首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本研究利用岗46B/A232构建的重组自交系(F10)176个家系为作图群体,运用QTL Ici Mapping4.0软件对2016和2017年RIL群体的粒形性状和千粒重性状进行QTL检测及其遗传效应分析。结果表明,两年共检测到28个粒形和粒重QTL,分别分布在第1、第2、第3、第4、第5、第6、第8、第9和第12染色体上。其中粒长相关QTL 10个,贡献率为4.90%~31.96%;粒宽相关QTL 6个,贡献率为3.38%~48.76%;谷粒长宽比相关QTL 9个,贡献率为5.70%~30.32%;粒厚相关QTL 6个,贡献率为6.06%~34.09%;千粒重相关QTL6个,贡献率为6.94%~21.22%。本研究中,有9对QTL两年均在同一位置被检测到:3对粒长QTL,1对粒宽QTL,1对谷粒长宽比QTL,2对粒厚QTL和2对千粒重QTL,说明他们受环境影响小,能稳定表达,可用于水稻分子标记辅助育种。第5染色体上RM1089~RM18119区间上稳定检测到控制粒长、粒宽、谷粒长宽比、粒厚和千粒重QTL,多数染色体的多处区段上均检测到一因多效性。  相似文献   

2.
利用极端材料定位水稻粒形性状数量基因位点   总被引:1,自引:0,他引:1  
利用极端大粒材料GSL156(千粒重71.9 g)与特小粒材料川七(千粒重12.1 g,轮回亲本)杂交、回交获得的BC2F2 216个个体为作图群体,在北京进行稻谷粒长、粒宽、粒厚、长宽比、千粒重等粒形性状的鉴定。采用单标记分析和复合区间作图法,利用SSR标记对粒形性状进行数量性状基因座检测。结果表明,上述粒形性状在BC2F2群体均呈正态连续分布,表现为由多基因控制的数量性状;共检测到与粒形性状相关的QTL 28个,分布于第1、2、3、4、5、6和12染色体上。其中qGL3-2、qGL3-3、qGT12-1、qGT2-1、qGT5-1、qGW1-1、qGW12-1、qGW2-1、qGW5-1、qRLW3-1、qTGW12-1、qTGW2-1、qTGW3-3和qTGW5-1对表型变异的贡献率分别为13.70%、52.51%、21.13%、18.79%、20.92%、14.59%、18.33%、30.03%、20.05%、24.53%、13.47%、11.43%、21.30%和15.68%,为主效QTL。其中,第3染色体上检测出来的QTL最多。在所有检测到的28个QTL中,6个QTL的增效等位基因来源于小粒亲本川七,而其余QTL的增效等位基因均来源于大粒亲本GSL156,基因作用方式主要表现为加性或部分显性。第3染色体RM7580~RM8208区间是分别与粒宽、长宽比和千粒重相关的3个主效QTL的共同标记区间,第2染色体的RM7636~RM5812区间、第5染色体的RM3351~RM26区间和第12号染色体的RM1103~RM17区间是分别与粒宽、粒厚和千粒重相关的3个主效QTL的共同标记区间,这些区间对粒形贡献率较大,为进一步精细定位或克隆这些新的粒重或粒形QTL奠定了基础。同时大粒亲本对稻谷粒长、粒宽、粒厚和千粒重等性状的增效作用显著。  相似文献   

