首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The Fengqiu long-term field experiment was established to examine effects of organic manure and mineral fertilizers on soil total nitrogen (N) and natural 15N abundance. Fertilizer regimes include organic manure (OM), one-half N from organic manure plus one-half N from mineral N fertilizer (1/2OMN), mineral fertilizers [N–phosphorus (P)–potassium (K), NP, NK, PK], and a control. Organic manure (OM and 1/2OMN) significantly increased soil total N and δ15N, which was expected as a great amount of the N applied remained in soils. Mineral NPK fertilizer and mineral NP fertilizer significantly increased total N and slightly increaed δ15N. Phosphorus-deficient fertilization (NK) and N-deficient fertilization (PK) had no effect on soil total N. Significantly greater δ15N was observed in the NK treatment as compared to the control, suggesting that considerable N was lost by ammonia (NH3) voltalization and denitrification in this P-deficiency fertilization regime.  相似文献   

2.
Soil samples collected from a long-term (19-year) experimental field with seven treatments were analyzed for fatty acids methyl esters (FAMEs) to determine fertilization regime effects on microbial community structure in sandy loam soils. The amounts of FAMEs in bacteria, actinomycetes, and fungi were highest with the two organic manure (OM)-fertilized treatments (OM and 1/2 OMN – half OM plus half mineral fertilizer), lowest with the NK treatment, and fell in the middle levels with three mineral P-fertilized treatments (NPK, NP and PK) and the control with no fertilizer (CK), with the exception of fungi which showed no significant difference among the five treatments without OM fertilization. Principal component analysis of FAME patterns indicated that NPK was not significantly different from CK, but the two manure-containing treatments and the P-deficiency treatment (NK) were significantly different from CK and NPK. Redundancy analysis plot showed that FAME amounts significantly correlated to soil organic C and total N contents, while soil available P and total P contents, which were greatly decreased by the NK treatment, also had positive and substantial effects on soil microbial FAMEs. The results demonstrated the importance of P fertilization as well as organic manure in maintaining soil microbial biomass and impacting community structure.  相似文献   

3.

Purpose

Arbuscular mycorrhizal (AM) fungi are crucial for ecosystem functioning and can contribute to the formation and maintenance of soil aggregates through the exudation of glomalin by extraradical hyphae. Monitoring fertilization effects on AM fungi may help us to develop sound management strategies. The objectives of this study were to investigate the impacts of long-term fertilization on AM fungal parameters and to find out the key factor that affects the diversity and function of AM fungi.

Materials and methods

A long-term fertilization experiment established in a sandy loam soil at northern China has received continuous fertilization treatments for 21 years, including control; mineral fertilizers of NK, PK, NP, and NPK; organic manure (OM); and half organic manure N plus half mineral fertilizer N (1/2 OMN). Top soil samples (0–15 cm) from three individual plots per treatment were collected for the analysis of chemical properties and fungal parameters. The population size of soil AM fungi was determined by real-time PCR, and the community composition was analyzed using PCR-denature gradient gel electrophoresis (DGGE), cloning, and sequencing techniques. The external mycelium of AM fungi was assessed using the grid-line intersect method, and the glomalin-related soil protein (GRSP) was extracted with citrate solution using bovine serum albumin as a standard.

Results and discussion

Long-term fertilization significantly increased (P?<?0.05) soil organic C content, AM fungal population, species richness (R), Shannon–Wiener index (H), and GRSP content, except for the P-deficiency (NK) fertilization treatment. OM had a significantly greater (P?<?0.05) impact on AM fungal population and GRSP content compared to mineral fertilizers but significantly decreased the length of external mycelium compared to the control (P?<?0.05). Fertilization also changed the community composition of AM fungi, and the P-deficiency treatment again had the slightest influence. In addition, most species recovered from the DGGE profiles belonged to three genera, Glomus, Diversispora, and Archaeospora. Redundancy analysis showed that the population size and species richness of AM fungi and the GRSP content all significantly correlated to soil organic C content (P?<?0.05).

