首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Apx toxins in Pasteurellaceae species from animals   总被引:6,自引:0,他引:6  
Pasteurellaceae species particularly of porcine origin which are closely related to Actinobacillus pleuropneumoniae were analyzed for the presence of analogues to the major A. pleuropneumoniae RTX toxin genes, apxICABD, apxIICA and apxIIICABD and for their expression. Actinobacillus suis contains both apxICABD(var.suis) and apxIICA(var. suis) operons and was shown to produce ApxI and ApxII toxin. Actinobacillus rossii contained the operons apxIICA(var.rossii) and apxIIICABD(var.rossii). However, only the toxin ApxII and not ApxIII could be detected in cultures of A. rossii. The Apx toxins found in A. suis and A. rossi may play a role in virulence of these pathogens. Actinobacillus lignieresii, which was included since it is phylogenetically very closely related to A. pleuropneumoniae, was found to contain a full apxICABD(var.lign.) operon which however lacks the -35 and -10 boxes in the promoter sequences. As expected from these results, no expression of ApxI was detected in A. lignieresii grown under standard culture conditions. Actinobacillus seminis, Actinobacillus equuli, Pasteurella aerogenes, Pasteurella multocida, Haemophilus parasuis, and also Mannheimia (Pasteurella) haemolytica, which is known to secrete leukotoxin, were all shown to be devoid of any of the apx toxin genes and did not produce ApxI, ApxII or ApxIII toxin proteins. However, proteins of slightly lower molecular mass than ApxI, ApxII and ApxIII which showed limited cross-reactions with monospecific, polyclonal anti-ApxI, anti-ApxII and anti-ApxIII were detected on immunoblot analysis of A. equuli, A. seminis and P. aerogenes. The presence of Apx toxins and proteins that imunologically cross react with Apx toxins in porcine Actinobacillus species other than A. pleuropneumoniae can be expected to interfere with serodiagnosis of porcine pleuropneumonia.  相似文献   

2.
Equine Actinobacillus species were analysed phylogenetically by 16S rRNA gene (rrs) sequencing focusing on the species Actinobacillus equuli, which has recently been subdivided into the non-haemolytic A. equuli subsp. equuli and the haemolytic A. equuli subsp. haemolyticus. In parallel we determined the profile for RTX toxin genes of the sample of strains by PCR testing for the presence of the A. equuli haemolysin gene aqx, and the toxin genes apxI, apxII, apxIII and apxIV, which are known in porcine pathogens such as Actinobacillus pleuropneumoniae and Actinobacillus suis. The rrs-based phylogenetic analysis revealed two distinct subclusters containing both A. equuli subsp. equuli and A. equuli subsp. haemolyticus distributed through both subclusters with no correlation to taxonomic classification. Within one of the rrs-based subclusters containing the A. equuli subsp. equuli type strain, clustered as well the porcine Actinobacillus suis strains. This latter is known to be also phenotypically closely related to A. equuli. The toxin gene analysis revealed that all A. equuli subsp. haemolyticus strains from both rrs subclusters specifically contained the aqx gene while the A. suis strains harboured the genes apxI and apxII. The aqx gene was found to be specific for A. equuli subsp. haemolyticus, since A. equuli subsp. equuli contained no aqx nor any of the other RTX genes tested. The specificity of aqx for the haemolytic equine A. equuli and ApxI and ApxII for the porcine A. suis indicates a role of these RTX toxins in host species predilection of the two closely related species of bacterial pathogens and allows PCR based diagnostic differentiation of the two.  相似文献   