3.
水稻品种魔王谷粒形、剑叶性状和株高QTL定位   总被引:1,自引:0,他引:1  
彭伟业  孙平勇  潘素君  李魏  戴良英 《作物学报》2018,44(11):1673-1680
以粳稻魔王谷和籼稻CO39配组衍生的280个重组自交系为材料, 2015年和2016年对其粒形、剑叶形态、株高性状进行了相关性分析和QTL检测。剑叶长分别与粒厚和株高存在极显著负相关和正相关, 剑叶宽与粒宽存在极显著正相关。检测到17个粒形QTL, 分布于第1、第2、第3、第4、第5、第6、第7、第9和第10染色体上, 贡献率为3.51%~48.65%; 其中, 第3染色体RM6080-RM6283区间对粒长和千粒重兼具显著作用, 第5染色体RM8211-RM3381区间同时影响粒宽和粒厚。检测到12个控制剑叶形态性状的QTL, 分布于第1、第3、第4、第6、第7和第9染色体上, 贡献率为4.26%~38.40%; 有5个多效QTL区间, 其中, 第4染色体RM252-SFP4_6区间同时控制剑叶长、剑叶宽、剑叶面积和粒长, 第9染色体RM257-RM3909区间同时影响剑叶面积和粒长。只检测到一个控制株高的QTL, 位于第1染色体的RM6333-RM5536区间, 是一个主效QTL, 贡献率为28.76%。这些结果为进一步开展粒形、剑叶形态、株高基因的精细定位、克隆和分子辅助育种奠定了基础。  相似文献   

4.
不同施氮水平下水稻株高与抽穗期的QTL比较分析   总被引:4,自引:0,他引:4  
利用超级杂交稻协优9308 (协青早B×中恢9308)衍生的重组自交系(recombinant inbred line, RIL)群体及其分子连锁图谱, 应用Windows QTL Cartographer 2.5对施氮和不施氮条件下水稻株高(PH)和抽穗期(HD)进行了QTL分析。在2种氮水平下检测到9个株高QTL和8个抽穗期QTL, 检测到4个影响2种环境下株高和抽穗期差值的QTL, 单个QTL可解释的表型变异介于5.68%~18.40%之间;在第7染色体上RM5436附近和第8染色上RM5556~RM310区间检测到同时控制2种氮水平下株高和抽穗期的QTL, 各位点的遗传效应贡献率较大, 增效等位基因均来源于R9308, 适用于分子标记辅助育种和聚合育种。在第2染色体上RM5916~RM166区间和第8染色体上RM2366~RM5767区间分别检测到1个影响2种氮水平下抽穗期差值和1个株高差值的QTL可能对水稻的氮素高效利用有直接贡献。  相似文献   

5.
利用亲本宽叶恢复系R189和窄叶鄂晚10号杂交获得的F2群体剑叶宽进行QTL检测和剑叶形态性状相关性分析。结果表明:不同剑叶形态性状间存在极显著正相关。采用基于混合线性模型复合区间作图方法的QTL检测软件进行QTL定位,共定位到3个控制剑叶叶宽的QTL,分布于1号和7号染色体上,贡献率介于2.63%~31.1%,其中位于7号染色体RM346标记位点控制剑叶宽qFLW-7-2的贡献率最大,对改良剑叶宽性状具有重要育种价值。  相似文献   

6.
稻谷粒长、粒宽和长宽比是衡量稻米外观品质的重要指标,稻谷籽粒形状也是影响水稻产量的重要因素。为更好地开展粒形分子育种,对水稻粒形QTL进行了分子定位。以单片段代换系(SSSL)为材料构建分离群体,利用微卫星标记对控制水稻谷粒长和谷粒宽的2个粒形QTL进行分子定位。粒宽QTLGw-8被定位于第8染色体长臂末端微卫星标记RM502与RM447之间,遗传距离均为0.3cM。  相似文献   

7.
不同生长环境下水稻结实率数量性状位点的检测   总被引:4,自引:0,他引:4  
以籼稻密阳23与粳稻吉冷1号配制所获得的F2:3群体200个家系作为作图群体,在北京、昆明、三亚、公主岭和韩国春川等5个点进行水稻结实率的鉴定,并利用SSR标记对水稻结实率数量性状位点进行检测。结果表明,水稻结实率表型值及其在F3家系群中的分布以及所检测到的QTL数目因生长环境不同而有较大差异,说明QTL与环境有明显的互作效应。水稻结实率在F3家系群中呈接近正态或偏态的连续分布,是多个基因所控制的数量性状。共检测到与水稻结实率相关的QTL 14个,分布于第1、2、3、4、6、7、8、10和12染色体上,对表型变异的贡献率为4.9%~15.3%。分别位于第1、2、6和12染色体RM1~RM259、RM263~RM6、RM340~RM30、RM270~RM17区间的qSSR1、qSSR2、qSSR6和qSSR12至少在2种生长环境下均检测到,对表型变异的贡献率分别为4.9%~8.4%、4.8%~7.2%、7.6%~10.7%和7.4%~10.4%。以上多数QTL增效等位基因均来自吉冷1号,基因作用方式主要为部分显性或显性或超显性。  相似文献   