Conclusions

Long-term P-containing fertilization, especially the application of OM, greatly increased the population size, species richness, and species diversity of AM fungi, as well as the contents of GRSP and soil organic C, but tended to decrease the length of external mycelium, while the P-deficiency fertilization had no such effect, suggesting that P was the key factor to maintain soil fertility as well as soil AM fungal diversity in this sandy loam soil.  相似文献   

4.
本文研究了长期(1989—2009年)不同施肥方式对砷在黄淮海地区典型壤质潮土及作物中累积的影响。田间试验设置7个处理:有机肥(OM)、OM+无机化肥氮磷钾(NPK)、NPK、NP、PK、NK和不施肥(CK),OM+NPK处理为有机肥和无机化肥氮磷钾各施一半。结果显示,长期不同施肥方式下砷在表层(0~20 cm)及亚表层(20~40 cm)土壤中的含量均有明显累积,但含量较低(<25 mg.kg 1),对农田生态环境安全的影响较小。土壤中砷的累积主要与灌溉及沉降有关,受施肥方式的影响相对较小。磷肥中砷的含量明显高于氮肥、钾肥及有机肥,磷肥的长期施用促进了砷在PK处理土壤中的累积,但在作物产量较高的情况下,对其在土壤中累积趋势的影响较小,而有机肥的添加则会减缓这种累积趋势。砷在小麦和玉米两种典型作物组织中的含量分布表现为:根系>茎叶>籽粒,其中籽粒中砷的含量显著低于根系及国家食品安全相关标准。经过长期不同方式的施肥处理,砷在小麦组织中的含量表现为:PK>OM>OM+NPK>NPK>NP>NK>CK,与土壤中有效磷含量的变化基本一致,并间接受到土壤有机质的影响。在OM、OM+NPK、NPK和NP施肥处理下,土壤有机质含量及作物产量均较高,土壤有机质含量的提高促进了砷在小麦体内的富集,但对其在玉米根系中含量的影响不明显;玉米生长期较短且产量较高,对砷的需求量较大,土壤中有效态砷含量的不足抑制了其在玉米根系中的分布,但玉米通过加强组织对砷的转移能力提高了其在茎叶中的含量。  相似文献   

5.
以浙江省水网平原水稻主产区土壤为对象,通过定位试验,研究了连续13年的不同施肥处理对麦稻产量、土壤养分状况和物理性状的影响。结果表明,化肥配施有机肥可显著提高麦、稻产量; 不同施肥处理的长期定位试验土壤有机质含量和全氮均呈上升趋势,增幅依次为: 栏肥+NPK秸秆+NPKNPK秸秆栏肥CK处理; 土壤碱解氮和速效磷也呈增加趋势,以栏肥+NPK处理的增幅最为明显。土壤物理性状的分析表明,长期施肥均能明显增加土壤水稳性团粒含量和土壤孔隙度。经土壤养分平衡分析,栏肥+NPK、秸秆+NPK和NPK处理的氮和磷呈现盈余,秸秆和CK处理氮和磷亏缺; 栏肥+NPK和秸秆+NPK处理钾基本平衡,NPK、秸秆、栏肥和CK处理钾严重亏缺。长期定位试验进一步证明有机肥与氮、磷、钾化肥长期配合施用可实现当地农作物持续稳产,农田施肥管理要注意适当减少氮、磷投入,增加钾肥施用量,保持农田土壤养分平衡。  相似文献   

6.
长期定位施肥对潮土腐植酸含量及其相关因素的影响   总被引:1,自引:0,他引:1  
利用中国科学院封丘农业生态国家实验站潮土农田生态系统养分平衡长期定位试验地,研究不同施肥处理对春秋两季土壤腐植酸含量、微生物生物量碳及转化酶活性的影响。结果发现,与不施肥对照相比,单施NK或单施PK对土壤pH和有机碳含量均没有显著影响;单施有机肥、施NPK化肥、1/2 OM + 1/2 NPK有机无机配施以及施NP等4种处理均显著抑制了土壤pH的升高,提高了土壤有机碳与全氮含量;其中单施有机肥还显著提高了土壤腐殖质中胡敏酸的含量以及微生物生物量碳和转化酶活性,有机肥与化肥配施效果次之。结果表明,长期施用有机肥更有利于提高土壤肥力质量与健康质量。  相似文献   

