首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The germinable soil seedbank was determined at two sites in central Queensland on four separate occasions between February 1995 and October 1996. These sites were infested with parthenium weed ( Parthenium hysterophorus L.), a serious invasive exotic weed. During this period, the seedbank varied between 3282 and 5094 seeds m−2 at the Clermont site, and between 20 599 and 44 639 seeds m−2 at the Moolayember Creek site. Parthenium hysterophorus exhibited a very abundant and persistent seedbank, accounting for 47–73% of the seedbank at Clermont and 65–87% of the seedbank at Moolayember Creek. The species richness and species diversity of the seedbank, and the seed abundance of many species, was lower at Moolayember Creek during spring (the time of year when the most dense infestations of the weed originate). Parthenium hysterophorus seedlings also emerged more rapidly from the soil samples than did those of all other species. Hence, it seems that various aspects of the weed's seed ecology, including abundance and the persistence of its seedbank and the rapid emergence of its seedlings, are major factors contributing to its aggressiveness in semiarid rangeland communities in central Queensland. The domination by P . hysterophorus of the seedbanks of these sites suggests that the weed is having a substantial negative impact on the ecology of these plant communities. The diversity of these seedbanks was found to be lower in comparison with that observed in other grassland communities that were not dominated by an invasive weed species. Hence, the prolonged presence of P . hysterophorus may have substantially reduced the diversity of these seedbanks, thereby reducing the ability of some of the native species to regenerate in the future.  相似文献   

2.
Seed production of residual weed populations needs to be taken into account when estimating the long-term impact of low-input agronomic practices. The objective of this study was to measure the effects and interactions of crop, weed control, tillage practice and nutrient source on the seed production of the dominant residual weed species in a maize/soyabean rotation at two sites: Echinochloa crus-galli (L.) Beauv. on a Sainte-Rosalie clay and Chenopodium album L. on a Duravin clay loam. Seed production per unit area was estimated in each experimental unit. Weed seed production was greater under mechanical weed control compared with chemical weed control. In 1997, E. crus-galli seed production reached over 326 000 seeds m–2 in mechanical weed control treatments, but averaged less than 500 seeds m–2 in the chemical weed control treatments. Chenopodium album produced in the range of 766 000 and 73 000 seeds m–2 in mechanical and chemical weed control treatments respectively. Very few or no weed seeds were produced in soyabean under chemical control. Tillage intensity and nutrient source did not affect seed production of either weed species, with the exception that E. crus-galli produced more seeds in chisel than in mouldboard plough tillage in soyabean. Weed control method had more impact on seed production than tillage intensity and nutrient source in a maize/soyabean rotation.  相似文献   

3.
The effects of weed shoot morphology on competitiveness for light in rice ( Oryza sativa L.) have not been well described quantitatively and are difficult to study empirically. A rice:weed model was used to analyse the effects of weed leaf area densities (LAD; m2 m–3), leaf angles (as leaf light extinction coefficients, k leaf) and maximum heights ( H m, m) on growth and competition with rice. Weed morphologies were hypothetical but empirically based, as follows: LADs were skewed to the bottom or conical, k leaf values varied from 0.2 (erectophile) to 0.8 (planophile), and H m values were 0.5 H R, 1 H R and 1.25 H R, where H R was rice maximum height. Other parameters were equal to those of rice. Growth and competitiveness were evaluated using mature seed dry weights (g m–2). Short weeds and weeds with conical LADs were weakly competitive, regardless of other traits. For other weed types, interference with rice was positively related to H m, LAD skewness and more planophile leaves. All three traits were critical determinants of weed interference but no single morphological trait guaranteed competitiveness. All else being equal, weeds with highly skewed LADs produced the most seed dry weight. Planophile leaves were particularly beneficial for short weeds, giving over five times more seed dry weight than erectophile leaves.  相似文献   