8.
模拟干旱条件下水稻苗期形态性状的QTL定位   总被引:2,自引:2,他引:0  
以抗旱性差异较大的亲本小白粳子和空育131以及其后代180个F2∶3家系群体为试验材料,构建了包含99个SSR分子标记的遗传连锁图谱,利用浓度为15%PEG-6000模拟干旱胁迫条件.在两种条件下,共检测到影响胚芽鞘长、苗高、主根长和根数的QTL 26个,分别位于水稻的第1、2、3、4、5、6、7、8、12条染色体上,贡献率变幅在4.53%~37.22%之间.其中控制苗高的QTL11个,控制胚芽鞘长的QTL 5个,控制主根长的QTL 5个,控制根数的QTL 5个.在第2条染色体的RM1358-RM1347区间和第6条染色体上的RM461-RM162区间发现了控制多个性状的QTL,在第2条染色体的RM1358-RM1347区间和第8条染色体的RM1384-RM547区间还检测到了在两种条件下同时控制胚芽鞘长和主根长的QTL.  相似文献   

9.
褐飞虱是我国水稻生产上最严重的虫害之一, 培育和种植抗褐飞虱水稻品种是控制褐飞虱的有效途径。WD15515是一份高抗褐飞虱的籼稻种质资源。利用9311与WD15515杂交培育了F2群体, 对F2植株进行SSR分子标记分析, 测定植株上褐飞虱的蜜露分泌量、虫体增重量和增重比, 作为抗虫性指标。通过QTL IciMapping3.0进行作图分析, 在第2、第4、第9染色体上共检测到4个抗褐飞虱QTL。其中第2染色体上检测到2个QTL, 以蜜露分泌量检测到的qBph2-1位于SSR标记RM71~RM6911之间, LOD值为3.68, 表型贡献率为11.08%;以虫体增重量和增重比检测到的qBph2-2位于标记RM6911~RM521之间, LOD值分别为3.31、4.05, 表型贡献率分别为7.81%、9.38%。以蜜露分泌量、虫体增重量和增重比为指标在第4染色体上检测到qBph4, 定位于标记RM16996~RM17075之间, LOD值分别为11.11、13.81、15.41, 表型贡献率达到44.38%、45.24%、52.40%。同样, 以蜜露分泌量、虫体增重量和增重比在第9染色体上检测到qBph9, 定位于标记RM219~RM6444之间, LOD值分别为2.59、4.04、3.63, 表型贡献率分别为10.91%、12.39%、10.01%。上述结果表明, qBph4是一个抗褐飞虱主效基因。本项研究结果为抗褐飞虱水稻育种提供了新的基因资源。  相似文献   

10.
利用4个姊妹近等基因系群体定位水稻粒重和粒形QTL   总被引:4,自引:2,他引:2  
粒重是决定水稻产量的三要素之一。利用世界上粒重最大的品种之一SLG-1(供体亲本)与小粒品种日本晴(Nipponbare,轮回亲本)杂交,在各回交世代选择粒重较大单株与日本晴回交,构建水稻粒重和粒形的姊妹近等基因系(SNILs)。对获得的73株BC4F1单株进行粒重频率分布统计,选择粒重频率分布在4个峰值处的代表性单株,自交获得4个BC4F2SNILs群体。利用BSA法(分离群体分组混合分析法),从均匀分布在水稻染色体上的1513对SSR标记中筛选出与粒重和粒形相关的多态性标记19对,以LOD≥2.5作为选择阈值,对粒重、粒长、粒宽和粒厚进行QTL扫描,共检测到6个区域的12个QTL,贡献率从7.22%到53.38%。这些QTL所在区域包含已克隆的粒长GS3和粒宽GW2,也包含没有精细定位的第2染色体的RM6318~RM1367、第3染色体的RM5477~RM6417和第6染色体的RM3370~RM1161等3个区域控制粒重和粒形的5个QTL。其中第3染色体上RM5477~RM6417区间存在粒形贡献率较大的新的QTL。构建含有这些粒重QTL的姊妹近等基因系,为进一步精细定位或克隆新的粒重或粒形QTL奠定了基础。  相似文献   