3.
Strains of Actinobacillus porcitonsillarum are regularly isolated from the tonsils of healthy pigs. A. porcitonsillarum is non pathogenic but phenotypically it strongly resembles the pathogenic species Actinobacillus pleuropneumoniae, thereby interfering with the diagnosis of the latter. A. porcitonsillarum is hemolytic but unlike A. pleuropneumoniae, it contains only apxII genes and not apxI or apxIII genes. In contrast to the truncated apxII operon of A. pleuropneumoniae, which lacks the type I secretion genes BD, characterization of the apxII operon in A. porcitonsillarum revealed that it contains an intact and complete apxII operon. This shows a typical RTX operon structure with the gene arrangement apxIICABD. The region upstream of the apxII operon is also different from that in A. pleuropneumoniae and contains an additional gene, aspC, encoding a putative aspartate aminotransferase. Trans-complementation experiments in Escherichia coli and A. pleuropneumoniae indicated that the entire apxII operon of A. porcitonsillarum is sufficient to express and secrete the ApxIIA toxin and that the ApxIIA toxin of A. pleuropneumoniae can be secreted by the type I secretion system encoded by apxIIBD. These findings suggest that the complete apxII operon found in A. porcitonsillarum might be an ancestor of the truncated homologue found in A. pleuropneumoniae. The genetic context of the apxII locus in A. porcitonsillarum and A. pleuropneumoniae suggests that in the latter, the contemporary truncated operon is the result of a recombination event within the species, rather than a horizontal transfer of an incomplete operon.  相似文献   

4.
The antigenic attributes of Pasteurella aerogenes sp n were serologically compared with species of the genera Actinobacillus and Pasteurella. Examination included the tube-agglutination and double-immunodiffusion techniques. The results indicated the possibility of serologically different strains of P aerogenes. Antisera prepared from strains of P aerogenes also reacted well with antigens prepared from Yersinia pseudotuberculosis (P pseudotuberculosis) and P pneumotropica.  相似文献   

5.
K Min  C Chae 《The Veterinary record》1999,145(9):251-254
A total of 100 field isolates of Actinobacillus pleuropneumoniae isolated from lung tissues of pigs with severe pleuropneumonia were serotyped by slide agglutination and precipitation tests. Polymerase chain reactions for apxICA, apxIICA, apxIIICA, apxIBD and apxIIIBD genes were used to determine their genotype prevalence. Serotypes 2 (56 isolates), 5 (28 isolates) and 6 (11 isolates) were the most common; only two isolates belonged to serotype 7, and three were untyped. Among the 97 isolates identified by serotype, 70 had the same apx genes as their respective serotype reference strains, but 27 did not have any of the apx genes present in the corresponding serotype reference strain. Among these 27 isolates, 10 were serotype 2, 12 were serotype 5, three were serotype 6 and two were serotype 7.  相似文献   

6.
Three strains of the Pasteurella aerogenes complex were isolated as sole pathogens from aborted fetuses of a sow aborted at the 12th week of gestation on a farm of 600 sows. Gross pathology showed no characteristic lesions. The isolates were biochemically identical and resembled P. pneumotropica on the basis of their strong indole and urease positivity but they produced gas, were ornithine decarboxylase negative and fermented mannitol but not trehalose. Only a few differences were apparent in biochemical characteristics between the isolated strains and P. aerogenes. They differed from the type strain of P. aerogenes in ornithine decarboxylase activity, indole production and lactose and mannitol fermentation; however, such strains do occur within this heterogeneous species. At the time of abortion the antibody titre of the aborted sow was 1 in 16 when examined with live bacterial suspension and 1 in 128 if boiled antigen was used. Similar strains could not be isolated from the vaginas of aborted sows or pregnant and newly farrowed sows in the same group. The bacteriological, serological and histological findings support the opinion of other workers on the occasional pathogenic nature of P. aerogenes.  相似文献   