4.
Weed seeds in long-term dryland tillage and cropping system plots   总被引:2,自引:0,他引:2  
Unger  Miller  & Jones 《Weed Research》1999,39(3):213-223
Successful crop production depends on effective weed control. Weed seedbanks were determined after 12 years of dryland cropping with winter wheat and grain sorghum under different tillage methods (no- and stubble mulch) and cropping sequences. Seeds of 12 species were detected. Amaranthus retroflexus was most abundant, but seed numbers were similar under all conditions. Portulaca oleracea , Panicum capillare , Setaria viridis and Sorghum halepense seed numbers differed because of some factors, with those for P. oleracea being greatest. For others, seed numbers were low (≤0.11 kg−1 soil), except for Digitaria sanguinalis with 7.8 kg−1 soil and Bromus japonicus with 1.3 kg−1 soil. Most seeds were near the surface with both tillage methods, with enough present under most conditions to cause a problem if proper control measures were not used, especially with continuous cropping. When a weed problem occurs under conditions as in this study, the results indicate that it could be reduced by growing winter and summer crops in rotation, which permits controlling weeds with tillage and/or herbicides when a crop is not growing. Other possibilities for controlling weeds under conditions as in this study are to alternate between dicotyledonous and monocotyledonous crops, which would permit use of a wider range of herbicides, and to use selective in-crop herbicides.  相似文献   

5.
The influence of five different weed management systems on nut yield of coconut were evaluated to determine an economical and effective method of controlling weeds in coconut plantations in the low country, dry zone in Sri Lanka. Treatments imposed included slashing and mulching around the palms with slash (T1), slashing and removing the slash (T2), application of glyphosate (N-(phosphonomethyl)-glycine) alone at 1.44 kg ai ha−1 (T3), application of glyphosate alone at 2.88 kg ai ha−1 (T4) and cover cropping with Pueraria phaseoloides (T5). All treatments were applied twice a year, except for the cover cropping treatment, T5. Based on a reduction in weed biomass, treatments T3, T4 and T5 were found to be significantly effective over other treatments. Coconut yield was increased significantly ( P  < 0.05) in glyphosate-applied plots at both tested rates. Control of weeds with the lower concentration of glyphosate (1.44 kg ai ha−1) resulted in a 25% increase in nut yield over the uncontrolled weed plots. At this rate, it was found to be the most effective and economical method of controlling weeds in coconut plantations. Cover cropping with Pueraria phaseoloides was effective in controlling weeds in the long-term, but was not economical compared with the glyphosate application.  相似文献   

6.
The management of crop fertilization may be an important component of integrated weed management systems. A field study was conducted to determine the effect of various application methods of nitrogen (N) fertilizer on weed growth and winter wheat yield in a zero-tillage production system. Nitrogen fertilizer was applied at 50 kg ha−1 at the time of planting winter wheat over four consecutive years to determine the annual and cumulative effects. The nitrogen treatments consisted of granular ammonium nitrate applied broadcast on the soil surface, banded 10 cm deep between every crop row, banded 10 cm deep between every second crop row, and point-injected liquid ammonium nitrate placed between every second crop row at 20 cm intervals and 10 cm depth. An unfertilized control was also included. Density, shoot N concentration and the biomass of weeds was often lower with subsurface banded or point-injected N than with broadcast N. The winter wheat density was similar with all N fertilizer application methods but wheat shoot N concentration and yield were consistently higher with banded or point-injected N compared with broadcast N. In several instances, the surface broadcast N did not increase the weed-infested wheat yield above that of the unfertilized control, indicating that it was the least preferred N application method. Depending on the weed species, the weed seedbank at the conclusion of the 4 year study was reduced by 29–62% with point-injected N compared with broadcast N. Information gained from this study will be used to develop more integrated weed management programs for winter wheat.  相似文献   

7.
Field trials were conducted in Taigu, Shanxi province, China, to evaluate the efficacy of flumioxazin plus acetochlor and flumiclorac-pentyl plus clethodim applied to summer-sown soybeans at pre- and postemergence. It was demonstrated that tank-mixing flumioxazin at 50 g ai ha-1 and acetochlor at 800 g ai ha-1 created an effective soil-applied herbicide for weed control in soybean crops. The control efficacy was better than when the herbicides were applied individually, and no injury was caused to the soybeans. Flumiclorac-pentyl at 50 g ai ha-1 plus clethodim at 70 g ai ha-1 suppressed both broad-leaved weeds and grass weeds with an increased efficacy of more than 90%. Flumiclorac-pentyl applied alone or tank-mixed caused some injury to soybean seedlings, but the soybeans recovered 2–3 weeks after treatment and there was no reduction in the yield.  相似文献   