7.
土壤分离的细菌溶磷和解磷能力研究   总被引:8,自引:1,他引:7  
Microorganisms capable of solubilizing and mineralizing phosphorus (P) pools in soils are considered vital in promoting P bioavallability. The study was conducted to screen and isolate inorganic P-solubilizing bacteria (IPSB) and organic P-mineralizing bacteria (OPMB) in soils taken from subtropical flooded and temperate non-flooded soils, and to compare inorganic P-solubilizing and organic P-solubilizing abilities between IPSB and OPMB. Ten OPMB strains were isolated and identified as Bacillus cereus and Bacillus megaterium, and five IPSB strains as B. megaterium, Burkholderia caryophyUi, Pseudomonas cichorii, and Pseudomonas syringae. P-solubilizing and -mineralizing abilities of the strains were measured using the methods taking cellular P into account. The IPSB strains exhibited inorganic P-solubilizing abilities ranging between 25.4-41.7 μg P mL^-1 and organic P-mineralizing abilities between 8.2-17.8μg P mL^-1. Each of the OPMB strains also exhibited both solubilizing and mineralizing abilities varying from 4.4 to 26.5 μg P mL^-1 and from 13.8 to 62.8 μg P mL^-1, respectively. For both IPSB and OPMB strains, most of the P mineralized from the organic P source was incorporated into the bacterial cells as cellular P. A significantly negative linear correlation (P 〈 0.05) was found between culture pH and P solubilized from inorganic P by OPMB strains. The results suggested that P solubilization and mineralization could coexist in the same bacterial strain.  相似文献   

8.
以河南封丘潮土养分平衡长期定位试验地为研究对象,于各季节分别采集耕作层土壤样品,比较不同施肥处理潮土芽胞杆菌数量及其占细菌总数的比例,并解析其与土壤养分之间的关系.结果发现,与不施肥对照相比,长期施肥尤其是施用有机肥和磷肥的处理土壤有机碳与速效氮、有效磷、速效钾等的含量趋于升高,除不施磷肥处理(NK)外其他施肥处理土壤有机碳含量在四季的增幅范围为0.91 ~7.00 g kg-1.长期不同施肥后土壤细菌与芽胞杆菌在数量上也发生了明显分异,且在各季均呈现稳定的梯度规律,即施肥处理(除NK外)显著高于不施肥处理、施有机肥处理显著高于施化肥处理、平衡施化肥处理高于缺素施肥处理,除NK外其他施肥处理与不施肥对照相比在四季的增幅范围力0.02~0.54 lg(CFU g-1).长期施化肥的处理芽胞杆菌占细菌数量的比例(即优势度)在冬、夏季高于春、秋季,而施有机肥的处理在不同季节保持相对恒定.相关性分析显示,芽胞杆菌数量与土壤有机碳和有效磷含量均呈极显著相关(p<0.01).长期施用有机肥更有利于提高土壤肥力、促进土壤微生物生长繁育,且芽胞杆菌的数量可敏感地反映土壤肥力.  相似文献   

9.
长期施肥对红壤旱地土壤活性有机碳和酶活性的影响   总被引:18,自引:3,他引:15  
张继光  秦江涛  要文倩  周睿  张斌 《土壤》2010,42(3):364-371
以江西进贤长期肥料定位试验为平台,研究了红壤旱地不同施肥措施对土壤微生物生物量、活性有机C、C库管理指数以及土壤酶活性的影响。研究结果表明:与不施肥和单施化肥土壤相比,施有机肥处理土壤的pH、CEC、有机C、全N、全P、无机N、速效P、速效K及土壤微生物生物量均显著增加,土壤活性有机C和C库管理指数也较试前土壤和其他处理土壤明显提高,此外,土壤的转化酶、脱氢酶、脲酶和酸性磷酸酶活性也较其他处理显著增加。土壤微生物生物量、活性有机C以及4种土壤酶活性之间的相关关系显著,且它们均与土壤有机C、全N、全P、无机N、速效P等土壤养分呈显著正相关。因此,红壤旱地通过长期施用有机肥或与无机肥配施,不仅能显著提高土壤有机质的数量和质量,而且能增加土壤微生物生物量和酶活性,从而显著提高土壤肥力和土壤持续生产力。  相似文献   