11.
水稻芽期与幼苗前期耐碱性状QTL定位   总被引:9,自引:0,他引:9  
利用包含120个株系的籼粳交来源(春江06/TN1)的加倍单倍体群体, 在Na2CO3胁迫下, 以发芽期和幼苗前期的相对发芽势等10个性状作为耐碱性评价指标, 进行水稻耐碱性的QTL定位。相关性分析表明, 相对发芽势和相对发芽率显著正相关, 相对苗高、相对根数和相对根长之间显著正相关。采用QTLNetwork统计软件共定位到14个加性QTL和13个上位性QTL。在第3染色体RM251~RM3280间有2个QTL, 在第7染色体RM3286~RM1279区域有3个QTL; 在第1、2和7染色体同一位置同时检测到2个上位性QTL, 在第12染色体RM1246~RM5199之间集中了4个上位性QTL, 耐碱数量基因表现出一因多效或紧密连锁现象。耐碱性盐QTL可能包括两类, 一类与K+、Na+等离子胁迫有关, 另一类与高pH胁迫有关。不同类型的水稻品种都具有一些耐碱基因, 可以通过有性杂交和分子标记辅助选择的方法选育优良的耐碱品种。  相似文献   

12.
大豆籽粒大小与形状性状的QTL定位   总被引:2,自引:0,他引:2  
大豆籽粒大小和粒形性状不仅与产量和外观品量紧密相关,还对机械化播种有着一定的影响。本研究采用大粒栽培品种冀豆12与小粒半野生地方品种黑豆(ZDD03651)杂交衍生的包含188个重组自交系的F6:8和F6:9群体为材料,对粒长、粒宽、粒厚、长宽比、长厚比和宽厚比的遗传结构进行分析,并分别以WinQTLCart 2.5、QTLNetwork 2.1和IciMapping 4.1 3种模型对以上性状的加性效应QTL,QE互作效应及上位性互作效应进行检测。6个性状的广义遗传率介于64.01%~79.57%,遗传力较高,且除粒厚外的其他性状受环境影响显著。共定位到加性效应QTL38个,单个QTL的贡献率介于2.21%~10.71%之间,分布在12条染色体的17个标记区间内,且12个染色体区段至少与两种性状相关。两种及以上模型同时检测到的QTL有24个,3种模型均能检测到的QTL共8个,分别为qSL-17-1、qSL-18-1、qSW-6-1、qST-2-1、qST-6-1、qSLT-2-2、qSWT-2-1和qSWT-20-1。检测到7对上位性互作QTL,分别涉及粒长、粒宽、长宽比、长厚比和宽厚比,互作效应贡献率介于0.78%~6.20%之间。QE互作效应贡献率均较低,介于0.0005%~0.3900%之间。以多种模型同时检测结果准确性较高,可为分子标记辅助育种工作提供可靠理论基础。  相似文献   