8.
Correlation between the soil seed bank and weed populations in maize fields   总被引:1,自引:0,他引:1  
Annual weed populations establish every year from persistent seed banks in the soil. This 3 year study investigated the relationship between the number of weed seeds in the soil seed bank and the resultant populations of major broadleaf and grass weeds in 30 maize fields. After planting the crop, 1 m2 areas were protected from the pre-emergence herbicide application. Soil samples were collected soon after spraying to a depth of 100 mm and the weed seeds therein were enumerated. The emerged weed seedlings in the field sampling areas were counted over the following 8 weeks. Up to 67 broadleaf species and five grass weeds were identified, although not all were found at every site and some were specific to a region or soil type. For the most abundant weeds in the field plots, on average 2.1–8.2% of the seeds of the broadleaf species and 6.2–11.9% of the seeds of the grass weeds in the soil seed bank emerged in any one year, depending on the species. Overall, the results showed a strong linear relationship between the seed numbers in the soil and the seedling numbers in the field for all the grasses and for most broadleaf weeds. For some species, like Trifolium repens , only a weak relationship was observed. In the case of Chenopodium album , which had the largest seed bank, there was evidence of asymptotic behavior, with seedling emergence leveling off at high seed numbers. An estimate of the soil seed bank combined with knowledge of the germination and behavior of specific weed species would thus have good potential for predicting future weed infestations in maize fields.  相似文献   

9.
A single dominant mutation conferring resistance to aryloxyphenoxypropionate (AOPP) and cyclohexanedione (CHD) herbicides was incorporated into a quantitative model for the population development of Alopecurus myosuroide s Huds. The model predicts that from an initial seedbank of 100 seed m–2, 10–6 of which mutate to resistance each generation, and annual use of AOPP/CHD herbicides which kill 90% of susceptible but no resistant plants, a threshold of 10 plants m–2 surviving herbicides ('field resistance') will develop: in 9–10 years if all tillage is by tine cultivation to 10 cm deep; after 28–30 years of annual ploughing; in 12 years if tine cultivations are interspersed with ploughing once every 4 years. If AOPP/CHD herbicides are alternated with herbicides with different modes of action, outcomes depend on the annual kill rate: with 95% kill (of susceptible plants by AOPP/CHDs and all plants by alternative herbicides) and tine cultivation, field resistance develops in 22 years; however, resistance can be delayed for 45 years if AOPP/CHDs are rotated with two additional herbicides, each with a different mode of action. The model predictions on the number of years required for field resistance to develop are not highly sensitive to the density of the seedbank or the initial frequency of resistance.  相似文献   

10.
A stochastic simulation model for evaluating the concept of patch spraying   总被引:3,自引:0,他引:3  
PAICE  DAY  REW  & HOWARD 《Weed Research》1998,38(5):373-388
The long-term economic benefits of `patch' spraying are likely to be related to the initial spatial distribution of the target weeds, the demographic characteristics of the species and the weed control and crop husbandry practices to which they are subjected. This paper describes a stochastic simulation model developed to investigate the interaction between weed seed dispersal and patch spraying. Simulated weed plant and seed populations are generated and compared with data from field observations. Lloyd's Patchiness index is used to quantify the patchiness of the weed density distribution, and the parameter k of the negative binomial distribution is used as a measure of distribution shape. A method of assessing the spatial scale of weed aggregation is proposed, in which spatial weed density information is transformed into the frequency domain, using a discrete two-dimensional Fourier transform. In this paper, we simulate `on/off' patch spraying (full or zero herbicide application rate). A quantitative analysis of the effects of sprayer resolution and weed seed dispersal range on the herbicide reduction and yield benefits from patch spraying is performed for three initial spatial seedbank distributions. The model is parameterized for the grass weed Alopecurus myosuroides Huds. Herbicide is applied in square areas (whose size is defined by the spatial resolution of the sprayer) in which mean weed density is greater than or equal to one plant m–2. For a system conforming to this specification we show that for the control of A. myosuroides , it is unlikely that patch spraying would be profitable in the long term if the control area is larger than 6 m × 6 m. In some circumstances higher resolution may be required.  相似文献   