10.
The effects of long-term fertilization of acidic soils on ammonia-oxidizing archaea (AOA) and bacteria (AOB) communities and its ecological implications remain poorly understood. We chose an acidic upland soil site under long-term (27-year) fertilization to investigate ammonia oxidizer communities under four different regimes: mineral N fertilizer (N), mineral NPK fertilizer (NPK), organic manure (OM) and an unfertilized control (CK). Soil net nitrification rates were significantly higher in OM soils than in CK, N or NPK soils. Quantitative analysis of the distribution of amoA genes by DNA-based stable isotope probing revealed that AOA dominate in CK, N and NPK soils, while AOB dominate in OM soils. Denaturing gradient gel electrophoresis and clone library analyses of amoA genes revealed that Group 1.1a-associated AOA (also referred to as Nitrosotalea) were the most dominant active AOA population (>92%), while Nitrosospira Cluster 3 and Cluster 9 were predominant among active AOB communities. The functional diversity of active ammonia oxidizers in acidic soils is affected by long-term fertilization practices, and the responses of active ammonia oxidizers to mineral fertilizer and organic manure are clearly different. Our results provide strong evidence that AOA are more highly adapted to growth at low pH and low substrate availability than AOB, and they suggest that the niche differentiation and metabolic diversity of ammonia oxidizers in acidic soils are more complex than previously thought.  相似文献   

11.
赵伟  梁斌  周建斌 《土壤学报》2015,52(3):587-596
采用盆栽试验和短期矿化培养相结合的方法,研究了施入15N标记氮肥(+N)及其与秸秆配施(+1/2N+1/2S)在3种长期(19年)不同培肥土壤(即:No-F,长期不施肥土壤;NPK,长期施用NPK化肥土壤;MNPK,长期有机无机肥配施土壤)中的残留及其矿化和作物吸收特性。结果表明,第一季小麦收获后,+1/2N+1/2S处理下三供试土壤和+N处理下的NPK和MNPK土壤残留肥料氮(残留15N)中有82.6%~95.1%以有机态存,而+N处理下No-F土壤残留15N有47.7%以矿质态存在。经过28 d矿化培养后,与NPK土壤相比,MNPK土壤氮素净矿化量显著增加,增幅为39%~49%;NPK和MNPK土壤残留肥料氮(残留15N)矿化量为1.23~1.90 mg kg-1,占总残留15N的2.78%~5.53%,均显著高于No-F土壤。与+N处理相比,+1/2N+1/2S处理显著提高了3供试土壤氮素净矿化量,但两施肥处理对NPK和MNPK土壤残留15N矿化量无显著影响。+N处理下No-F土壤残留15N的利用率为20%,显著高于NPK(9%)和MNPK(12%)土壤。两种施肥处理下,MNPK土壤残留15N的利用率均显著高于NPK土壤。短期培养期间土壤氮素矿化量和第二季小麦生育期作物吸氮量呈显著性正相关,而残留15N矿化量和第二季小麦吸收残留15N量间无显著性相关关系。长期有机无机配施可以提高土壤残留肥料氮的矿化量及有效性。  相似文献   

12.
长期施肥对土壤中氯氰菊酯降解转化的影响   总被引:1,自引:0,他引:1  
采用长期不同施肥处理土壤:有机肥(OM)、无机肥(NPK、PK、NK)和不施肥(CK)研究施肥对氯氰菊酯降解的影响,通过测定土壤中氯氰菊酯残留量及降解产物3-苯氧基苯甲酸生成量来确定其降解速度。结果表明:不同施肥处理对氯氰菊酯在土壤中降解有显著影响,其中在PK、CK土壤中降解较快,半衰期分别为9.6 d和10.7 d,在NK土壤中降解最慢,半衰期为15.1 d,长期施用有机肥(OM)较无机肥(NPK)降解呈增加趋势,但未达显著水平,半衰期分别为10.8 d和11.8 d。相关分析表明土壤中速效氮含量与氯氰菊酯半衰期呈显著负相关,长期偏施氮肥可提高土壤中速效氮的含量,进而能显著降低氯氰菊酯在土壤中降解速度。氯氰菊酯在OM、NPK土壤中降解较慢的原因可能是土壤高有机质含量增加了对农药的吸附,进而抑制了其降解。  相似文献   

