首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
口蹄疫自然感染动物与免疫动物鉴别诊断研究进展   总被引:5,自引:0,他引:5  
口蹄疫是偶蹄动物高度接触性传染病 ,能引起巨大经济损失。国际兽医局将其列为 A类动物传染病之首。除发达国家外 ,大多数发展中国家都采用注射疫苗的办法来控制该病的流行。因此如何区分感染动物和免疫动物是口蹄疫防制中迫切需要解决的问题。目前口蹄疫灭活疫苗的生产工艺可以将绝大部分的非结构蛋白除去 ,因而灭活疫苗免疫动物只能产生结构蛋白抗体 ,而感染动物能产生结构蛋白抗体 ,也能产生非结构蛋白抗体 ,因此 ,检测非结构蛋白抗体为鉴别口蹄疫感染动物与免疫动物提供了美好前景。文章从鉴别诊断的原理 ,非结构蛋白的免疫特性 ,鉴别诊断所面临的问题及解决方案 ,应用非结构蛋白作为鉴别诊断抗原的研究现状等方面进行了综述。  相似文献   

2.
Three commercialized ELISA kits for the detection of antibodies to the non-structural proteins (NSPs) of FMD virus were compared, using sera from uninfected, vaccinated, challenged and naturally infected pigs. The kinetics of the antibody response to NSPs was compared on sequential serum samples in swine from challenge studies and outbreaks. The results showed that ELISA A (UBI) and ELISA B (CEDI) had better sensitivity than that of the 3ABC recombinant protein-based ELISA C (Chekit). The peak for detection of antibodies to NSPs in ELISA C was significantly delayed in sera from natural infection and challenged swine as compared to the ELISA A and B. The sensitivity of the three ELISAs gradually declined during the 6-month post-infection as antibodies to NSP decline. ELISA kits A and B detected NSP antibody in 50% of challenged pigs by the 9-10th-day and 7-8th-day post-challenge, respectively. ELISA B and C had better specificity than ELISA A on sequential serum samples obtained from swine immunized with a type O FMD vaccine commercially available in Taiwan. Antibody to NSPs before vaccination was not detected in swine not exposed to FMD virus, however, antibody to NSPs was found in sera of some pigs after vaccination. All assays had significantly lower specificity when testing sera from repeatedly vaccinated sows and finishers in 1997 that were tested after the 1997 FMD outbreak. However, when testing sera from repeatedly vaccinated sows or finishers in 2003-2004, the specificity for ELISAs A, B and C were significantly better than those in 1997. This effect was less marked for ELISA A. The ELISA B was the best test in terms of the highest sensitivity and specificity and the lowest reactivity with residual NSP in vaccinates.  相似文献   

3.
In this study, we investigated whether Cedivac-FMD, an emergency vaccine against foot-and-mouth disease (FMD), is suitable for use conjointly with a screening program intended to confirm freedom from disease in vaccinated herds based on evidence of virus replication in vaccinates. Different sets of sera were tested using the Ceditest FMDV-NS ELISA for the detection of antibodies against non-structural proteins (NSPs) of FMD virus. During a vaccine safety study, serum samples were collected from 10 calves, 10 lambs and 10 piglets following administration of a double dose and a repeat dose of high payload trivalent Cedivac-FMD vaccine. All serum samples collected both 2 weeks following the administration of a double dose as well as those collected 2 weeks after the single dose booster (given 2 weeks after the double dose) were negative in the Ceditest FMDV-NS ELISA. In a series of vaccine potency experiments, serum samples were collected from 70 vaccinated cattle prior to and following exposure to infectious, homologous FMD virus. When testing cattle sera collected 4 weeks after vaccination with a regular dose of monovalent >6 PD(50) vaccines, 1 of 70 animals tested positive in the NSP antibody ELISA. After infection with FMD virus, antibodies to NSP were detected in 59 of 70 vaccinated cattle and 27 of 28 non-vaccinated control animals within 7 days. Cedivac-FMD vaccines do not induce NSP antibodies in cattle, pigs or sheep following administration of a double dose or a repeat dose. FMD-exposed animals can be detected in a vaccinated group within 7-14 days. Because Cedivac-FMD does not induce NSP antibodies, the principle of 'marker vaccine' applies.  相似文献   