11.
Current status of biological control of paddy weeds in Vietnam   总被引:1,自引:0,他引:1  
Rice is a staple food in Vietnam and accounts for > 7.7 × 106 cultivated ha, which provide 35.5 × 106 t of rice, of which 4.2 × 106 t were exported in 2004. The enlargement of the cropping area and the enhancement of rice yield have rapidly increased the amount of agrochemicals, including herbicides, in crop production in Vietnam. From 1990–2003, the percentage of herbicides in total pesticides has increased ≈ 10-fold to 30.2%. In addition, the improper use of herbicides caused environmental hazards, unsafe agricultural products, and human health problems. Biological management integrated with traditional weed control techniques might help to reduce the dependence on synthetic herbicides and build eco-friendly, sustainable agricultural production in Vietnam. This paper reviews the efforts in establishing a strategy for biological management of weeds that was conducted in recent years by Vietnamese weed scientists. This has included cropping system management, water and soil management, integrated pest management, and utilization of plant allelopathy as major components of the strategy. Many plants with strong allelopathic potential can be a source for biological weed suppression and soil fertility improvement. The utilization of allelopathic properties in rice might also help to provide new rice cultivars with weed-suppressing characteristics.  相似文献   

12.
Cavero  Zaragoza  Suso  & Pardo 《Weed Research》1999,39(3):225-240
Crop growth of maize ( Zea mays L.) and Datura stramonium L. in monoculture and competition was studied over 4 years in a flood irrigated field in Zaragoza (Spain). Plant density was 8.33 m–2 for maize and 16.66 m–2 (1994 and 1995) and 8.33 m–2 (1996 and 1997) for D. stramonium . Maize yield was decreased by 14–63% when competing with the weed. Yield reduction increased as the time between crop and weed emergence decreased. The development of leaf area per plant during the exponential growth phase was faster in maize primarily because the leaf area of maize seedlings at emergence time was greater than that of the weed. The faster growth of maize in leaf area and height reduced the photosynthetically active radiation received by the weed. Datura stramonium had a lower radiation use efficiency (RUE) than maize. Competition from the weed slightly decreased the maximum leaf area index (LAI) of the crop, and leaf senescence of maize was accelerated. The weed competed with the crop late in the season reducing crop growth rate, grain number per ear and grain weight. Competitive ability of D. stramonium for light was mainly due to its growth habit, with the leaves concentrated in the upper part of the canopy (more than 75% of LAI in the upper 25% of its height), its higher light extinction coefficient (0.89) and its indeterminate growth habit. The N plant content of maize was not influenced by the presence of the weed. The weed had a higher N plant content than the crop throughout the season and took up more N in monoculture.  相似文献   

13.
Field and greenhouse experiments were conducted in 2004 and 2005 to study weed control and the response of winter wheat to tank mixtures of 2,4-D plus MCPA with clodinafop propargyl. The field experiments were conducted at Yazd and Oroumieh, Iran, with factorial combinations of 2,4-D plus MCPA at 0, 975, and 1300 g ai ha−1 and with clodinafop propargyl at 0, 64, 80, 96, and 112 g ai ha−1 in four replications. The greenhouse experiments further evaluated the effect of these tank mixtures on weed control, where each herbicide mixture was considered as one treatment and the experiment was established in a randomized complete block design with four replications. In the field experiments, the herbicides were applied at wheat tillering, while in the greenhouse experiments they were applied at the beginning of the tillering stage and at the four-leaf stage of the grass and broadleaf weeds, respectively. The results indicated antagonistic effects between 2,4-D plus MCPA and clodinafop propargyl. The best tank mixture with regard to weed control efficacy was 2,4-D plus MCPA at 975 g ai ha−1 with clodinafop propargyl at 96 g ai ha−1. The wheat grain yield was also increased by the tank mixture of clodinafop propargyl with 2,4-D plus MCPA. Generally, to inhibit clodinafop propargyl efficacy reduction due to tank-mixing with 2,4-D plus MCPA, it is recommended that the application dose of 64 g ai ha−1 should be increased to 96 g ai ha−1.  相似文献   

