首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
地下滴灌灌水器水力性能试验研究   总被引:13,自引:12,他引:13       下载免费PDF全文
地下滴灌与地表滴灌的最大差异在于地下滴灌的灌水器出水口被土壤包围,其出流受到土壤的限制。在室内将灌水器埋入土槽中,模拟研究了灌水器类型、自由出流时的流量、工作压力、土壤初始含水率等因素,对地下滴灌条件下灌水器水力性能的影响。试验结果表明:灌水器埋入土壤后,流量是其自由出流时流量的1/2~1/4。方差分析表明,影响地下滴灌灌水器水力性能的主要因素是自由出流时的水力特性和土壤特性。针对测试土壤,建立了地下滴灌灌水器流量计算的修正关系式。  相似文献   

2.
地下滴灌灌水器水力要素试验研究   总被引:2,自引:4,他引:2  
为了研究灌水器流量变化规律,该文以灌水器工作压力、土壤容重和土壤初始含水率为试验因素,用混合水平均匀设计安排试验方案。应用研制的地下滴灌灌水器流量测试系统,用称重法来获得不同试验方案灌水器流量。根据试验数据,建立了地下滴灌灌水器流量计算经验公式。分析表明:在工作压力不变时,灌水器流量在灌水初期略大,而后减小并趋于恒定,这个变化过程仅1~2 min左右,可认为灌水器流量是不变的;在同一压力下,地下滴灌灌水器流量比地表滴灌减小5%~20%,压力越大,二者值越接近;影响地下滴灌灌水器流量的主要因素是灌水器工作压力,而土壤容重和土壤初始含水率对灌水器流量影响较小。  相似文献   

3.
层状土壤质地对地下滴灌水氮分布的影响   总被引:12,自引:4,他引:8  
以均质砂土(S)、均质壤土(L)和上砂下壤层状土壤(SL)为对象,采用室内土箱试验,研究了土壤质地及其层状结构和地下滴灌灌水器流量对水分、硝态氮和铵态氮分布的影响。结果表明,SL层状土壤中,砂-壤界面增加了水分的横向扩散而限制了水分的垂向运动,致使界面下部形成水分和硝态氮积聚区。土壤硝态氮分布还受肥料溶液浓度和土壤初始硝态氮浓度影响,对试验采用的土壤初始硝态氮浓度较低而肥料溶液硝态氮浓度较高的情况而言,灌水器周围的硝态氮浓度与肥料溶液的硝态氮浓度相近,随着离开灌水器距离的增加,土壤硝态氮浓度减小。灌水器周围的土壤含水率和硝态氮浓度随灌水器流量的增大而增大。施肥灌溉使灌水器周围5~10 cm范围内的铵态氮浓度出现峰值,而土壤质地和灌水器流量对铵态氮浓度分布没有明显影响。因此地下滴灌水氮管理措施的制定应综合考虑土壤质地及其结构、初始土壤水氮状况、灌水器埋深及流量、灌水量、肥液浓度等因素。  相似文献   

4.
滴灌调控土壤水分对马铃薯生长的影响   总被引:33,自引:6,他引:33       下载免费PDF全文
研究了滴灌灌溉频率和土壤水势对马铃薯生长和水分利用效率的影响。研究结果表明,滴灌灌溉频率和土壤水势对土壤水分的分布有很大影响,灌水频率越低,灌水前的表层土壤干燥的范围越大,灌水后的土壤湿润范围越大;控制滴头下面20 cm处土壤水势明显影响到50 cm深度以上的土壤水势,20 cm深度处土壤水势越高,50 cm深度范围内的平均土壤水势越高;土壤表面土壤水势越低,以滴头为中心形成的干燥范围越大。当土壤基质势低于-45 kPa时,马铃薯的块茎膨大率会迅速下降,总产量、商品薯产量和水分利用效率高低顺序为:-25 kPa>-35 kPa>-15 kPa>-45 kPa>-55 kPa。不同灌溉频率下马铃薯的总产量、商品薯产量和水分利用效率的高低顺序为:1天1次>2天1次>3天1次>4天1次>6天1次>8天1次。就华北地区而言,采用滴灌对马铃薯进行灌溉,土壤基质势以-25 kPa左右为好,灌水频率以每天1次最优。  相似文献   