4.
The aim of this study was to evaluate the value of commercially available kits for the detection of foot-and-mouth disease (FMD) virus infection in vaccinated cattle. The cattle were vaccinated with a commercial aqueous FMD vaccine type A24 and subsequently challenged 28 days post vaccination with homologous FMD virus. Seven of eight animals were protected from clinical disease and all became carriers. They were bled sequentially for up to 130 days post infection and samples of sera were tested with three ELISA kits: CHEKIT FMD-3ABC, Ceditest FMDV-NS and SVANOIR FMDV 3ABC-Ab ELISA. The Ceditest kit appears to be relatively higher sensitive than the others. When examined with this ELISA, all cattle developed of FMDV nonstructural proteins (NSPs) antibodies and remained positive throughout the period of the experiment. The response of antibodies against 3ABC antigen delayed in two cattle challenged with FMDV A24 virus. One of the cattle reacted negatively in Svanoir ELISA kit and sera from two animals were found negative in CHEKIT ELISA. It can be concluded that all tested kits can be a promising tool for FMD control and eradication campaigns in situation where emergency vaccination was applied.  相似文献   

5.
There are severe international trade restrictions on foot-and-mouth disease (FMD) affected areas. Because of endemic nature of FMD, India started FMD control programme (FMD-CP) using mass vaccination in selected states including Haryana (year 2003). Although no significant incidence of the disease was reported after launching FMD-CP in the state but in order to participate in international trade of animal and animal products, veterinary authorities have to prove that there is no FMD virus (FMDV) circulation in the animal population, for which it is necessary to differentiate the FMD infected and vaccinated animals. For this purpose, an in-house indirect ELISA utilizing baculovirus-expressed FMDV non-structural protein (NSP) 3A was used to find evidence for virus circulation (prevalence of anti-NSP 3A-specific antibodies) by examining serum samples that were collected either before start of FMD-CP or after completion of third phase (Pre-4th) of vaccination in Haryana (India). A significant reduction (P < 0.01) in prevalence of anti-NSP 3A-specific antibodies (possibly carriers) was observed 2 years after launching FMD-CP in Haryana. However, in cattle the percentage of animals with anti-NSP 3A-specific antibodies was found to be significantly higher (P < 0.01) than buffalo, both before (P < 0.01) and after (P < 0.01) launching FMD-CP in the state. The findings of this study suggest that use of FMDV vaccine in cattle and buffaloes in endemic areas reduces virus circulation (carriers) in the vaccinated herds and that the current 3ANSP-ELISA can be successfully used to monitor the FMDV circulation in endemic areas.  相似文献   

6.
For the purpose of removing infected animals by detecting humoral immune responses to non-structural proteins of the foot-and-mouth disease (FMD) virus, antibodies induced by contaminated residual non-structural proteins contained in less pure FMD vaccine can be problematic for serological screening. The aim of the present study was to measure the possible presence of antibodies against these non-structural proteins in repeatedly vaccinated calves and beef cattle. Five imported FMD vaccines were examined using two commercial ELISA kits, UBI FMDV NS EIA and Ceditest FMDV-NS, for serological testing. After five doses of vaccination, the serum of one calf tested positive, and two vaccines induced a significant increase in anti-3ABC antibodies in calves. This finding demonstrated that a positive reaction to non-structural proteins due to impurities in the FMD vaccine was detectable using commercial tests. A low percentage of field sera sampled from beef cattle in Kinmen also tested positive, but the key factor resulting in the positive reactions could not be positively identified based on our data.  相似文献   

7.
8.
9.
This paper reports on a retrospective study of the antibody responses to structural and non-structural proteins of FMD virus O Taiwan 97 in six pig herds in Taiwan in the year after the 1997 Taiwanese FMD outbreak. All herds were vaccinated against FMD after the outbreak as part of the countrywide control program. Three of the herds had confirmed FMD infections (herds N, O and P) and three herds remained non-infected (herds K, L and M). The serum neutralizing antibody titers and the non-structural protein ELISA (NSP) antibody responses in sows and 1-month-old pigs in the infected herds were higher than in the non-infected herds, but over time a number of positive NSP reactors were detected. From the serological studies and the herd monitoring and investigations it was considered that the FMD NSP positive reactors may not have constituted a true reservoir of FMD virus infection especially in herds where susceptible pigs were no longer present post-exposure or post-vaccination. Pigs vaccinated with an unpurified FMD type O vaccines being used at that time also showed false positive responses for NSP antibodies.  相似文献   

