首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The body size of juvenile fish is often used as an index of growth rate, which in turn is influenced by local habitat conditions. We evaluated the size and origin of juvenile Chum salmon Oncorhynchus keta in the coastal areas of three regions (Atsuta, Shari, and Konbumori) of Hokkaido, northern Japan. The origin of the individuals in these communities differed between Konbumori and the other two regions. The former contained juveniles that originated from both the nearest stocked river and other rivers that were outside the area of interest. Conversely, the communities in Atsuta and Shari consisted exclusively of fish from the nearest stocked river. Moreover, the juveniles in Konbumori were larger than those in Atsuta and Shari. The results of our otolith analysis suggest that the larger size of the fish in Konbumori was due to the immigration of large individuals from natal rivers at distant locations. Thus, immigrants were likely to enlarge their body size composition in the area of interest. In summary, if the distance from a natal river is adjusted and daily growth is taken into account, body size can be used as an indicator of growth performance in coastal juvenile chum salmon.  相似文献   

2.
Spatiotemporal changes in growth patterns of chum salmon Oncorhynchus keta that returned to the Ishikari (Japan) and Namdae (Korea) rivers in 1984–1998 were investigated using scale analysis. Juvenile chum salmon from both populations left coastal marine areas after spring at a size of over 8 cm fork length (FL). In summer, juvenile salmon from the Namdae River entered the Okhotsk Sea at a larger FL than did Ishikari River juveniles. There were no significant differences in annual growth between populations of 1-, 2-, and 4-year-old fish. For 3-year-old fish, however, Namdae River salmon had significantly higher synchronous and sympatric growth than did Ishikari River salmon. Mean FL of adults was also larger in Namdae River salmon than in Ishikari River salmon. Analysis of covariance (ANCOVA) results showed (1) negative linear relations between FL and catch, (2) homogeneous slopes of those relations at regional and species levels, and (3) nonhomogeneous slopes at the population level, indicating that density-dependent effects on growth were most significant at this level. We concluded that growth of chum salmon was concurrently influenced by stronger effects of intrapopulation competition and weaker effects of inter- and intraspecific interactions in the Bering Sea.  相似文献   

3.
Interannual variations in abundance, timing of outmigration from rivers, growth rate and condition of juvenile chum salmon (Oncorhynchus keta) were studied in the Nemuro Strait (eastern Hokkaido, Japan) during 1999–2002 to establish a possible relationship to zooplankton abundance. The otolith microstructure of juveniles was examined each year in late June to determine their time and size at sea entry (i.e., outmigration), and to estimate the early marine growth rates. Salmon outmigration peaked in mid- or late May, which coincided, in three of the four study years, with the peak release of juveniles into rivers within the study area. Abundance, growth rate and condition of fish were higher in 2001, when—compared to other years—smaller fish experienced higher growth rates, coinciding with greater zooplankton abundance for that year. Our results suggest that high zooplankton abundance positively influenced juvenile chum salmon growth and the condition of the fish during their early marine life despite their small size at sea entry.  相似文献   

4.
Information on the status of natural spawning is needed on the Japan Sea side of northern Honshu, Japan for ecosystem-based sustainable management of chum salmon resources. We conducted on-site visual surveys in October–December of 2015 and 2016 that targeted spawning chum salmon redds in all rivers?>?5 km long (total 94 rivers) in Akita, Yamagata, Niigata (including Sado Island), and Toyama prefectures. The ratio of rivers found to host natural reproduction to the total number of surveyed rivers was 93.6% (44/47) in stocked rivers and 74.5% (35/47) in non-stocked rivers. These results show that there is a wide occurrence of natural reproduction of chum salmon in these rivers, regardless of the history of hatchery stocking. The density of spawning redds (number of redds/1000 m2) as an indicator of chum salmon escapements did not differ (P?=?0.54) between stocked rivers (mean 3.5, N ?=?49) and non-stocked rivers (mean 2.4, N? =?36),when rivers where no redds were observed were excluded from the analysis. These results suggest that chum salmon escapements into non-stocked rivers may not be negligible. Conservation measures for wild fish are needed in stocked and non-stocked rivers to promote enhancement programs based on natural reproduction.  相似文献   

