首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
热解活化法制备微孔发达椰壳活性炭及其吸附性能研究   总被引:1,自引:0,他引:1  
以椰壳为原料,采用热解活化法制备微孔发达活性炭。研究了活化温度、活化时间对活性炭孔结构和吸附性能的影响。实验结果表明:活化温度为900℃,活化时间为4 h,可制得比表面积为994.42 m2/g的微孔发达活性炭,其碘吸附值为1 295 mg/g,亚甲基蓝吸附值为135 mg/g。N2吸附结果表明活性炭的平均孔径在2 nm左右,总孔容积为0.503 9 cm3/g,其中微孔容积为0.430 3 cm3/g,微孔率达85.39%。对该活性炭进行CO2动态吸附实验,CO2饱和吸附容量为56.61 mg/g,在热解活化法制备椰壳过程中,随着活化温度的升高和活化时间的延长,活性炭的得率有不同程度的降低。  相似文献   

2.
椰壳炭制备高比表面积活性炭的研究   总被引:10,自引:6,他引:10  
高比表面积活性炭是一种极具潜力的吸附材料。本研究以椰壳炭为原料,采用水蒸气和CO2共同活化来制备活性炭。研究表明,粒径为0.28~0.90 mm的椰壳炭以水蒸气和CO2活化10~17 h可以制备出比表面积超过2 700 m2/g的活性炭。活性炭对CO2和CH4有着很强的吸附能力,在25℃时最高吸附量分别达到20.4和9.6 mmol/g。采用一种基于局部密度函数理论的方法计算出活性炭的孔隙主要集中在2 nm以下,利用孔径分布结果计算出的吸附量与实验测量值吻合很好。  相似文献   

3.
以椰壳炭化料为原料,通过KOH活化法制备高比表面积活性炭,并探索温度、时间和活化比对活性炭吸附性能的影响.通过单因素试验发现,活化温度800℃,活化时间60 min,活化比值为5的条件下活性炭的吸附性能最优.制备出的活性炭比表面积为3 360 m2/g,总孔孔容为1.798 cm3/g,平均孔径为2.140 nm,对碘的吸附性能为2809 mg/g,对亚甲基蓝溶液的吸附性能为675mg/g.  相似文献   

4.
考察了具有不同孔结构的椰壳活性炭对肌酐(CR)的吸附性能,研究了比表面积、孔径分布与肌酐吸附性能的关系,采用准一级、准二级和颗粒内扩散动力学模型对吸附数据拟合处理,确定了模型参数。试验结果表明:1~2.5 nm的微孔对肌酐吸附有利,平均孔径在2.2 nm附近的椰壳活性炭肌酐吸附量为104 mg/g;活性炭对肌酐的吸附能力取决于比表面积,总孔容,微孔率的共同作用。颗粒内扩散吸附并不是唯一的速率控制过程,椰壳活性炭对肌酐的吸附过程更符合准二级动力学模型t/qt=1/k2q2e+t/qe,相关系数均在0.99以上,表明吸附过程存在化学吸附。  相似文献   

5.
废水特性研究   总被引:1,自引:0,他引:1  
采用微波加热水蒸气活化法制备了椰壳活性炭(MAC),用于吸附水溶液中的Pb2 ,并对吸附热力学进行了探讨。吸附热力学研究中考察了温度对吸附的影响。应用Van′t Hoff方程对热力学参数(标准吉布斯自由能ΔG、标准焓ΔH、标准熵ΔS)进行了计算。热力学研究表明:Pb2 吸附于MAC上是一个自发进行的放热过程。采用Langmuir和Freundlich吸附等温式对不同温度下获得的吸附平衡数据进行了分析,结果显示Langmuir模型对实验数据能更好的进行拟合。  相似文献   

6.
以椰壳为原料,水蒸气活化法制备了椰壳活性炭(AC),并以乙醇和水作为溶剂,采用水热法将AC与石墨烯(GR)按质量比90∶0、90∶5、90∶54、90∶90和54∶90复合,将制得的复合材料(GAC1~GAC5)作为电极应用于超级电容器。通过氮气吸脱附、X射线衍射(XRD)、扫描电镜(SEM)方法表征了活性炭的孔结构和表面形貌;采用循环伏安(CV)、恒电流充放电(GCD)方法分析比较不同复合比例下超级电容器电极材料的性能。实验结果表明:在炭化温度800℃,活化温度900℃及活化时间1.5 h的条件下制备的椰壳活性炭比表面积为2482 m^2/g,其孔径主要分布在2~4 nm,孔容可达1.33 cm^3/g,在6 mol/L KOH电解液中比电容为85 F/g,石墨烯改性的复合材料GAC-5作为电极材料具有优异的电化学性能,在电流密度1 A/g时比电容可达186 F/g。  相似文献   