13.
利用4个姊妹近等基因群体定位水稻粒重和粒形QTL   总被引:1,自引:1,他引:0  
粒重是决定水稻产量的三要素之一。利用世界上粒重最大的品种之一SLG-1(供体亲本)与小粒品种日本晴(Nipponbare,轮回亲本)杂交,在各回交世代选择粒重较大单株与日本晴回交,构建水稻粒重和粒形的姊妹近等基因系(SNILs)。对获得的73 株BC4F1单株进行粒重频率分布统计,选择粒重频率分布在4个峰值处的代表性单株,自交获得4个BC4F2 SNILs群体。利用BSA法(分离群体分组混合分析法),从均匀分布在水稻染色体上的1 513对SSR标记中筛选出与粒重和粒形相关的多态性标记19对,以LOD≥2.5作为选择阈值,对粒重、粒长、粒宽和粒厚进行QTL扫描,共检测到6个区域的12个QTL,贡献率从7.22%到53.38%。这些QTL所在区域包含已克隆的粒长GS3和粒宽GW2,也包含没有精细定位的第2染色体的RM6318-RM1367、第3染色体的RM5477–RM6417和第6染色体的RM3370–RM1161等3个区域控制粒重和粒形的5个QTL。其中第3染色体上RM5477–RM6417区间存在粒形贡献率较大的新的QTL。构建含有这些粒重QTL的姊妹近等基因系,为进一步精细定位或克隆新的粒重或粒形QTL奠定了基础。  相似文献   

14.
普通菜豆籽粒大小与形状的QTL定位   总被引:1,自引:0,他引:1  
耿庆河  王兰芬  武晶  王述民 《作物学报》2017,43(8):1149-1160
普通菜豆是世界上最重要的食用豆类作物之一,其籽粒大小和形状与产量及外观品质密切相关。本研究以来自安第斯基因库的大粒品种龙270709和来自中美基因库的小粒品种F5910配置杂交组合,获得的F2分离群体分别在哈尔滨大田与北京昌平温室种植,对百粒重、粒长、粒宽、粒厚、长宽比和长厚比6个籽粒性状进行了相关性分析和QTL定位。相关性分析表明,百粒重与粒长、粒宽、粒厚、长宽比、长厚比5个衡量籽粒大小和形状的性状均显著正相关。利用基于完备区间作图方法的Ici Mapping 4.1进行QTL定位,哈尔滨环境下定位到38个与百粒重、粒长、粒宽、粒厚、长宽比、长厚比相关的QTL,表型贡献率介于2.39%~17.37%之间,分布在除第1染色体外的其余10条染色体上;北京昌平环境下定位到21个上述性状的QTL,表型贡献率介于5.92%~22.53%之间,分布在第1、第3、第6、第7、第8、第9和第11染色体上。其中,百粒重QTLSW7与SW7’,SW6.1与SW6’,粒长QTLSL6.1与SL6.1’,粒厚QTLSH11与SH11’在2个环境下的标记区间重叠或者重合,SW7、SW6.1、SL6.1、SW6’和SL6.1’的表型贡献率在10%以上。  相似文献   

15.
利用Mudgo/武育粳3号F2群体分析水稻抗灰飞虱QTL   总被引:1,自引:0,他引:1  
灰飞虱是我国水稻生产上的重要害虫。Mudgo是一个高抗灰飞虱的籼稻品种,对灰飞虱具有强的排驱性和抗生性抗性。利用Mudgo/武育粳3号F2群体,构建了含有177个单株的F2群体的遗传连锁图谱。该连锁图包含104个SSR标记和3个Indel标记,覆盖整个水稻基因组1 409.9 cM,每两个标记之间的平均距离为13.2 cM。采用改进的苗期集团筛选法对177个F2:3家系进行了抗性鉴定,通过Windows QTL Cartographer 2.5进行复合区间作图分析,在第2、3、12染色体上分别检测到抗灰飞虱QTL Qsbph2b、Qsbph3d和Qsbph12a,分别位于标记RM5791~RM29、RM3199~RM5442和I12-17~RM333 1之间,单个LOD值分别为3.25、3.11和6.82,贡献率分别为17.3%、15.6%和35.8%,各QTL增强抗性等位基因效应均来自Mudgo。其中Qsbph12a与标记RM3331和I12-17紧密连锁。结合表型鉴定的结果,Qsbph12a应为抗灰飞虱主效QTL,与该位点紧密连锁的标记可用于抗灰飞虱快速选择辅助育种。  相似文献   