5.
对土壤处理剂Guilspare进行室外大豆地下滴灌试验.土壤处理剂喷施浓度为1%,2%的处理在50%,100%灌水量下,平均土壤含水率分别较对照组高14.07%,7.46%;22.24%,12.80%,体现了较好的保水性能,就保水效果分析比较2%的处理>1%的处理;不同浓度土壤处理剂在一定灌水量下对大豆生长有明显的促进作用;土壤处理剂喷施浓度为1%,2%的处理在50%,100%灌水量下,其产量分别较对照组增产6.08%,9.39%;11.49%,16.02%,具有较好的增产功效.就增产效果分析比较2%的处理>1%的处理.最终分析比较得出土壤处理剂喷施浓度2%的处理在50%灌水量下灌溉水利用效率(WUEI)最高,为1.06 kg/m3,其节水增产综合效果最为显著.  相似文献   

6.
为了促进干旱半干旱地区大豆的生产,解决大豆生产过程严重缺水问题,采用模拟大田的试验方法.进行土壤处理剂--Guilspare在地下滴灌条件下对土壤水分、大豆产量以及品质的试验.结果表明:土壤处理剂喷施浓度2%的处理在50%,75%,100%灌水量下平均土壤含水率分别较对照组高22.04%,36.67%,13.15%;产量分别较对照组增产11.49%,7.83%,16.02%;蛋脂总量分别较对照组增加6.95%,0.33%,4.53%.体现了该土壤处理剂较好的保水效果和一定的增产功效与改善大豆品质的性能.最终分析比较得出土壤处理剂喷施浓度2%的处理在50%灌水量下大豆品质最佳,水分利用效率最高为7.60 kg/(mm·hm2),其节水增产、改善大豆品质综合方面效果最为显著.  相似文献   

7.
地下滴灌条件下砖红壤水分入渗特性试验研究   总被引:2,自引:0,他引:2  
在实验室内模拟研究了地下滴灌条件下不同滴头流量、滴管埋深和土壤初始含水率对湿润锋运移的影响规律。结果表明:滴头流量对湿润锋水平运移的影响大于竖直方向,湿润体的成形主要受到滴头流量的控制;滴管埋深对湿润锋运移影响不大;湿润锋运移速率随土壤初始含水率的增加而增大,其中以水平方向上最为明显。  相似文献   

8.
滴灌条件下土壤平均含水率计算方法研究   总被引:1,自引:0,他引:1  
为寻找适合滴灌农田土壤平均含水率的计算方法,在裸地和大田试验研究的基础上选用单点平均、三点平均等5种方法分别计算了滴灌条件下平均土壤含水率,并以积分法为标准,对其他4种方法进行评价。结果表明,3点取样,采用面积加权平均法计算各层土壤的平均含水率,然后在垂直方向上采用积分中值定理求平均值的方法计算结果更接近真实值,误差最小,可利用该方法计算滴灌农田土壤平均含水率。  相似文献   

9.
再生水滴灌条件下滴头堵塞特性评估   总被引:1,自引:6,他引:1  
针对再生水水质复杂,污染物众多,其在农业滴灌上的应用对滴灌系统的抗堵塞能力要求更高的特点,采用6种滴头进行约360h的再生水滴灌试验,测定了再生水滴灌条件下滴头堵塞规律,探讨了滴头流道尺寸参数对于堵塞规律的影响,并采用环境扫描电子显微镜技术分析了滴头堵塞物质的组成结构。试验结果表明:不同流道结构的滴头抗堵塞能力明显不同,各类滴头流量下降的幅度范围为14.4%~72.2%;流道水力直径、流道长度、锯齿高度和锯齿间距等参数都影响着堵塞的发生,其中以水力直径代表性最好,分区域地呈负相关关系;微生物、胞外多聚物以及颗粒物质混合形成的絮状结构,构成了滴头流道内的主要沉积物;堵塞过程的发生往往是以微生物富集开始的。试验结果有助于进一步提高再生水滴灌的应用水平。  相似文献   