10.
Since March 1997 two strains of foot and mouth disease (FMD) virus have found their way into Taiwan, causing severe outbreaks in pigs and in Chinese yellow cattle. Outbreaks occurred in March 1997 were caused by a pig-adapted virus strain (O/Taiwan/97) which did not infect other species of cloven-hoofed animals by natural route. The epidemic spread over the whole region of Taiwan within two months and the aftermath was 6,147 pig farms infected and 3,850,746 pigs destroyed. In June 1999, the second strain of FMD virus (O/Taiwan/99) was isolated from the Chinese yellow cattle in the Kinmen Prefecture and in the western part of Taiwan. By the end of 1999, Chinese yellow cattle were the only species infected and those infected cattle did not develop pathological lesions. Seroconversions of serum neutralization antibody and on non-structural protein (NSP) antibodies were the best indicators for infection in non-vaccinated herds. The infected animals, however, excreted infectious levels of virus to infect new hosts. Based on the detection of the specific antibody to FMD virus, and virus isolation from oesophageal-pharyngeal (OP) fluid samples, ten herds of Chinese yellow cattle located in Kinmen and Taiwan were declared to have been infected. During the period of January to March 2000, however, five outbreaks caused by FMD virus similar to the O/Taiwan/99 virus occurred in four prefectures of Taiwan. The infected species included goats, Chinese yellow cattle and dairy cattle. Those outbreaks have caused high mortality in goat kids under two weeks old and also developed typical clinical signs of infection in dairy cattle.  相似文献   

11.
Three commercially available ELISAs for the detection of antibodies to the non-structural proteins of foot-and-mouth disease virus (FMDV) were evaluated, using sera from uninfected, vaccinated, infected, inoculated, first vaccinated and subsequently infected, and first vaccinated and subsequently inoculated cattle. We compared antibody kinetics to non-structural proteins, sensitivity, and specificity. One of the ELISAs had a higher sensitivity and much lower specificity than the other two, therefore we established standardised cutoff values for the compared assays using receiver operated characteristic (ROC) curves. Using the standardised cutoff values, all three ELISAs produced comparable results with respect to sensitivity and specificity. Antibody development to non-structural proteins after infection and after vaccination/infection was not significantly different. Development of antibodies, however, both neutralising and directed to non-structural proteins, was significantly delayed after intranasal inoculation as compared to intradermolingual infection. Based on results of sera obtained after vaccination and experimental infection all three assays can be used for testing sera collected between 4 weeks and 6 months after infection. More information is needed on the prevalence of positive reactors in a situation where emergency vaccination has been used and FMD transmission was still observed.  相似文献   

12.
To investigate and optimise detection of carriers, we vaccinated 15 calves with an inactivated vaccine based on foot-and-mouth disease virus (FMDV) A Turkey strain and challenged them and two further non-vaccinated calves with the homologous virus four weeks later. To determine transmission to a sensitive animal, we put a sentinel calf among the infected cattle from 60 days post-infection until the end of the experiment at 609 days post-infection. Samples were tested for the presence of FMDV, viral genome, specific IgA antibodies, antibodies against FMDV non-structural (NS) proteins or neutralising antibodies. Virus and viral genome was intermittently isolated from probang samples and the number of isolations decreased over time. During the first 100 days significantly more samples were positive by RT-PCR than by virus isolation (VI), whereas, late after infection more samples were positive by virus isolation. All the inoculated cattle developed high titres of neutralising antibodies that remained high during the entire experiment. An IgA antibody response was intermittently detected in the oropharyngeal fluid of 14 of the 17 calves, while all of them developed detectable levels of antibodies to NS proteins of FMDV in serum, which declined slowly beyond 34 days post-infection. Nevertheless, at 609 days after inoculation, 10 cattle (60%) were still positive by NS ELISA. Of the 17 cattle in our experiment, 16 became carriers. Despite frequent reallocation between a different pair of infected cattle no transmission to the sentinel calf occurred. It remained negative in all assays during the entire experiment. The results of this experiment show that the NS ELISA is currently the most sensitive method to detect carriers in a vaccinated cattle population.  相似文献   