7.
Immunological properties of Actinobacillus pleuropneumoniae hemolysin I   总被引:8,自引:0,他引:8  
The 105 kDa hemolysin I protein from Actinobacillus pleuropneumoniae serotype I type strain 4074 (HlyI) was shown by immunoblot analysis to be the predominant immunogenic protein if convalescent field sera or sera from pigs experimentally infected with A. pleuropneumoniae serotype 1 were used. SDS gel- and immunoblot-analysis using total culture, washed cells or culture supernatant showed that HlyI is essentially secreted and is not found attached to the bacteria. Proteins in the 105 kDa range that react strongly with anti-HlyI antibody, are produced by all serotypes and are presumed to be their hemolysins. Sera from pigs experimentally infected with each of the 12 serotypes strongly reacted with HlyI. In addition, some sera from pigs that were confirmed to be negative for A. pleuropneumoniae, also reacted with HlyI as well as with related proteins from Actinobacillus rossii and Actinobacillus suis. These two species produce proteins in the 105 kDa range which cross-react strongly with HlyI. They could be the source of the immunological reactions of the A. pleuropneumoniae-negative sera with HlyI. However, no cross-reactions could be found between HlyI and the Pasteurella haemolytica leukotoxin, the Escherichia coli alpha-hemolysin or related proteins from various hemolytic E. coli strains isolated from pigs. The immunological cross-reactions of HlyI with related proteins from A. rossii, A. suis and possibly from other bacterial species may create uncertainty in interpretation if HlyI is used as the antigen in serodiagnosis of A. pleuropneumoniae.  相似文献   

8.
Lack of evidence for the occurrence of Pasteurella ureae in rodents   总被引:1,自引:0,他引:1  
The taxonomy of five typical human isolates of Pasteurella ureae, one strain of Actinobacillus hominis, and three murine isolates which had been designated as Pasteurella ureae in published reports were re-examined. Their taxonomic relationships were investigated by both conventional phenotypic characterization and by DNA/DNA hybridization using the renaturation method. The human Pasteurella urea strains were highly homogeneous in their phenotypes and in their DNA reassociation. The strain of Actinobacillus hominis studied was genetically distinct from Pasteurella ureae, but was located, like Pasteurella ureae, in the Actinobacillus group. The remaining strains exhibited only low DNA relatedness with Pasteurella ureae and each other; this agreed with their phenotypic divergence. Two of the murine isolates were identified as indole-negative variant strains of Pasteurella pneumotropica sensu stricto (i.e., type Jawetz), or of the type Heyl of Pasteurella pneumotropica, respectively. The remaining murine isolate appears to represent a hitherto unrecognized species of Pasteurellaceae. So far, there is no evidence for the occurrence of Pasteurella ureae outside the human host.  相似文献   

9.
The prepuces of lambs aged 6--8 months and semen of 2 adult rams were found to be infected with gram negative, non-motile, non-haemolytic, pleomorphic bacilli. These organisms were compared with those of known strains of actinobacillus actinomycetem comitans. Actinobacillus seminis and Pasteurella haemolytica, using the API 20 E classification system. Applying the principles of numerical taxonomy, the majority of suspected strains of A. seminis could be classified as A. actinomycetem comitans and 3 examples as Histophilus ovis. Although some of the suspected strains of A. seminis could be classified as P. haemolytica, obvious differences between the genera Actinobacillus and Pasteurella were evident.  相似文献   

10.
目的建立可以同时检测猪胸膜肺炎放线杆菌、多杀性巴氏杆菌和副猪嗜血杆菌的快速而可靠的PCR检测方法。方法和结果根据胸膜肺炎放线杆菌的Apx-VIA基因序列、多杀性巴氏杆菌和副猪嗜血杆菌的16SrRNA基因序列设计5条引物。猪胸膜肺炎放线杆菌、多杀性巴氏杆菌和副猪嗜血杆菌模板的PCR扩增产物大小分别为342bp,485bp和1258bp。复合PCR对1~12型猪胸膜肺炎放线杆菌标准株,6株多杀性巴氏杆菌标准株,1~15型副猪嗜血杆菌以及25株经生化鉴定确认为上述三种细菌的分离株的基因组DNA作为模板进行检测,均获得预期大小的扩增产物。以猪放线杆菌、吲哚放线杆菌等14种常见细菌作为阴性对照进行PCR检测,结果仅有支气管败血波氏杆菌产生了可以和上述三个特异性条带明显区分的PCR产物。复合PCR针对胸膜肺炎放线杆菌、多杀性巴氏杆菌和副猪嗜血杆菌的敏感性分别为14pg、34pg和37pg。结论本研究建立的复合PCR特异性好,敏感性高,可以用于猪胸膜肺炎放线杆菌、多杀性巴氏杆菌和副猪嗜血杆菌的快速检测。  相似文献   