5.
The relationship between release date and migration speed was examined for hatchery chum salmon Oncorhynchus keta fry exiting the Nishibetsu River in eastern Hokkaido, northern Japan so that future releases might be scheduled so that fry arrive at the ocean during periods favoring high survival. Separate marked groups of chum salmon released in early April, mid-April, and early May in 2008, late March and mid-April in 2009, and mid-April in 2010 were recaptured with a rotary screw trap 12 km above the river mouth. Chum salmon in later release groups tended to migrate downstream faster than fish in earlier release groups. Those released after mid-April arrived in the lower river on average 9 days after release, while those released before mid-April arrived on average 26–28 days after release. Most marked fish arrived in the lower river during late April to mid-May. These results suggest that chum salmon are adapted to adjust their migratory speed so as to arrive at the ocean during a relatively discrete period, presumably during a time of high productivity favoring good survival.  相似文献   

6.
To apply otolith microstructure to examination of age and growth of juvenile chum salmon Oncorhynchus keta inhabiting coastal waters, formation of otolith increments was investigated for juveniles reared in a seawater aquarium and in net pens. In all otoliths examined, a distinctive check was formed at the time of sea entry of the fish. The deposition of otolith increments after the check was daily for rearing both in the aquarium (57 days) and in the net pens (26 days). Check formation associated with sea entry was also observed in otoliths of juvenile salmon collected 1 km off the coast of Shari, Hokkaido, Japan. Transmitted light observation of otoliths of those fish revealed a transition in otolith increment appearance from dark to light. Otolith Sr: Ca ratio remarkably changed from a low to a high level, coinciding with the transition in otolith appearance. It is suggested that the transition was associated with individual sea entry. This study demonstrated that the check and/or transition associated with sea entry are applicable to a benchmark for otolith increment counts of juvenile chum salmon inhabiting coastal waters.  相似文献   

7.
Using path analyses, we investigated relationships between size at release from hatcheries, the early marine growth of juveniles, and adult return rates for chum salmon from five river stocks of Hokkaido, Japan, in relation to sea surface temperature during ocean residence. Marine growth was estimated using scales collected from 11 760 adults of age 0.3 (1980–2004). The growth and survival of each stock appeared to have a different suite of regulatory processes. Interannual variability in return rates was mainly regulated by size at release in two stocks from the Sea of Okhotsk. A similar relationship was found in one stock from the Sea of Japan, but growth during coastal residency also affected their return rates. In two stocks from the Pacific coast of Hokkaido, variability in return rates was not related to size at release or to the coastal growth of juveniles, but with offshore growth in the Sea of Okhotsk, the nursery area for juveniles after leaving Japanese coastal waters. Whereas coastal growth tended to be negatively correlated with size at release in some stocks, offshore growth was positively associated with the August–November sea surface temperature in all stocks. This study confirmed that mortality of juvenile salmon occurred in two phases, during the coastal residency and the late period of the growing season, but the relative importance of both phases varied by stock and region, which probably regulated year‐class strength of Hokkaido chum salmon.  相似文献   

8.
Wild stocks of chum salmon Oncorhynchus keta are supplemented by hatchery fry enhancement programs in northern Honshu, Japan. To maintain these programs, there is a need to reduce expenses and labor. Eyed egg planting is more cost effective than hatchery production of fry. Therefore, we evaluated the effect of environmental conditions on survival of chum salmon eyed eggs planted using Whitlock–Vibert boxes. We measured the percent cumulative weight of fine sediments, Fredle index (FI) as a measure of permeability, vertical hydraulic gradient, water depth (WD), and flow velocity at planting locations. Egg-to-fry survival averaged 92.7% (range: 57.2–100%) in 2013 (N = 19) and 71.5% (range: 6.4–100%) in 2014 (N = 23). Survival was significantly positively correlated with FI and flow velocity, negatively associated with percent cumulative weight of fine sediments and WD. Vertical hydraulic gradient had no effect on survival. Our results suggest that a higher FI (i.e., low amount of fine material and larger particle size), higher flow velocity, and shallower WD reduce the mortality of planted chum salmon eyed eggs. This is likely a result of increased permeability in the substrate and restriction of fine sediment intrusion into the incubation zone.  相似文献   

9.
This study reviews the present status of the Japanese chum salmon Oncorhynchus keta stock enhancement program and considers the ecological sustainability of wild populations while providing fishery production, exemplified by the hatchery-based Kitami region set net fishery. The return rate and the number of returns have been historically high in the Sea of Okhotsk, but have decreased in other regions since 2005. Natural spawning of chum salmon occurred in at least 160 rivers in Hokkaido. The genetic diversity of Japanese chum salmon was similar to or higher than that of other Pacific Rim populations. Numbers of alleles were high at microsatellite loci, but the loss of rare haplotypes was observed in all populations. The estimated N e /N ratio for the Kitami region was >0.15 % including hatchery and wild fish under the present high fishing pressure. Four regional populations were inferred in Hokkaido, however, genetic differentiation was weak and some river-populations were nested. Substantial changes in run timing were observed, but it has recovered gradually owing to the recent practice of escapement. Our analyses highlight the importance of juvenile quality and the vital roles of escapements in enhanced and non-enhanced rivers. New research is needed to minimize the genetic risks associated with hatchery programs.  相似文献   