13.
Foot-and-mouth disease (FMD) is endemic in Kenya and has been well studied in cattle, but not in pigs, yet the role of pigs is recognised in FMD-free areas. This study investigated the presence of antibodies against FMD virus (FMDV) in pigs sampled during a countrywide random survey for FMD in cattle coinciding with SAT 1 FMDV outbreaks in cattle. A total of 191 serum samples were collected from clinically healthy pigs in 17 districts. Forty-two of the 191 sera were from pigs vaccinated against serotypes O/A/SAT 2 FMDV. Antibodies against FMDV non-structural proteins were found in sera from 30 vaccinated and 71 non-vaccinated pigs, altogether 101/191 sera (53 %), and 91 % of these (92/101) also had antibodies measurable by serotype-specific ELISAs, predominantly directed against SAT 1 with titres of 10–320. However, only five high titres against SAT 1 in vaccinated pigs were confirmed by virus neutralisation test (VNT). Due to high degree of agreement between the two ELISAs, it was concluded that positive pigs had been infected with FMDV. Implications of these results for the role of pigs in the epidemiology of FMD in Kenya are discussed, and in-depth studies are recommended.  相似文献   

14.
动物隐性携带口蹄疫病毒的检测方法研究进展   总被引:1,自引:0,他引:1  
动物隐性带毒的检测在口蹄疫预防控制中有着十分重要的意义。多年来,为了有效地检测出动物隐性携带的口蹄疫病毒,人们采用了各种各样的检测方法,常用的有采集食管-咽喉分泌液进行病毒分离和应用血清学技术检测血清抗体等。近年来,随着分子生物学技术和基因工程技术的发展,不管是检测抗原还是检测抗体,对于口蹄疫隐性带毒的检测和研究都有了一些新的进展,如应用PCR技术检测病毒核酸和应用血清学技术检测抗非结构蛋白抗体,这些新的检测方法的建立使口蹄疫隐性带毒的检测更加可靠。文章对一些口蹄疫隐性带毒的检测方法和最新的研究进展进行了综述。  相似文献   

15.
The O/Taiwan/99 foot-and-mouth disease virus (FMDV), a South Asian topotype of serotype O, was introduced into Taiwan in 1999. The Chinese yellow cattle infected by the virus did not develop clinical lesions under experimental and field conditions. A blocking enzyme-linked immunosorbent assay (ELISA) kit with the 3AB antigen, a polypeptide of FMDV non-structural (NS) proteins, was used to evaluate the development and duration of anti-3AB antibodies, proving active viral replication, in the Chinese yellow cattle. The specificity of the assay was 99%, as was established with negative sera from regularly vaccinated and from na?ve cattle. The sensitivity tested with sera from naturally infected animals was approximately 64% and it was lower than that obtained by serum neutralization (SN) test. Under experimental infection, the Chinese yellow cattle developed lower anti-3AB antibodies than that developed in other species. Duration of anti-3AB antibodies was traced in two herds of naturally infected animals, indicating that anti-3AB antibodies persisted for approximately 6 months after outbreaks. On the basis of this study, we propose that the Chinese yellow cattle may have natural resistance, which limits viral replication and reduces the development of anti-3AB antibodies.  相似文献   

16.
The sharp rise of bovine tuberculosis (TB) in Great Britain and the continuing problem of wild life reservoirs in countries such as New Zealand and Great Britain have resulted in increased research efforts into the disease. Two of the goals of this research are to develop (1) cattle vaccines against TB and (2) associated diagnostic reagents that can differentiate between vaccinated and infected animals (differential diagnosis). This review summarises recent progress and describes efforts to increase the protective efficacy of the only potential TB vaccine currently available, Mycobacterium bovis BCG, and to develop specific reagents for differential diagnosis. Vaccination strategies based on DNA or protein subunit vaccination, vaccination with live viral vectors as well as heterologous prime-boost scenarios are discussed. In addition, we outline results from studies aimed at developing diagnostic reagents to allow the distinction of vaccinated from infected animals, for example antigens that are not expressed by vaccines like Mycobacterium bovis Bacille-Calmette-Guérin, but recognised strongly in Mycobacterium bovis infected cattle.  相似文献   