11.
Leukotoxins of gram-negative bacteria.   总被引:12,自引:0,他引:12  
Leukotoxins are a group of exotoxins that produce their primary toxic effects against leukocytes, especially polymorphonuclear cells (PMNs). Leukotoxins include a variety of chemicals ranging from 9,10-epoxy 12-octadecenoate, a fatty acid derivative secreted by leukocytes themselves, to proteins such as RTX (repeats in toxin). This review focuses on leukotoxins of three species of gram-negative bacteria, Mannheimia (Pasteurella) haemolytica, Actinobacillus actinomycetemcomitans, and Fusobacterium necrophorum.  相似文献   

12.
Twenty-four Actinobacillus suis isolates obtained from several species of non-porcine mammals were compared to the representative porcine strains, ATCC 15557 (serotype O1) and H89-1173 (serotype O2), by O serotyping, DNA fingerprinting, PCR amplification of apxICA, apxIICA and apxIIICA toxin genes and by rrs (16S rRNA) gene sequencing. Only two strains, both equine, reacted with O1 antiserum while two others, one canine and the other feline, reacted with O2 antiserum. One equine strain reacted weakly with both antisera. No amplification of apx genes was found with the non-porcine O1 or the "not O1/O2" strains but amplification of the apxICA and apxIICA genes was observed with the two O2 strains. In addition, these two O2 strains had both BamHI and BglII fingerprints that were very similar to the porcine O2 reference strain, H89-1173 and rrs gene sequences that were identical to the A. suis reference strain ATCC 15557. Taken together, these data suggest that although many non-porcine A. suis isolates are not A. suis (sensu stricto), some isolates are genotypically as well as phenotypically similar to A. suis.  相似文献   

13.
Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, which causes worldwide severe losses in pig farming. The virulence of the 15 serotypes of A. pleuropneumoniae is mainly determined by the three major RTX toxins ApxI, ApxII and ApxIII, which are secreted by the different serotypes in various combinations. A fourth RTX toxin, ApxIV, is produced by all 15 serotypes only during infection of pigs, but not under in vitro conditions. Pigs infected with A. pleuropneumoniae show specific antibodies directed against ApxIV. In contrast, antibodies against the other three toxins ApxI, ApxII and ApxIII are also found in pigs free of A. pleuropneumoniae. The antibodies to the three latter might result from other, less pathogenic Actinobacillus species such as A. rossii and A. suis. We used a recombinant protein based on the N'-terminal part of ApxIV to serologically detect A. pleuropneumoniae infections in pigs by immunoblot analysis. The analysis of sera of experimentally infected pigs revealed that ApxIV-immunoblots detected A. pleuropneumoniae infections in the second to third week post infection. We developed an indirect ELISA based on the purified recombinant N'-terminal moiety of ApxIV. The analysis of sera from pigs that were experimentally or naturally infected by A. pleuropneumoniae, and of sera of pigs that were free of A. pleuropneumoniae, revealed that the ELISA had a specificity of 100% and a sensitivity of 93.8%. The pre-validation study of the ApxIV-ELISA revealed that the latter was able to detect A. pleuropneumoniae-positive herds, even when clinical and pathological signs of porcine pleuropneumonia were not evident. Pigs vaccinated with a subunit vaccine Porcilis App were serologically negative in the ApxIV-ELISA.  相似文献   