10.
The effects of six 1,3;1,6‐β‐D‐glucooligo‐ and polysaccharides with different structures (ranging from 1 to 10 kDa in molecular mass and containing 10–25% of β‐1,6‐linked glucose residues) from brown algae, Saccharina cichorioides, on development of the chum salmon, Oncorhynchus keta (Walbaum), were evaluated. Exposure of chum salmon eggs to 1,3;1,6‐β‐D‐glucans with a molecular mass of more than 2 kDa increased the survival of embryos and juveniles and their resistance to Saprolegnia infection by up to 2.5‐fold, leading to a weight gain in juveniles of 40–55% compared with The control chum salmons. The 1,3;1,6‐β‐D‐glucans with molecular mass of 6–8 kDa and used at a at concentration of 0.5 mg mL?1 rendered the best stimulative effect.  相似文献   

11.

Offshore migration of Pacific salmon Oncorhynchus spp. is partly triggered by increasing body size and high motility in the early stages of life. The survival of juvenile salmon may depend on their growth rate during the first few months in the sea, and this factor partly regulates the dynamics of adult populations. Here, we assessed the effects of water temperature and food availability on the growth of juvenile chum salmon O. keta. In addition, by combining the measurements of metabolic performance for growth and activity (Absolute Aerobic Scope: AAS) with a bioenergetics model, we estimated the energy allocation for different activities in the juveniles. Under high temperatures (14 °C), juveniles reared at low food levels (1% body weight) allocated less than half their energy for growth than those reared at high food levels (4% body weight). These findings suggest that high temperature and low food level constrain the growth of juveniles, providing an insight into the effect of the recent increase in warm and low-nutrient water masses on survival of juveniles and catches of adult chum salmon on the Pacific side of Honshu Island, Japan.

  相似文献   

12.
We have reviewed the effects of long-term climatic/oceanic conditions on the growth, survival, production dynamics, and distribution of Hokkaido chum salmon Oncorhynchus keta in Japan during the period 1945–2005 using path analysis, back-calculation, and scale analyses, and applied a prediction method based on the SRES-A1B scenario of the intergovernmental panel on climate change. The populations of Hokkaido chum salmon were found to have had high growth rates at age 1 year since the late 1980s. Path analysis indicated that the growth at age 1 year in the Okhotsk Sea was directly affected by warm sea surface temperature associated with global warming, with the increased growth at age 1 year resulting in higher rates of survival and large population sizes. Predictions on the global warming effects on the chum salmon were (1) decreased carrying capacity and distribution area, (2) occurrence of a strong density-dependent effect, and (3) loss of migration route to the Sea of Okhotsk, especially for Hokkaido chum salmon. We have also outlined the future challenges of establishing a sustainable conservation management scheme for salmon that include adaptive management and precautionary principles, as well as conservation of natural spawning populations and recovery of natural river ecosystems in Japan despite the warming climate.  相似文献   

13.
Ecosystem‐based fisheries management requires the development of physical and biological time series that index ocean productivity for stock assessment and recruitment forecasts for commercially important species. As recruitment in marine fish is related to ocean condition, we developed proxies for ocean conditions based on sea surface temperature (SST) and biometric measurements of chum salmon (Oncorhynchus keta) captured in the walleye pollock (Gadus chalcogrammus) fishery in the eastern Bering Sea in three periods (July 16–30, September 1–15 and September 16–30). The main purpose of this paper was to evaluate Pacific salmon (Oncorhynchus spp.) growth as a possible indicator of ocean conditions that, in turn, may affect age‐1 walleye pollock recruitment. Marine growth rates of Pacific salmon are the result of a complex interplay of physical, biological and population‐based factors that fish experience as they range through oceanic habitats. These growth rates can, therefore, be viewed as indicators of recent ocean productivity. Thus, our hypothesis was that estimated intra‐annual growth in body weight of immature and maturing age‐4 male and female chum salmon may be used as a biological indicator of variations in rearing conditions also experienced by age‐0 walleye pollock; consequently, they may be used to predict the recruitment to age‐1 in walleye pollock. Summer SSTs and chum salmon growth at the end of July and September explained the largest amount of variability in walleye pollock recruitment indicating that physical and biological indices of ocean productivity can index fish recruitment.  相似文献   