17.
The relationship of Foot-and-Mouth Disease (FMD) virus antigen payload and single and double vaccinations in conferring protection against virus challenge in sheep was studied. Sheep vaccinated with half the cattle dose (1 ml) containing 15 and 3.75 μg of FMDV antigen with or without booster resisted virulent challenge on 21 days post vaccination or 7 days post booster. FMDV RNA could be detected in nasal secretions in 26% of vaccinated sheep (103.12 to 103.82 viral RNA copies) on day 35 post challenge. No live virus could be isolated after 5 days post challenge indicating that the risk of transmission of disease was probably very low. The finding showed that vaccines containing antigen payload of 1.88 μg may prevent or reduce the local virus replication at the oropharynx and shedding of virus from nasal secretions and thereby reduce the amount of virus released into the environment subsequent to exposure to live virus. Sheep with no vaccination or with poor sero conversion to vaccination can be infected without overt clinical signs and became carriers.  相似文献   

18.
A monoclonal antibody, 3BIgG, against the prokaryotically expressed foot-and-mouth disease virus (FMDV) non-structural protein (NSP) 3B was obtained. The 3BIgG-sepharose conjugant (3BmAb-6BFF) was prepared by adding the purified 3BIgG into epoxy-activated sepharose 6BFF, incubating with the inactivated FMDV, and then removing the sepharose by centrifugation. The vaccine was made from the supernatant emulsified with oil-adjuvant ISA206. Ten guinea pigs, 26 pigs and six cattle were vaccinated, and a vaccination control group was included without treatment with 3BmAb-6BFF. After 28 days, 9/10 pigs challenged with FMDV were protected, this result was the same as the control group, indicating that the vaccine potency was not reduced after treatment with 3BmAb-6BFF. The other animals were vaccinated weekly for nine weeks, and serum samples were collected to detect 3ABC-antibody titers. The results showed that 3ABC-antibody production was delayed and the positive antibody rates were lower when vaccination was carried out using vaccines treated with 3BmAb-6BFF compared with untreated vaccines. The findings of this study suggest that it is possible to reduce NSPs using a mAb-sepharose conjugant in FMD vaccines without reducing their efficacy.  相似文献   

19.
口蹄疫诊断技术研究进展   总被引:4,自引:0,他引:4  
口蹄疫的有效控制关键在于早期检测 ,然而有很多疾病症状与口蹄疫相似 ,仅靠临床症状难以确诊 ,因此必须进行实验室诊断。实验室诊断包括病毒学诊断和血清学诊断。病毒学诊断方法有病毒分离、补体结合试验、酶联免疫吸附试验 ( EL ISA)、RT-PCR以及乳胶凝集试验 ( L AT)。 RT-PCR有待进一步完善 ,而用于野外检测的现场诊断方法已取得可喜进展。血清学诊断包括中和试验和 EL ISA,中和试验已经被 EL ISA方法取代 ,并且通过检测非结构蛋白的抗体可以区分感染动物和免疫动物。更加快速、敏感、可靠以及用于检测潜伏感染的诊断技术将是今后研究的热点。  相似文献   

20.
Small ruminants play an important role in the epidemiology of Foot-and-Mouth Disease (FMD). Small ruminants are vaccinated with one-half or one-third of cattle dose of oil-based or aqueous vaccines respectively. The extinction antigen payload in vaccine for protection in small ruminants is poorly studied. FMD seronegative Nellore sheep (n=30) and Osmanabadi goats (n=30) were vaccinated with different payloads of O(1) Manisa vaccine (0.45-5 μg). Vaccinated and sero-negative unvaccinated sheep (n=6) and goats (n=6) were challenged intradermally into the coronary band with O(1) Manisa virus. The sheep and goats were monitored for signs of FMD and samples were collected for measuring viraemia and virus associated with nasal swabs and probang samples. Clotted blood was collected for serology. Vaccines containing antigen payload up to 0.94 μg protected sheep and goats against challenge. Sheep and goats vaccinated with 0.45 μg antigen payload were poorly protected against challenge. An antigen payload of 0.94 μg was sufficient to offer complete protection and also absence of carrier status. Sheep and goats with no vaccination or with poor sero conversion to vaccination showed sub-clinical infection and became carriers. The results of the study suggest that vaccination offers protection from clinical disease even at a low payload of 0.94 μg and hence one-half of cattle dose of the oil-based vaccine formulations is sufficient to induce protective immune response in sheep and goats. Since no live virus could be isolated after 5 days post challenge from the nasal swab or probang samples even though viral RNA was detected, the risk of these animals transmitting disease was probably very low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号