14.
This study investigates the suspected allelopathic influence of Dicranopteris linearis on the densities of five Malaysian common broad-leaved weeds ( Asystasia gangetica , Melastoma malabathricum , Ageratum conyzoides , Mimosa pudica , and Crassocephalum crepidioides ) and on five Malaysian common grasses ( Echinochloa colona , Eleusine indica , Paspalum conjugatum , Dactyloctenium aegyptium , and Chloris barbata ). The allelopathic effect of D. linearis- infested soil on the emergence and growth of these weed species also was tested. The results reveal that D. linearis strongly reduced the weed density in its vicinity. Ageratum conyzoides and E. colona, the most sensitive weed species, were not found in the D. linearis- infested area. In the greenhouse study, the D. linearis- infested soil also highly inhibited the emergence and growth of the bioassay species. The I50 of the bioassay seeds was reached when the ratio of the infested soil (IS) to uninfested soil (UIS) was 99.55:0.45%. The I50 for the fresh weight of the bioassay seedlings was 81.27:18.73%. For the height of the bioassay seedlings, the I50 was 90.40:9.60%. In this study, there was no obvious difference in the physicochemical properties between the IS and the UIS soils. However, the levels of water-soluble phenolic compounds in the IS were significantly higher than those in the UIS. Dicranopteris linearis might exert its allelopathic influence on weed density, emergence, and growth via its secretion of these phenolic compounds into the soil.  相似文献   

15.
This paper describes the practical use of a global positioning system receiver (hand-held GPS) as a means of measuring and describing pasture areas invaded by weeds. The accuracy of two GPS units, a hand-held GPS with an external antenna (GPS with an antenna) and the differential global positioning system receiver (DGPS), were examined in Morioka, northern Japan. In addition, an area of weed patches and a pasture, determined using the GPS with an antenna, were compared to the measurements made with a conventional tape and a weed map was created based on the coordinate data of latitude and longitude measurements. The accuracy of the GPS with an antenna was poor (8.3 m); however, the precision of the unit was reasonable in measuring area. An area estimation error by the GPS with an antenna was 7% when practically measuring weed patches of 141 m2 and 1% in a paddock of 12 566 m2. From these results, it appears that the GPS with an antenna might have an acceptable error in measuring areas for weed control in a pasture. A weed map produced from the coordinate data surveyed using the GPS with an antenna enables the state of weed growth and its domination in an area of pasture to be visually understood. Therefore, GPS technologies easily can be applied to quickly obtain information on weed infestation.  相似文献   

16.
Summary Differential competitive ability of six winter wheat cultivars and traits that confer such attributes were investigated for a range of seed rates in the presence or absence of weeds for a naturally occurring weed flora in two successive years in split-plot field experiments. Crop height and tillering capacity were considered suitable attributes for weed suppression, although competitiveness is a relative rather than an absolute characteristic. Maris Huntsman and Maris Widgeon were the most competitive cultivars whereas Fresco was the least competitive. Manipulation of seed rate was a more reliable factor than cultivar selection for enhancement of weed suppression, although competitiveness of cultivars Buster, Riband and Maris Widgeon was not enhanced by increased seed rate. Crop densities ranging between 125 and 270 plants m−2 were found to offer adequate weed suppression. Linear relationships were observed between individual and total weed species dry weight and reproductive structures per unit area.  相似文献   