14.
To determine the optimal temperature for juvenile (0 year old) marbled flounder Pseudopleuronectes yokohamae, juveniles of 40–54 mm standard length were reared at six temperature conditions in the range of 8–26 °C, using group- and individual-based methods. Growth of juveniles increased from 8 to 20 °C but decreased from 20 to 26 °C, irrespective of the rearing method used. Food intake was greatest at 20 and 24 °C compared with other temperatures, while feed conversion efficiency was greater at 20 °C than 24 °C in individual rearing. Individual rearing provided more information such as individual variations in growth and food consumption, suggesting the importance of individual-based experiments for exploring the optimal temperature for fish.  相似文献   

15.
Hatcheries release >4.5 billion juvenile Pacific salmon (Oncorhynchus spp.) into the North Pacific Ocean annually, raising concerns about competition with wild salmon populations. We used retrospective scale analysis to investigate how the growth of chum salmon (Oketa) from western Alaska is affected by the abundance of chum salmon from Japanese hatcheries and wild pink salmon (Ogorbuscha) from the Russian Far East. Over nearly five decades, the growth of Kuskokwim River chum salmon was negatively correlated with the abundance of Japanese hatchery chum salmon after accounting for the effects of sex and spring/summer sea‐surface temperature in the Bering Sea. An effect of wild eastern Kamchatka pink salmon abundance on the growth of Kuskokwim River salmon was detectable but modest compared to the intraspecific competitive effect. A decrease in Japanese hatchery chum salmon releases in 2011–2013 was not associated with increased growth of Bering Sea chum salmon. However, the abundance of wild chum salmon from the Russian Far East increased during that time, possibly obscuring reduced competition with hatchery chum salmon. Our results support previous evidence that chum salmon are affected by intraspecific competition, and to a lesser extent interspecific competition, in the North Pacific, underscoring that the effects of salmon hatchery production transcend national boundaries.  相似文献   

16.
Telemetry is a useful technique for elucidating salmon behavior, but the recovery periods before fish can be safely released after the attachment of telemetry devices have not yet been established. Reported recovery times vary widely, from 2 h to 13 days. We examined how anesthesia and surgery to attach external electromyogram (EMG) transmitters affected chum salmon (Oncorhynchus keta) recovery based on three physiological parameters. Fish subjected to anesthesia plus EMG transmitter attachment (EMG group), anesthesia only (AO group), and no handling (control) were placed in a swim tunnel. Critical swimming speed (U crit), oxygen consumption (MO2), and muscle activity (EMG values) were assessed 0, 1, 6, 12, 24, and 30 h after treatment. The MO2 in the EMG and AO groups was higher than in the control group 1 h after treatment, but did not differ significantly from the control in all subsequent trials (from 6 to 30 h after treatment). Values for U crit and EMG were not significantly different from the control group in any of the trials conducted 1–30 h after treatment. We concluded that chum salmon had regained their normal swimming ability by 6 h after treatment and could be safely released into the natural environment.  相似文献   

17.
The effect of initial fish size (small with TL = 40.3 ± 2.3 mm and W = 0.42 ± 0.15 g, medium with TL = 56.2 ± 2.7 mm and W = 1.66 ± 0.4 g, and big with TL = 71.0 ± 3.2 mm and W = 2.95 ± 0.65 g) and stocking density of identical fish with TL = 40.3 ± 2.3 mm and W = 0.42 ± 0.15 g (1; 2; 4; 8 fish l?1) on weaning success was evaluated in pond-cultured pikeperch. The trial was divided into weaning (12 days) and post-weaning (16 days) periods. Small juveniles reached significantly higher specific growth rate (SGR = 1.6 ± 0.2 % day?1) and survival rate (S = 81.7 ± 2.7 %) and lower cannibalism (C = 3.0 ± 0.75 %) compared to medium and large juveniles (SGR = 0.3–0.5 % day?1, S = 65.3–76.5 %, C = 6.5–7.5 %) during the weaning period. The higher survival rate was found at the two higher densities (S = 72.0–79.1 %) during the weaning period. The lowest survival rate (S = 38.9 ± 2.7) was observed at the lowest fish density. Fish stocking density did not affect growth, condition, or cannibalism rate during the weaning period. Similar trends of growth, survival, and cannibalism of weaned juveniles were observed during the post-weaning period. A mass weaning trial verified experimental results showing small pikeperch juveniles to reach satisfactory growth rate (SGR = 1.4 ± 0.1 and 7.2 ± 0.2 % day?1), survival (S = 78.7 ± 3.0 % and 97.6 ± 1.0 %), and cannibalism (C = 4.0 ± 1.5 % and 2.5 ± 1.0 %) rates during the weaning and post-weaning periods. No body or fin deformities of weaned juveniles were observed.  相似文献   