14.
To learn more about the molecular biology of Pasteurella multocida 289 strains isolated from various clinically healthy and diseased hosts were examined for capsule biosynthesis genes (capA, B, D, E, and F) and 14 virulence associated genes by PCR and DNA-DNA-hybridization. As expected, capsule type A strains were highly adapted to bovines (92.3%) and poultry (85.7%) while we mainly found capA (34.9%)- and capD (58.1%)-positive strains in swine. A noticeable amount of capD-positive strains also originated from small ruminants (34.9%) and capF was detected in wild type strains from diseased cattle (2.2%) and cats (7.4%). None of the isolates harboured capE, while capB was exclusively found in all strains from buffaloes. Nearly all isolates showed a combination of genes encoding outer membrane proteins, colonization factors, iron aquisition factors and superoxid-dismutases without any clue for host specificity. In contrast, the transferrin binding protein encoding gene tbpA (31.5%) was limited to ruminant strains and only 37.0% of all P. multocida strains harboured pfhA, coding for a filamentous hemagglutinin, supposed to be a putative adhesion- und serum resistance factor. PfhA revealed a strong positive association to the outcome of disease in bovine hosts and in combination with toxA to that in swine. The dermonecrotoxin encoding toxA, present in 12.5% of all strains, was detected in isolates from swine, small ruminants, cattle, and poultry. A significant association to the disease status, however, was only existent in swine, although with 66.7% we found a notably high prevalence of the toxin gene among strains from small ruminants. The genes toxA, tbpA and pfhA as well as capsule biosynthesis genes are supposed to be important epidemiological marker genes for characterizing P. multocida field strains.  相似文献   

15.
16.
A DNA microarray system was prepared and shown to facilitate identification and typing of Actinobacillus pleuropneumoniae. The DNA microarray, composed of 18 DNA polymerase chain reaction (PCR) amplicons printed on glass slides and arranged in 3 subarrays, was developed. These target DNA included 1 or multiple fragments of the outer membrane lipoprotein, apx toxin, capsular polysaccharide, and disulfide bound formation protein E (dsbE)-like genes of A. pleuropneumoniae. These arrayed target DNA retained their expceted hybridization properties. The hybridization signal intensities ranged from the least-intense to the most-intense, 4626 to 9789 arbitrary fluorescence units, respectively. Cy3-probes of A. pleuropneumoniae strains labeled with multiplex PCR were hybridized to the DNA microarray. A total of 51 different A. pleuropneumoniae strains representing serotype 1 to 12 reference strains and clinical isolates were detected and typed by the DNA microarray. Twelve reference serotypes produced 11 distinct target DNA hybridization patterns, and hybridization patterns of serotypes 1 (n = 7), 3 (n = 5), and 7 (n = 6) field isolates were identical to hybridization patterns of reference serotypes 1, 3, and 7, respectively. Non-serotyped isolates 4, 6, and 11 (out of 21) from diseased pigs had identical hybridization patterns to reference serotypes 3, 7, and 1, respectively. The results show that the DNA microarray system described in the present study is a valuable tool for identifying and typing reference strains and isolates of A. pleuropneumoniae, and enables relatively rapid identification of non-serotyped isolates.  相似文献   

17.
A total of 78 fecal specimens were collected from both apparently healthy (n=71) and diarrheic (n=7) cattle from an organized farm in Pune, western India in December 2007-January 2008. Three specimens tested positive for group A rotavirus (RV) by antigen capture ELISA were subjected to RT-PCR for amplification of entire coding regions of three structural (VP4, VP6 and VP7) and one nonstructural (NSP4) genes. All three strains were genotyped as G8P[14]. Phylogenetic analysis of the VP7 and VP4 genes showed clustering of the VP7 gene with G8 strains of bovine origin and VP4 gene with P[14] strains of human origin. The identification of VP6 and NSP4 genes to have I2 (subgroup I) and E2 (genotype A) specificity, respectively of bovine and human origin indicated independent segregation of genes in bovine RV strains. This study indicates circulation of a rare RV genotype, G8P[14] in western India. To our knowledge, this is the second report on RV G8[14] isolated from bovine species after bovine group A RV strain, SUN9 from Japan.  相似文献   