17.
Summary The influence of plant developmental stage in hot water weed control was studied on the test weed Sinapis alba in field experiments. The dose was measured as thermal energy in the hot water (kJ m−2) and the response as reduction in plant weight. The energy dose for a 90% reduction in plant weight was 340 kJ m−2 at the two-leaf stage, which is one-third of the energy required for the same reduction at the six-leaf stage. Treatment at an early stage saves energy, increases the driving speed and lowers the costs. Hard surface areas with naturally developed weeds were used to study the required treatment interval and the influence of time of assessment on the reduction in weed cover. The required treatment interval was 25 d on average, which is similar to that of flame weeding. A longer lasting effect requires a higher energy dose. A 50% higher energy dose was needed to obtain a 90% reduction in weed cover that lasted for 15 d instead of 7 d. After 3–4 weeks, hardly any reduction could be recorded because of regrowth of perennial weeds. However, hot water weed control has a potential on urban hard surfaces and railroad embankments, especially where the use of herbicides is restricted.  相似文献   

18.
Weed seedbanks are the primary source of weeds in cultivated soils. Some knowledge of the weed seedbank may therefore be appropriate for integrated weed management programs. It would also be very useful in planning herbicide programs and reducing the total herbicide use. However, a number of problems are inherent in the estimation of the seedbank size for arable weeds that usually have annual life cycles. In a long-term research project we have investigated the dynamics of weed seedbanks in corn fields for the past 8 years. Specific studies have included (i) developing cheap and efficient methods for estimating the weed seedbank; (ii) developing guidelines for efficient soil sampling (including the number and size of samples); (iii) influence of cultivation methods on weed seed distribution; (iv) mapping the spatial variability of the seedbank; (v) estimating the rate of seedbank decline for certain weed species; and (vi) assessing the potential of using the weed seed content in the soil to predict future weed problems. This paper reviews and summarizes the results of our research on the above aspects. The strong correlation between seedlings emerged in the greenhouse and seeds extracted in the laboratory for the most abundant weed species has demonstrated the potential for using the weed seed content of the soil to predict future weed infestations. The next step is to establish correlations with field emergence under commercial conditions using the sampling guidelines developed in our studies. Subsequently, we aim to offer the weed seedbank estimation as a commercial service to farmers for planning the most appropriate weed management options.  相似文献   

19.
To better understand the potential for improving weed management in cereal crops with increased crop density and spatial uniformity, we conducted field experiments over two years with spring wheat ( Triticum aestivum ) and four weed species: lambsquarters ( Chenopodium album ) , Italian ryegrass ( Lolium multiflorum ), white mustard ( Sinapis alba ), and chickweed ( Stellaria media ). The crops were sown at three densities (204, 449, and 721 seeds m−2) and in two spatial patterns (normal rows and a highly uniform pattern), and the weeds were sown in a random pattern at a high density. In most cases, the sown weeds dominated the weed community but, in other cases, naturally occurring weeds were also important. There were strong and significant effects regarding the weed species sown, the crop density, and the spatial distribution on the weed biomass in both years. The weed biomass decreased with increased crop density in 29 out of 30 cases. On average, the weed biomass was lower and the grain yield was higher in the uniform compared to the row pattern in both 2001 and 2002. Despite the differences in weed biomass, the responses of L. multiflorum , S. media , and C. album populations to crop density and spatial uniformity were very similar, as were their effects on the grain yield. Sinapis alba was by far the strongest competitor and it responded somewhat differently. Our results suggest that a combination of increased crop density and a more uniform spatial pattern can contribute to a reduction in weed biomass and yield loss, but the effects are smaller if the weeds are taller than the crop when crop–weed competition becomes intense.  相似文献   

20.
The potential impact of herbicide-tolerant winter oilseed rape ( Brassica napus L.) on future herbicide use was investigated with a simulation model. The model uses a sigmoid function to simulate the growth of crops and weeds that compete for a maximum yield potential. Thresholds for weed control are based upon critical levels of weed biomass. The dynamics of the weed population are determined by the efficacy of representative herbicides on individual weed species and by seedbank parameters. Herbicide efficacy is determined by a log-logistic dose–response curve for each species. Simulation of a rotation with winter oilseed rape/wheat/wheat/barley showed contradictory predictions of herbicide use, because herbicide use in a rotation with either glyphosate- or glufosinate-tolerant oilseed rape was not reduced in the amount of kg a.i. ha–1 compared with a traditional treatment, whereas the treatment frequency (number of standard recommended doses per unit area) decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号