重要的靶基因,它们之间的相互作用对低氧条件下细胞的发生、发展有重要作用。笔者对低氧培养细胞的研究现状及低氧相关细胞因子的调控机制及作用进行概述,以期为探索细胞低氧机理提供理论依据,为低氧适应性及高原疾病治疗提供更多的研究思路。  相似文献   

14.
The use of mesenchymal stem cells (MSCs) has emerged as a potential new treatment for myocardial infarction. However, the poor viability of MSCs after transplantation critically limits the efficacy of this new strategy. The expression of microRNA-210 (miR-210) is induced by hypoxia and is important for cell survival under hypoxic conditions. Hypoxia increases the levels of hypoxia inducible factor-1 (HIF-1) protein and miR-210 in human MSCs (hMSCs). miR-210 positively regulates HIF-1α activity. Furthermore, miR-210 expression is also induced by hypoxia through the regulation of HIF-1α. To investigate the effect of miR-210 on hMSC survival under hypoxic conditions, survival rates along with signaling related to cell survival were evaluated in hMSCs over-expressing miR-210 or ones that lacked HIF-1α expression. Elevated miR-210 expression increased survival rates along with Akt and ERK activity in hMSCs with hypoxia. These data demonstrated that a positive feedback loop involving miR-210 and HIF-1α was important for MSC survival under hypoxic conditions.  相似文献   

15.

Background

There is considerable interest in using goats as models for genetically engineering dairy animals and also for using stem cells as therapeutics for bone and cartilage repair. Mesenchymal stem cells (MSCs) have been isolated and characterized from various species, but are poorly characterized in goats.

Results

Goat MSCs isolated from bone marrow (BM-MSCs) and adipose tissue (ASCs) have the ability to undergo osteogenic, adipogenic and chondrogenic differentiation. Cytochemical staining and gene expression analysis show that ASCs have a greater capacity for adipogenic differentiation compared to BM-MSCs and fibroblasts. Different methods of inducing adipogenesis also affect the extent and profile of adipogenic differentiation in MSCs. Goat fibroblasts were not capable of osteogenesis, hence distinguishing them from the MSCs. Goat MSCs and fibroblasts express CD90, CD105, CD73 but not CD45, and exhibit cytoplasmic localization of OCT4 protein. Goat MSCs can be stably transfected by Nucleofection, but, as evidenced by colony-forming efficiency (CFE), yield significantly different levels of progenitor cells that are robust enough to proliferate into colonies of integrants following G418 selection. BM-MSCs expanded over increasing passages in vitro maintained karyotypic stability up to 20 passages in culture, exhibited an increase in adipogenic differentiation and CFE, but showed altered morphology and amenability to genetic modification by selection.

Conclusions

Our findings provide characterization information on goat MSCs, and show that there can be significant differences between MSCs isolated from different tissues and from within the same tissue. Fibroblasts do not exhibit trilineage differentiation potential at the same capacity as MSCs, making it a more reliable method for distinguishing MSCs from fibroblasts, compared to cell surface marker expression.

Electronic supplementary material

The online version of this article (doi:10.1186/2049-1891-6-1) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
拟研究骨碎补总黄酮对缺氧环境中犬骨髓间充质干细胞(BMSCs)成骨分化潜能的影响.运用骨碎补总黄酮(TFDR)干预低氧浓度(10%)环境中犬BMSCs 4周后诱导成骨分化,倒置显微镜观察茜素红染色BMSCs钙结节形成,比色法检测碱性磷酸酶(ALP)活性水平,流式细胞术检测细胞线粒体膜电位,激光共聚焦显微镜和RT-PCR...  相似文献   

18.
OBJECTIVES: To characterize equine bone marrow (BM)-derived mesenchymal stem cell (MSC) growth characteristics and frequency as well as their adipogenic and osteogenic differentiation potential. STUDY DESIGN: In vitro experimental study. ANIMALS: Foals (n=3, age range, 17-51 days) and young horses (n=5, age range, 9 months to 5 years). METHODS: Equine MSCs were harvested and isolated from sternal BM aspirates and grown up to passage 10 to determine cell-doubling (CD) characteristics. Limit dilution assays were performed on primary and passaged MSCs to determine the frequency of colony-forming units with a fibroblastic phenotype (CFU-F), and the frequency of MSC differentiation into adipocytes (CFU-Ad) and osteoblasts (CFU-Ob). RESULTS: Initial MSC isolates had a lag phase with a significantly longer CD time (DT=4.9+/-1.6 days) compared with the average DT (1.4+/-0.22 days) of subsequent MSC passages. Approximately 1 in 4224+/-3265 of the total nucleated BM cells displayed fibroblast colony-forming activity. Primary MSCs differentiated in response to adipogenic and osteogenic inductive conditions and maintained their differentiation potential during subsequent passages. CONCLUSIONS: The frequency, in vitro growth rate, and adipogenic and osteogenic differentiation potential of foals and young adult horses are similar to those documented for BM MSCs of other mammalian species. CLINICAL RELEVANCE: The results have direct relevance to the use of BM as a potential source of adult stem cells for tissue engineering applications in equine veterinary medicine.  相似文献   

19.
为获得犬脂肪间充质干细胞,本试验取犬腹股沟皮下脂肪组织,分别利用组织培养法和酶消化法分离犬脂肪来源间充质干细胞,对比观察不同来源细胞的形态和增殖特征,并通过诱导液促进细胞向成骨细胞和成脂细胞方向分化,检测其分化潜能。结果表明,通过组织培养法培养的青年犬脂肪组织,可获得大量脂肪间充质干细胞,该细胞生长旺盛,形态均一,可分化为碱性磷酸酶染色阳性的成骨细胞和油红O染色阳性成脂细胞。组织培养法分离培养犬脂肪间充质干细胞操作简单,可为细胞移植治疗等研究提供充足的细胞来源。  相似文献   

20.
OBJECTIVE: To evaluate cell surface markers of bone marrow-derived canine mesenchymal stem cells (MSCs) by use of flow cytometric analysis and determine whether canine MSCs express proteins specific to neuronal and glial cells. SAMPLE POPULATION: Bone marrow aspirates collected from iliac crests of 5 cadavers of young adult dogs. PROCEDURES: Flow cytometric analysis was performed to evaluate cell surface markers and homogeneity of third-passage MSCs. Neural differentiation of canine MSCs was induced by use of dibutyryl cAMP and methyl-isobutylxanthine. Expressions of neuronal (beta III-tubulin) and glial (glial fibrillary acidic protein [GFAP] and myelin basic protein) proteins were evaluated by use of immunocytochemical and western blot analyses before and after neural differentiation. RESULTS: Third-passage canine MSCs appeared morphologically homogeneous and shared phenotypic characteristics with human and rodent MSCs. Immunocytochemical and western blot analyses revealed that canine MSCs constitutively expressed beta III-tubulin and GFAP. After induction of neural differentiation, increased expression of GFAP was found in all samples, whereas such change was inconsistent in beta III-tubulin expression. Myelin basic protein remained undetectable on canine MSCs for these culture conditions. CONCLUSIONS AND CLINICAL RELEVANCE: Canine bone marrow-derived mononuclear cells yielded an apparently homogeneous population of MSCs after expansion in culture. Expanded canine MSCs constitutively expressed neuron or astrocyte specific proteins. Furthermore, increases of intracellular cAMP concentrations induced increased expression of GFAP on canine MSCs, which suggests that these cells may have the capacity to respond to external signals. Canine MSCs may hold therapeutic potential for treatment of dogs with neurologic disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号