13.
 A pot experiment was conducted with soil from a long-term (74-year) fertilization field experiment to compare the effects of organic and mineral fertilizers on mycorrhiza formation in clover, and mycorrhiza-mediated plant P uptake. Five treatments were selected from the field experiment representing different forms and levels of P. Mycorrhizal effects on plant growth and P uptake were estimated by comparing plants grown in untreated soil containing indigenous arbuscular mycorrhizal (AM) fungi, with plants grown in pasteurized soil. Short-term versus residual effects of fertilizer/manure were also measured by comparing treatments with or without fertilizers added at the start of the pot experiment. Mycorrhiza formation was greatest in soil that had received no P for 74 years, followed by soil having received 30 or 60 Mg ha–1 farmyard manure (FYM), and soil having received 25 or 44 kg P ha–1 in NPK fertilizers. Plant growth and P uptake were severely reduced in the absence of AM fungi for all mineral fertilizer treatments. In contrast, plants growing in soil that had received FYM grew equally well or better when non-mycorrhizal. Recent additions of NK fertilizer and FYM had no effect on mycorrhiza formation, while additions of NPK led to reduced colonization. It thus seems that moderate quantities of FYM have less adverse effects on AM than equivalent amounts of nutrients in NPK fertilizers, a phenomenon that is most likely due to a temporal difference in P availability and its gradual release that balance plant demand. Received: 4 November 1999  相似文献   

14.
The P efficiency, crop yield, and response of maize to arbuscular mycorrhizal fungus (AMF) Glomus caledonium were tested in an experimental field with long-term (18-year) fertilizer management. The experiment included five fertilizer treatments: organic amendment (OA), half organic amendment plus half mineral fertilizer (1/2 OM), mineral fertilizer NPK, mineral fertilizer NK, and the control (without fertilization). AMF inoculation responsiveness (MIRs) of plant growth and P-uptake of maize were estimated by comparing plants grown in unsterilized soil inoculated with G. caledonium and in untreated soil containing indigenous AMF. Soil total P, available P, microbial biomass P, alkaline phosphatase activity, plant biomass, crop yield and total P-uptake of maize were all significantly increased (P < 0.05) by the application of OA, 1/2 OM, and NPK, but not by the application of NK. Specifically, the individual crop yield of maize approached zero in the NK-fertilized soils, as well as in the control soils. All maize plants were colonized by indigenous AMF, and the root colonization at harvest time was not significantly influenced by fertilization. G. caledonium inoculation increased mycorrhizal colonization significantly (P < 0.05) only with the NK treatment, and produced low but demiurgic crop yield in the control and NK-fertilized soils. Compared to the inoculation in balanced-fertilized soils, G. caledonium inoculation in either the NK-fertilized soils or the control soils had significantly greater (P < 0.05) impacts on soil alkaline phosphatase activity, stem length, plant biomass, and total P-uptake of maize, indicating that AMF inoculation was likely more efficient in extremely P-limited soils. These results also showed that balanced mineral fertilizers and organic amendments did not differ significantly in their effects on MIRs in these soils.  相似文献   

15.
施肥对土壤不同碳形态及碳库管理指数的影响   总被引:77,自引:3,他引:77  
沈宏  曹志洪  徐志红 《土壤学报》2000,37(2):166-173
分析了施肥对土壤活性碳(CA)、微生物生物量碳(CMB)、矿化碳(CM)及碳库管理指数(CPMI)的影响。结果表明,不同土壤CA、CMB、CM及CPMI的大小为:水稻土〉黄棕壤〉红壤〉潮土。施肥对CA和CPMI,CMB和CM的影响分别为:处理3〉处理〉处理1〉处理4〉CK,处理3〉处理5〉处理4〉处理1〉CK。在提高CA、CMB、CM及CPMI方面,稻草肥、绿肥优于厩肥,厩肥高量施用优于常量施用。  相似文献   