7.
澳洲坚果壳活性炭制备的热解特性研究   总被引:3,自引:0,他引:3  
以澳洲坚果壳为原料,磷酸为活化剂,利用同步热重-差热分析仪(TG-DTA)对澳洲坚果壳的热失重、热效应以及热解机理进行探讨.实验结果表明:不同条件下的澳洲坚果壳的热分析曲线都有两个失重阶段和相应的吸热峰或放热峰.澳洲坚果壳热解温度在200~410 ℃之间,800 ℃时残余量接近零.以磷酸为活化剂浸渍12和24 h的磷酸-澳洲坚果壳炭化和活化温度区间为130~400 ℃,800 ℃时残余量分别为34.431 %和17.743 %.磷酸-澳洲坚果壳较佳的活化温度在400 ℃左右,浸渍时间选择24 h为宜.同时随着浸渍时间的增加,DTG峰值温度呈现向低温推移的趋势,由未浸渍的363.63 ℃降至为243.71 ℃和238.37 ℃.磷酸浸渍对澳洲坚果壳有明显促进炭化作用,使其在130 ℃左右就开始热解炭化,研究结果为澳洲坚果壳活性炭制备提供理论依据.  相似文献   

8.
采用杉木屑为原料,氢氧化钠为活化剂制备木质活性炭产品,探讨活化时间、活化温度、氢氧化钠浓度等工艺参数对木质活性炭的得率和吸附性能的影响.结果 表明,随活化温度、氢氧化钠浓度和活化时间的增大,木质活性炭的得率呈不断下降的趋势,木质活性炭的吸附性能呈先上升后下降的趋势.较优的工艺条件为:活化温度850℃、活化时间1.0h、...  相似文献   

9.
水蒸气法制备橡胶籽壳活性炭的研究   总被引:6,自引:0,他引:6  
采用橡胶籽壳炭为原料,以水蒸气为活化剂制备吸附性能优良且得率高的活性炭。通过正交试验设计,研究活化温度、活化时间及水蒸气用量对活性炭吸附性能的影响。得到最佳活化工艺条件为:橡胶籽壳炭量1.0 kg,活化温度880℃,活化时间40 m in,水蒸气用量8 kg/h。制得的优质橡胶籽壳活性炭的亚甲基蓝脱色力240 mg/g,碘值1 113 mg/g,强度94.2%,得率40.5%。  相似文献   

10.
椰壳热解炭化热分析研究   总被引:1,自引:0,他引:1  
椰壳是一种优质活性炭原料,利用同步热重-差热分析仪(TG-DTA)对椰壳的热失重、热效应、热稳定性进行研究,分析了椰壳热解炭化的机理。作者还探讨了椰壳热解温度、升温速度对其炭化得率、分解速率的影响。实验结果表明:在5种升温条件下,椰壳热分析曲线都有两个失重阶段。热解温度区间在200~410℃之间。控制第二失重阶段是椰壳热解炭化的关键,提高升温速率在一定程度上会有利于椰壳热解反应的进行。当升温速率为20℃/m in,此时分解热焓为792.15 J/g,失重为31.925%。热解终温宜选择575℃。为椰壳的炭化工艺优化提供理论依据。  相似文献   

11.
水蒸气活化法制备松籽壳活性炭工艺   总被引:1,自引:0,他引:1  
研究了水蒸气法活化制备松籽壳活性炭的工艺条件,探讨了炭化温度、活化温度、活化时间和水蒸气用量对活化效果的影响。结果表明最佳工艺条件为:炭化温度500℃、活化温度950℃、活化时间120 min和水蒸气用量为炭化料的1.8倍,制备的活性炭碘值1144 mg/g,亚甲基蓝吸附值171 mL/g,产品得率15.6%。这些指标与木质活性炭相当,且投资少,能耗低,具有良好的社会效益与经济效益。  相似文献   

12.
油茶果壳基活性炭的制备及其中孔结构调控研究   总被引:2,自引:0,他引:2  
研究了油茶果壳经水蒸气活化后,浸渍磷酸再活化对活性炭中孔结构调控的影响,制备出中孔丰富的活性炭。实验结果显示:820℃下制备的水蒸气法油茶果壳活性炭以微孔为主,BET比表面积1 076 m2/g,总孔容积0.81 cm3/g,微孔率63%,中孔率33%,亚甲基蓝吸附值180 mg/g,碘吸附值1 012 mg/g;水蒸气法油茶果壳活性炭经800℃下磷酸再活化后,可明显增加BET比表面积(1 608 m2/g)和总孔容积(1.17 cm3/g),尤其对中孔率(61%)的发展更有效,同时保留一定比例的微孔(37%),显示出更高的亚甲基蓝吸附值(330 mg/g)和碘吸附值(1 326 mg/g)。  相似文献   

13.
研究了磷酸活化法制备稻壳活性炭的工艺条件,探讨了浸渍比、活化剂浓度、活化时间和活化温度对活化效果的影响.结果表明最佳工艺条件为:料液比为1:2.5,活化剂浓度为60%,活化时间为90 min,活化温度为550℃;产品各项吸附指标均符合国家标准要求.  相似文献   