10.
膜下滴灌是一种既节水,又能抑制土壤盐分上移的灌水技术。该文着重研究在田间条件下,滴头流量、灌水量和灌水水质对微咸水点源入渗水盐运移的影响。研究结果表明,在充分供水条件下,水平湿润锋和积水锋面随时间的推进符合幂函数关系;滴头流量越小,沿土壤深度方向上的盐分含量越小;滴头流量越大,水平方向含盐量随距离增加的趋势越不明显;灌水量是微咸水灌溉条件下控制盐分累积的一个重要因素,灌水量不足,没有足够的入渗水量以确保盐分的淋洗;灌水矿化度的升高会显著增加土壤表层的含盐量。  相似文献   

11.
间接地下滴灌土壤湿润体特征参数   总被引:3,自引:1,他引:3  
该文将恒定水头钻孔积水入渗求解土壤饱和导水率的稳态原理用于定量化求解间接地下滴灌技术中与任意导水装置尺寸相匹配的滴头流量,并以计算的技术参数为基础,研究了间接地下滴灌水分运移过程中的土壤湿润体特征参数。研究结果表明,用于描述恒定水头钻孔积水入渗法求解土壤饱和导水率的稳态模型能够较好地设计与不同类型土壤和导水装置尺寸相匹配的适宜滴头流量。间接地下滴灌灌水过程中,从零开始逐渐增大并趋于稳定的积水深度加速了水分在垂直方向的运移,缩小了横向湿润距离和垂向湿润距离之间的差异,但变化的积水深度对湿润锋在垂直方向向上和向下的运移速率影响不大,使湿润体形状表现为扁率不断减小的椭球体,且椭球体对称轴分布在靠近导水装置底部的位置。湿润锋最大湿润距离和湿润体体积是灌水时间的函数,湿润体内平均体积含水率增量与灌水时间关系不大,保持为一定值。湿润体体积和湿润体内平均体积含水率增量不仅与土壤类型有关,还与导水装置参数和滴头流量的不同组合有关。  相似文献   

12.
渗灌土壤水分调控技术参数的研究进展   总被引:3,自引:3,他引:3  
分析了渗灌条件下土壤水分的运动规律,对渗灌调控土壤水分的有关技术参数如渗灌管埋深、间距、灌水压力、渗灌管的允许长度和出流量等研究进行了概括,并提出了渗灌技术参数今后的研究重点:对渗灌参数进行综合研究及水分运移规律等方面的研究。  相似文献   

13.
地下滴灌夏玉米的初步试验研究   总被引:13,自引:1,他引:13  
通过观测地下滴灌夏玉米全生育期不同生长阶段的土壤水分、根系的生长发育状况及其生物量、产量等,研究分析了地下滴灌不同的土壤水分处理条件下的土壤水分运移与分布规律,以及其对夏玉米的根系、产量和生物量的影响关系,建立了根系吸水模型,并研究其节水机理。阶段试验结果表明:地下滴灌可以高效地控制灌溉用水量,对作物的根系、产量及生物量产生直接影响;有可能通过土壤水分调控来影响作物能量的协调、平衡关系,达到最优根冠比,合理提高水的利用率和利用效率。  相似文献   

14.
渗灌对番茄根系生长发育的影响   总被引:9,自引:0,他引:9  
Four depth treatments of subsurface drip irrigation pipes were designated as 1) at 20, 2) 30 and 3) 40 cm depthsall with a drip-proof flumes underneath, and 4) at 30 cm without a drip-proof flume to investigate the responses of atomato root system to different technical parameters of subsurface drip irrigation in a glass greenhouse, to evaluate tomatogrowth as affected by subsurface drip irrigation, and to develop an integrated subsurface drip irrigation method for optimaltomato yield and water use in a glass greenhouse. Tomato seedlings were planted above the subsurface drip irrigationpipe. Most of the tomato roots in treatment 1 were found in the top 0-20 cm soil depth with weak root activity but withyield and water use efficiency (WUE) significantly less (P=0.05) than treatment 2; root activity and tomato yield weresignificantly higher (P=0.05) with treatment 3 compared to treatment 1; and with treatment 2 the tomato roots andshoots grew harmoniously with root activity, nutrient uptake, tomato yield and WUE significantly higher (P=0.05) oras high as the other treatments. These findings suggested that subsurface drip irrigation with pipes at 30 cm depth witha drip-proof flume placed underneath was best for tomato production in greenhouses. In addition, the irrigation intervalshould be about 7-8 days and the irrigation rate should be set to 225 m^3 ha^-1 per event.  相似文献   