16.
为了探讨水稻不育系抽穗包颈性状的遗传基础,且为选育不包颈或包颈轻的不育系提供依据,本研究利用W9593S(抽穗包颈轻)与培矮64S(抽穗包颈重)2个光温敏核不育系杂交、回交构建遗传群体,采用植物数量性状主基因+多基因混合遗传体系的6世代联合分离分析方法,剖析了水稻不育系抽穗包颈性状的遗传模型,并与F2群体QTL定位结果进行比较分析。结果表明:经分离分析,穗粒外露度、包颈长均表现为B-1模型(2对加性-显性-上位性主基因模型);包颈度、顶1节间长和剑叶鞘长的最适模型分别为D-4(1对负向完全显性主基因+加性-显性多基因遗传模型)、D-1(1对加性-显性主基因+加性-显性多基因遗传模型)和C-0模型(加性-显性-上位性多基因遗传模型)。对F2分离群体进行QTL定位,共检测到分别与穗粒外露度、包颈长、包颈度、顶1节间长和剑叶鞘长有关的25个QTL,分布于第1、第2、第4、第5、第6、第7和第12染色体上,表型贡献率变幅为2.85%~16.73%。其中位于第12染色体与SSR标记RM3331连锁的QTL以及位于第6染色体分别与SSR标记RM439和RM3765连锁的QTL均同时影响穗粒外露度、包颈长和包颈度3个性状,位于第4染色体分别与SSR标记RM255和RM3687连锁的QTL同时影响顶1节间长和剑叶鞘长2个性状,这5个QTL位点可能是调控不育系抽穗包颈性状的重要位点。QTL定位结果与6世代分离分析结果在某种程度上具有相似性,又不完全一致,可能与这两种方法依据的遗传群体不同以及数量性状受环境影响较大有关。  相似文献   

17.
水稻剑叶角度与主穗产量的遗传剖析   总被引:2,自引:0,他引:2  
理想水稻株型的选育与高产育种密切相关,而剑叶角度则是构成水稻理想株型的重要指标之一,同时也是影响水稻产量的重要因素。合理开发利用水稻中控制剑叶角度及产量相关的数量性状基因座位(QTL),并结合分子育种技术,可更好地为高产制繁种目标服务。通过应用由244个株系组成的珍汕97B/密阳46重组自交系(RIL)群体,构建含256个分子标记的连锁图谱,采用QTL区间作图法对剑叶角度及主穗产量等5个性状进行定位分析,共检测到17个QTL,分布于染色体1、2、3、5、6、9、10、11。这些QTL对相应性状的贡献率介于3.46%~25.64%之间。在第1染色体上检测到控制5个性状的QTL,其中控制剑叶角度的两个QTL;在第2、3、9、10、11染色体上分别检测到各一个QTL;第5染色体上检测到控制剑叶、每穗总粒数和每穗实粒数的3个QTL;1个每穗实粒数和2个每穗实粒重的QTL分布于第6染色体上。多个区间表现出对两个性状的显著作用,其中第1染色体2个,第6染色体1个。相关性分析表明,较小的剑叶角度可通过提高结实率进而显著增加产量。  相似文献   