14.
采用热重-红外光谱(TG-FTIR)和裂解-气相色谱-质谱联用(Py-GC-MS)技术对椰壳粉的热失重、热裂解行为及其裂解产物进行了研究。在对N2和空气气氛下椰壳的TG和DTG曲线进行分析的基础上,采用三维红外光谱对热解过程中气体产物进行在线检测,结果表明:N2气氛下,椰壳的最大失重峰温度(Tm)为347.8℃,固体残余量为32.0%,主要的气体产物是CO2;而空气气氛下椰壳的热解更完全,固体残余量仅为6.5%,且最大热失重温度为282.1℃,释放的气体除了CO2,还有CO、H2O和CH4等。Py-GC-MS分析结果表明:酚类化合物是主要的裂解产物,当温度为400℃时共检测到39种裂解产物,其中酚类化合物12种(GC含量40.0%);当温度为700℃时共检测到56种裂解产物,其中酚类化合物18种(GC含量45.8%)。  相似文献   

15.
采用磷酸活化法制备木质颗粒活性炭,并探讨其对无水乙醇的吸附性能。结果表明,随着捏合温度、捏合时间、浸渍比、活化温度和保温时间的增加,活性炭的乙醇吸附率呈先升后降的趋势。在较佳生产工艺:捏合温度130℃,捏合时间60min,浸渍比1.25,活化温度450℃和保温时间1.0 h下,颗粒活性炭的乙醇吸附率为63.38%。  相似文献   

16.
利用果(核)壳磷酸法制造汽油回收用活性炭的研究,目前还未见报道。选择河南资源比较多的山枣(核)壳为原料,以磷酸为活化剂,进行汽油回收活性炭的制造探索。着重就相关制造工艺参数进行研究,为这类林业副产物的高附加值利用提供参考。  相似文献   

17.
以棉花秸秆为原料,采用KOH活化法制备活性炭样品,探讨了炭化、活化及后处理过程中各实验条件对活性炭样品性能的影响.综合考虑活性炭样品的性能及得率,得出较优的实验条件为:炭化温度450~500℃、碱炭比值1.0、活化温度800℃、活化时间120 min;在较优条件下制得活性碳的比表面积2 312m2/g,碘吸附值1 936 mg/g,亚甲基蓝吸附值392 mg,/g;孔径分布以微孔为主;表面含有羟基(-OH)、活泼氢(-H)等基团.  相似文献   

18.
以棉花秸秆为原料,采用KOH活化法制备活性炭样品,探讨了炭化、活化及后处理过程中各实验条件对活性炭样品性能的影响。综合考虑活性炭样品的性能及得率,得出较优的实验条件为:炭化温度450~500℃、碱炭比值1.0、活化温度800℃、活化时间120 min;在较优条件下制得活性炭的比表面积2 312 m2/g,碘吸附值1 936 mg/g,亚甲基蓝吸附值392 mg/g;孔径分布以微孔为主;表面含有羟基(—OH)、活泼氢(—H)等基团。  相似文献   

19.
高比表面积竹质活性炭的制备与性能研究   总被引:3,自引:3,他引:3  
以竹子为原料、磷酸为活化剂,在不同条件下制备竹基活性炭,考察浸渍比、活化温度、活化时间、升温速率等因素对竹质活性炭产品吸附性能的影响,得到亚甲基蓝吸附值最高达200 mL/g、焦糖脱色率最高达120%的高吸附性能竹质活性炭。研究结果表明最佳工艺条件为:浸渍比3∶1(g∶g),活化温度400℃,升温速率10℃/m in,活化时间40 m in。对所制得的竹质活性炭产品进行扫描电镜(SEM)分析、N2吸附分析,结果表明所制得活性炭具有较高的BET比表面积(2 103 m2/g)和发达的孔结构。  相似文献   

20.
不同部位竹材制备竹活性炭及其对苯酚的吸附性能   总被引:4,自引:0,他引:4  
利用不同部位的竹材如竹蔸、竹节和竹枝制备竹炭,以KOH为活化剂,在活化温度为700℃和不同质量浓度的KOH溶液下进行活化制备竹活性炭,测定吸附性能最好的竹活性炭在不同吸附时间和溶液质量浓度下对苯酚的吸附情况,并进行结构表征.结果表明:KOH溶液质量浓度为16.0 g·L-1时,制备的竹活性炭对苯酚的吸附效果最好,而竹蔸、竹节和竹枝活性炭中又以竹蔸活性炭吸附性能最好;吸附时间在40min时,竹蔸活性炭对苯酚的吸附趋于平衡,在30℃时竹蔸活性炭苯酚吸附量达到83.4 mg·g-1时趋向饱和.竹枝炭、竹节炭与竹篼炭的孔隙度分别为0.656,0.698和0.740,竹枝活性炭、竹节活性炭与竹篼活性炭的孔隙度分别为0.688,0.748和0.790.竹篼炭和竹篼活性炭比表面积分别为110.4和475.7m2·g-1,孔容分别为0.09和0.26mL·g-1,平均孔径分别为3.16和2.19nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号