15.
不同施肥条件和滴灌方式对青椒生长的影响   总被引:15,自引:3,他引:12  
该文通过大田试验,比较了地下滴灌与地表滴灌及其不同施肥量对青椒生长的响应。试验设置地下滴灌和地表滴灌2个灌水处理和0、75、150、300 kg/hm2 4个施肥水平,灌水周期为4 d。另外设1个畦灌对照处理。结果表明,2 a中地下滴灌产量均高于地表滴灌,2007年平均高4%,2008年平均高13%。而地下滴灌耗水量低于地表滴灌,2007年平均低6.7%,2008年平均低7.3%。地下滴灌和地表滴灌0~40 cm土层的根系总根长分别是畦灌的2.44和1.46倍,且地下滴灌10 cm以下各层的根长占总根长的百分比,比地表滴灌高7%,这说明地下滴灌不仅促进作物根系的生长,而且使根系更多的扎入较深土层。地下滴灌150 kg/hm2施氮量为青椒的最优灌溉施肥策略。  相似文献   

16.
压力水头偏差率和滴头流量偏差率是评价微灌灌水质量的重要指标。该文建立了地下滴灌毛管水力计算数学模型,利用该模型,分析了土壤物理特性对地下滴灌毛管水力特性分布规律和灌水质量的影响。结果表明,由于土壤物理特性对地下滴灌毛管滴头流量的制约作用,致使地下滴灌毛管压力水头与滴头流量偏差率比地表滴灌的要小;土壤物理特性对毛管灌水质量指标的影响不显著,但土质较重、土壤体积质量和初始含水率较大时,毛管压力水头与滴头流量偏差率较小,灌水质量较好。说明地下滴灌毛管灌水质量优于地表滴灌,土壤物理特性有利于毛管灌水质量的提高。计算与分析结果可为进一步研究地下滴灌田间管网水力特性及地下滴灌技术应用提供参考。  相似文献   

17.
点源地下滴灌土壤水分运动数值模拟及验证   总被引:14,自引:1,他引:14  
依据非饱和土壤水动力学理论,借助计算机数值模拟方法,应用Hydrus软件建立了地下点源滴灌的土壤水分轴对称二维数值模拟模型,分析对比了几种土壤条件下地埋点源滴灌时土壤水分的运动状况。应用土壤剖面含水率、土壤水湿润峰运移值和累积入渗量及入渗速率等指标的实测值与模型值对模型进行了验证。结果表明,两者具有较好的一致性,相对误差在10%以内,说明所建模型能比较真实地反映供试土壤条件下的水分运动情况。  相似文献   

18.
Knowing the concentrations of the nutrient elements in soils is important due to their toxic effect on humans and the environment. The aims of this study were to assess the effects of water quality, depths, and distances of lateral installation on soil chemical properties during turfgrass cultivation. A field experiment was conducted using a Split-Split-Plot design based on the randomized complete block (RCB) design with two treatments (well water and wastewater) and eight sub-treatments (45 and 60 cm distance of the laterals and 15, 20, 25, and 30 cm depths of laterals) in three replicates on a sandy loam soil, in Shahrekord, Iran. Soil samples were collected from 0 to 30 and 30 to 60 cm depth for measuring nitrate (NO3?), electrical conductivity (EC), and pH at the end of the experiment. During the experiment, fecal coliform was also measured at the soil surface. Results indicated that by increasing lateral distance, NO3? level increased in both layers. With installing laterals in deeper levels, NO3? concentration decreased at the beginning, then increased in the first layer, whereas in the second layer, NO3? concentration decreased. In addition, installing laterals in deeper depth caused an increase in soil EC in the top layer, but a decrease in the lower layer. However, the results showed that there was no significant effect of the treatments (well water and wastewater) and the sub-treatments (distance and depths of laterals) on soil pH. The results also show that with increasing laterals depth, fecal coliform level decreased at the soil surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号