16.
梁斌  赵伟  杨学云  周建斌 《土壤学报》2012,49(4):748-757
以长期不同施肥处理土壤为对象,研究了不同施肥土壤中施用氮肥后土壤氮素含量、微生物固持及释放和作物吸收及利用特性。结果表明,施用氮肥显著增加长期不施肥土壤(NF)矿质氮含量,对长期施用化肥土壤(NPK)和有机无机配施土壤(MNPK)矿质态氮含量无显著影响;施用氮肥对NF中土壤微生物生物量氮(SMBN)含量无显著影响,使拔节期NPK和MNPK中SMBN含量分别增加了4.3倍和0.8倍。从小麦拔节期到开花期,NPK和MNPK中土壤微生物生物量氮含量分别显著降低51%和56%。小麦收获时NPK和MNPK土壤氮肥的利用率分别为36%和45%;而NF土壤所施入的氮素几乎未被小麦吸收利用,但在玉米季有34%被吸收。小麦收获时,NF土壤施入的氮肥有50%以上淋溶至土壤30 cm以下土层,施氮也显著提高了NPK土壤30~50 cm土层硝态氮含量,但施用氮肥对MNPK土壤0~100 cm剖面硝态氮含量无显著影响。说明长期有机无机配施增强了土壤氮素的缓冲能力,协调了土壤氮素固持与作物吸氮间的关系,为提高氮素利用率,减少氮素对环境影响的有效手段。  相似文献   

17.
乔洁  毕利东  张卫建  沈仁芳  张斌  胡锋  刘艳丽 《土壤》2007,39(5):772-776
利用化肥长期定位试验,研究了施肥对土壤微生物生物量、活性及其群落结构的影响.结果表明:与不施肥相比,长期施用化肥不仅增加了土壤微生物生物量,而且导致了土壤微生物群落结构的分异.其中,有机无机配施处理和2倍NPK配施处理显著提高了土壤有机质含量、全N含量、土壤微生物生物量和土壤微生物活性.NPK均衡施肥处理对土壤有机质、土壤微生物生物量及其活性的影响小于非均衡施肥的处理(NP、NK、N、P、K),适当增施K肥有利于提高土壤微生物中真菌的比例.  相似文献   

18.
长期不同施肥模式下南方典型农田磷肥回收率变化   总被引:1,自引:0,他引:1  
【目的】 通过比较南方典型农田不同土壤类型、不同施肥模式下的土壤供磷能力、磷肥回收率,揭示长期施肥下磷肥回收率时空变化特征,为区域内磷肥的合理施用提供科学依据。 【方法】 基于重庆北碚紫色土 (始于1991)、湖南望城 (始于1981) 和江西进贤 (始于1981) 红壤性水稻土长期施肥定位试验。选取不施肥 (CK)、单施稻草、厩肥 (M)、施化学氮钾肥 (NK)、施化学氮钾肥+猪粪 (NKM)、施化学氮磷肥 (NP)、施化学氮磷钾肥 (NPK)、施氮磷钾肥+厩肥、猪粪 (NPKM) 或稻草 (NPKS) 等不同施肥处理,分析长期不同施肥下作物吸磷量、磷肥回收率和磷肥累积回收率的动态变化,探讨不同施肥下作物磷肥回收率的变化特征。 【结果】 长期不施磷肥,土壤自然供磷量显著下降,北碚紫色土 (21年)、望城 (23年) 和进贤 (27年) 红壤性水稻土的年下降速率分别为0.60、0.48和0.63 kg/hm2。各试验点不同处理作物历年平均吸磷量的大小顺序为NPK、NPKS和NPKM > NP、NKM > CK或NK ( P < 0.05)。NPK配施猪粪,与配施厩肥或秸秆配施相比较,其作物吸磷量更高。3个试验点磷肥回收率随着施肥年限增加而提高。NPK处理磷肥回收率每年增加0.15%~1.94%, NPKM和NPKS处理磷肥回收率每年增加0.07%~1.60%。NPK处理磷肥累积回收率在37.8%~61.5%之间,NPKM和NPKS处理,其磷肥累积回收率较NPK处理降低了3.0%~34.3%。 【结论】 土壤的磷素自然供给量随作物种植年限增加而显著下降。磷肥的施用能够显著提高作物的吸磷量,NPK平衡施用的吸磷量显著高于化肥偏施;氮肥投入量每增加100 kg/hm2,作物吸磷量增加5 kg/hm2。各试验点磷肥回收率随施肥年限的增加而提高。NPK配施有机肥相比较NPK,降低了磷肥的累积回收率。磷肥施用量每增加 P 10 kg /hm2,磷肥回收率下降约0.9%。NPK与猪粪配合施用的情况下,可以考虑通过适当提高化学氮肥用量、减少化学磷肥投入的措施,从而提高磷肥回收率。   相似文献   