18.
We assessed and compared host cell specificity of the haemolytic and cytotoxic activity of the RTX toxins from Actinobacillus equuli, an equine pathogen, and Actinobacillus suis, which is pathogenic for pigs. The two bacterial species are closely related, phenotypically as well as phylogenetically, sharing the same 16S rRNA gene sequence. Both species contain specific protein toxins from the family of pore-forming RTX toxins, however, the two species differ in their RTX toxin profiles. Haemolytic A. equuli contains the operon for the Aqx toxin, whereas A. suis harbours genes for ApxI and ApxII. We tested the toxic activity of the corresponding proteins on erythrocytes as well as on lymphocytes isolated from horse and pig blood. The strength of the haemolytic activity for each of the toxins was independent of the origin of erythrocytes. When testing cytotoxic activity, the Aqx protein showed a higher toxic effect for horse lymphocytes than for porcine lymphocytes. On the other hand, ApxI and ApxII showed a strong cytotoxic effect on porcine lymphocytes and a reduced toxicity for horse lymphocytes; the toxicity of ApxII was generally much lower than ApxI. Our results indicate a host species specificity of the toxic activity of RTX toxins Aqx of A. equuli and ApxI and ApxII of A. suis.  相似文献   

19.
Forty-four Actinobacillus pleuropneumoniae isolates recovered from both healthy and diseased pigs were characterized by random amplified polymorphic DNA analysis (RAPD), pulsed field gel electrophoresis (PFGE) and apx toxin gene typing. Nine RAPD types and 14 PFGE patterns were identified. No common RAPD or PFGE patterns were found between strains of serotype 1 and those of serotype 5. The RAPD analysis indicated that the 15 serotype 1 strains isolated from diseased pigs were assigned to 4 RAPD types, with 66% of strains characterized by the same RAPD type. By contrast, the 5 strains of serotype 1 isolated from healthy carriers were dispersed in 4 RAPD types. These data suggest that the diversity of strains isolated from healthy pigs could be higher than that of strains recovered from diseased pigs. In addition, all serotype 5 strains exhibited a unique RAPD type. Unlike RAPD, PFGE analysis allowed discrimination among isolates of serotype 1 and among those of serotype 5. All but 3 isolates showed the same apx genotype as their respective serotype reference strain. These data indicate that RAPD analysis is a valuable rapid tool for routine subtyping of strains of serotype 1. For strains of serotype 5, a combination of several typing methods, such as PFGE and apx gene typing, is needed to provide useful information on the molecular epidemiology of swine pleuropneumonia.  相似文献   

20.
tRNA-intergenic spacer PCR (tDNA-PCR) was evaluated for its effectiveness in differentiating Pasteurella and Mannheimia (sub)species predominantly of ruminant origin. For this purpose, 38 reference strains and 13 field isolates belonging to both genera were investigated. tDNA-PCR enabled discrimination of all Pasteurella species tested (Pasteurella (P.) aerogenes, P. avium, P. canis, P. lymphangitidis, P. multocida, P. trehalosi). For the differentiation of the subspecies of P. multocida, an additional dulcitol reaction was required. Two of the five so far-defined Mannheimia species, M. granulomatis and M. varigena, had a distinct fingerprinting profile. The remaining three phylogenetically highly related species (M. haemolytica, M. glucosida, and M. ruminalis) clustered together. Nevertheless, M. ruminalis is non-haemolytic, and M. haemolytica and M. glucosida can be differentiated on the basis of two additional phenotypic characteristics (beta-glucosidase and aesculin hydrolysis). In conclusion, tDNA-PCR is a useful tool in differentiating organisms belonging to the genera Pasteurella and Mannheimia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号