18.
利用BC2F2高代回交群体定位水稻籽粒大小和形状QTL   总被引:1,自引:0,他引:1  
以我国优良籼稻恢复系蜀恢527为轮回亲本, 以来自菲律宾的Milagrosa为供体亲本, 培育了样本容量为199株的BC2F2高代回交群体。选取85个均匀分布在12条染色体上的多态性SSR标记进行基因型分析, 同时对粒长、粒宽、长宽比和千粒重4种性状进行了表型鉴定。采用性状-标记间的单向和双向方差分析对上述性状进行了QTL定位。单向方差分析(P<0.01)共检测到了10个控制粒长、粒宽、长宽比和千粒重的QTL, 其中有3个具有多效性。由于粒长和长宽比的高度相关性, 控制长宽比的2个QTL均能在粒长QTL中检测到。位于第3染色体着丝粒区域的qgl3b是一个控制粒长、长宽比和千粒重的主效QTL, 它可以分别解释粒长、长宽比和千粒重表型变异的29.37%、26.15%和17.15%。该QTL对于粒长、长宽比和千粒重均表现较大的加性效应(来自蜀恢527的等位基因为增效)和负向超显性。位于第8染色体的qgw8位点是一个控制粒宽的主效QTL, 同时也是控制千粒重的微效QTL, 能解释粒宽表型变异的21.47%和千粒重表型变异的5.16%。该QTL对粒宽和千粒重均具有较大的加性效应(来自蜀恢527的等位基因为增效)和正向部分显性。双向方差分析(P<0.005)共检测到61对显著的上位性互作, 涉及54个QTL, 其中23个是能同时影响2~4个性状的多效位点, 且有8个位点与单向方差分析检测到的相同。控制长宽比的13对上位性互作位点中, 与控制粒长的上位性互作位点完全相同的有8对。以上结果为进一步开展水稻籽粒大小和形状有利基因的精细定位、克隆和分子设计育种奠定了基础。  相似文献   

19.
利用BC2F2高代回交群体定位水稻籽粒大小和形状QTL   总被引:6,自引:3,他引:3  
以我国优良籼稻恢复系蜀恢527为轮回亲本, 以来自菲律宾的Milagrosa为供体亲本, 培育了样本容量为199株的BC2F2高代回交群体。选取85个均匀分布在12条染色体上的多态性SSR标记进行基因型分析, 同时对粒长、粒宽、长宽比和千粒重4种性状进行了表型鉴定。采用性状-标记间的单向和双向方差分析对上述性状进行了QTL定位。单向方差分析(P<0.01)共检测到了10个控制粒长、粒宽、长宽比和千粒重的QTL, 其中有3个具有多效性。由于粒长和长宽比的高度相关性, 控制长宽比的2个QTL均能在粒长QTL中检测到。位于第3染色体着丝粒区域的qgl3b是一个控制粒长、长宽比和千粒重的主效QTL, 它可以分别解释粒长、长宽比和千粒重表型变异的29.37%、26.15%和17.15%。该QTL对于粒长、长宽比和千粒重均表现较大的加性效应(来自蜀恢527的等位基因为增效)和负向超显性。位于第8染色体的qgw8位点是一个控制粒宽的主效QTL, 同时也是控制千粒重的微效QTL, 能解释粒宽表型变异的21.47%和千粒重表型变异的5.16%。该QTL对粒宽和千粒重均具有较大的加性效应(来自蜀恢527的等位基因为增效)和正向部分显性。双向方差分析(P<0.005)共检测到61对显著的上位性互作, 涉及54个QTL, 其中23个是能同时影响2~4个性状的多效位点, 且有8个位点与单向方差分析检测到的相同。控制长宽比的13对上位性互作位点中, 与控制粒长的上位性互作位点完全相同的有8对。以上结果为进一步开展水稻籽粒大小和形状有利基因的精细定位、克隆和分子设计育种奠定了基础。  相似文献   

20.
水稻的产量和品质性状一直都是水稻育种长期关注的两个重要方面。本研究利用两个在粒形和垩白上有显著差异的籼稻品种R287和中早35为亲本,构建了一个含有192个单株的F2群体及衍生的F2:3群体,对其粒长、粒宽、长宽比、千粒重和腹白等性状进行了表型鉴定,并结合分子标记遗传连锁图谱进行了QTL(Quantitative trait locus)分析,结果表明:共检测到29个QTL,其中与粒重相关的QTL有6个,与粒形性状相关的QTL有12个,与垩白性状相关的QTL有11个。它们分布在第1号、第2号、第3号、第4号、第5号、第6号、第7号和第11号染色体上,表型变异贡献率介于0.10%~36.84%之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号