19.
Abstract

Little is known about the effects of long-term fertilization on pesticide persistence. A long-term field experiment was thus conducted to study the influence of fertilization on soil physicochemical properties, microbial biomass carbon, microbial quotient, enzyme activities, and cypermethrin dissipation. Five fertilization treatments were arranged: organic manure (OM), NPK fertilizer, PK fertilizer, NK fertilizer, and no fertilizer (control). Soil organic C, N, P contents and enzymatic activities were higher in soils with balanced fertilization as opposed to those with unbalanced fertilization, especially fertilization with organic manure. The longest half-life of cypermethrin was in the NK treatment (15.1 d), the least in the PK treatment (9.6 d). Pesticide dissipation in non-sterilized and sterilized soils showed that changes of cypermethrin persistence were caused by biodegradation. Soil N/P ratio (ratio of soil-available N to available P) and available N content positively correlated with half-life (p<0.05), and could limit cypermethrin dissipation greatly. These results indicate that in agricultural practice, oversupplying N should not be advocated. P application may be an efficient way to decrease N/P ratio and enhance cypermethrin dissipation in soil with high available N content. Based on a comprehensive consideration of soil fertility, crop yield, and environment, a mixed application of organic manure and inorganic fertilizers is recommended in the region, although balanced fertilization results in slower cypermethrin dissipation than does N-deficiency treatment.  相似文献   

20.
A long-term field experiment was established to determine the influence of mineral fertilizer (NPK) or organic manure (composed of wheat straw, oil cake and cottonseed cake) on soil fertility. A tract of calcareous fluvo-aquic soil (aquic inceptisol) in the Fengqiu State Key Experimental Station for Ecological Agriculture (Fengqiu county, Henan province, China) was fertilized beginning in September 1989 and N2O emissions were examined during the maize and wheat growth seasons of 2002-2003. The study involved seven treatments: organic manure (OM), half-organic manure plus half-fertilizer N (1/2 OMN), fertilizer NPK (NPK), fertilizer NP (NP), fertilizer NK (NK), fertilizer PK (PK) and control (CK). Manured soils had higher organic C and N contents, but lower pH and bulk densities than soils receiving the various mineralized fertilizers especially those lacking P, indicating that long-term application of manures could efficiently prevent the leaching of applied N from and increase N content in the plowed layer. The application of manures and fertilizers at a rate of 300 kg N ha−1 year−1 significantly increased N2O emissions from 150 g N2O-N ha−1 year−1 in the CK treatment soil to 856 g N2O-N ha−1 year−1 in the OM treatment soil; however, there was no significant difference between the effect of fertilizer and manure on N2O emission. More N2O was released during the 102-day maize growth season than during the 236-day wheat growth season in the N-fertilized soils but not in N-unfertilized soils. N2O emission was significantly affected by soil moisture during the maize growth season and by soil temperature during the wheat growth season. In sum, this study showed that manure added to a soil tested did not result in greater N2O emission than treatment with a N-containing fertilizer, but did confer greater benefits for soil fertility and the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号