18.
Run timing of escaped farmed Atlantic salmon Salmo salar vs. wild fish was compared by the use of video camera surveillance in 15 rivers over several years, covering 1600 km of the Norwegian coastline (from 58°N to 69°N). Annual runs of wild salmon varied among rivers from <200 fish to more than 10 000. During the surveillance period that for most rivers extended from late May to early October, larger‐sized salmon (fish ≥ 65 cm) generally entered the rivers earlier than small fish. The percentage of salmon identified as escaped farmed fish ranged from 0.1% to 17% across rivers with an average of 4.3%. Estimates of escapees are, however, assumed to represent minimum values because an unknown number of farmed fish passing the video cameras may have been misclassified as wild fish. By the use of a linear mixed model and generalised additive mixed models, it was found that the relationship between run timing and fish length differed significantly between farmed and wild salmon. While small‐sized farmed and wild fish (<65 cm) entered the river at about the same time, wild large salmon returned on average 1–2 weeks earlier than similarly sized escapees. The proportion of large‐sized farmed escapees also increased until late August and decreased thereafter. In contrast, there was a relatively constant and lower proportion of small‐sized escapees throughout the season. Within the surveillance period, there was no evidence of any exceptionally late runs of fish classified as escaped farmed salmon.  相似文献   

19.
Two experiments were performed to study the relative significance of the absolute daylength and the change in photoperiod on the growth and development of bimodality in juvenile Atlantic salmon Salmo salar L. In Experiment A juveniles were reared on 24 h daily light until they were seven months old (65–82 mm in length after size grading). They were then divided into six groups and subjected to six photoperiods (6, 9, 12, 15, 18 and 24 h of light). In Experiment B the decrease in photoperiod was made in two steps. First, the day length was reduced to 18 and 21 hours, three months after first feeding when the weight of the juveniles averaged 2.5 g and one group was kept under 24 hour daily light. Two months later, each of these treatment groups was subdivided to produce new groups of juveniles (65–82 mm in length) under 6, 9 and 12 h of daily light. Irrespective of whether the photoperiods were reduced in one or two steps, groups held under short-day photoperiods, 6–12 h, grew significantly slower (Exp. A) and showed higher proportions of lower modal group fish (Exp. B) than groups treated with long-day photoperiods, greater than 12 h. There were low proportions of lower modal group fish among juveniles larger than 75 mm at the dates of decreases in daylength irrespective of photoperiod (Exp. B, 0–16%), and high or variable proportions among fish smaller than 75 mm, depending on photoperiod (Exp B. 32–71%). It is concluded that the growth response of juvenile Atlantic salmon changes in the range of 12–15 hours of daily light. This mechanism is probably linked to the size of the parr and is one important reason for the development of bimodal length-frequency distributions.  相似文献   

20.
The effect of fatigue on swimming performance was examined by measuring the swimming endurance time and heart rate of the jack mackerel Trachurus japonicus [15.7 ± 0.8 cm fork length (FL), n = 15] during forced exercise in a flume tank at fixed swimming speeds of 4, 5 and 6 FL/s. Electrocardiographic (ECG) monitoring during the experimental process from control (0.8 FL/s) to exercise phase revealed a rapid cardiac response of T. japonicus to the elevation of swimming speed. The heart rate of T. japonicus significantly increased from the control level of 52.9 beats/min at a slow flow speed of 0.8 FL/s to 148.2 beats/min at 4 FL/s, 168.6 beats/min at 5 FL/s and 183.2 beats/min at 6 FL/s. During the fixed speed test, the heart rate of each individual fish was stabilized without any recognizable increase or decrease until the fish failed to swim because of fatigue. Fatigue analysis on endurance time demonstrated that prior swimming experience at prolonged speeds would impair the endurance performance during subsequent swimming exercise. Recovery time of the heart rate after the fish was fully exhausted by prolonged fast exercise increased with increasing swimming endurance time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号