首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Antifungal activity of thiophenes from Echinops ritro   总被引:2,自引:0,他引:2  
Extracts from 30 plants of the Greek flora were evaluated for their antifungal activity using direct bioautography assays with three Colletotrichum species. Among the bioactive extracts, the dichloromethane extract of the radix of Echinops ritro (Asteraceae) was the most potent. Bioassay-guided fractionation of this extract led to the isolation of eight thiophenes. Antifungal activities of isolated compounds together with a previously isolated thiophene from Echinops transiliensis were first evaluated by bioautography and subsequently evaluated in greater detail using a broth microdilution assay against plant pathogens Colletotrichum acutatum, Colletotrichum fragariae, Colletotrichum gloeosporioides, Botrytis cinerea, Fusarium oxysporum, Phomopsis viticola, and Phomopsis obscurans. 5'-(3-Buten-1-ynyl)-2,2'-bithiophen (1), alpha-terthienyl (2), and 2-[pent-1,3-diynyl]-5-[4-hydroxybut-1-ynyl]thiophene (5) at 3 and 30 microM were active against all three Colletotrichum species, F. oxysporum, P. viticola, and P. obscurans.  相似文献   

2.
Bioassay-guided fractionation of the hexane/ethyl acetate/water (H/EtOAc/H2O) crude extract of the aerial parts of Haplophyllum sieversii was performed because of preliminary screening data that indicated the presence of growth inhibitory components against Colletotrichum fragariae, Colletotrichum gloeosporioides, and Colletotrichum acutatum. Fractionation was directed using bioautographical methods resulting in the isolation of the bioactive alkaloids flindersine, anhydroevoxine, haplamine, and a lignan eudesmin. These four compounds were evaluated for activity against C. fragariae, C. gloeosporioides, C. acutatum, Botrytis cinerea, Fusarium oxysporum, and Phomopsis obscurans in a dose-response growth-inhibitory bioassay at 50.0, 100.0, and 150.0 microM. Of the four compounds tested, flindersine demonstrated the highest level of antifungal activity. Additionally, flindersine, eudesmin, and haplamine were screened against the freshwater phytoplanktons Oscillatoria perornata, Oscillatoria agardhii, Selenastrum capricornutum, and Pseudanabaena sp. (strain LW397). Haplamine demonstrated selective inhibition against the odor-producing cyanobacterium O. perornata compared to the activity against the green alga S. capricornutum, with lowest observed effect concentration values of 1.0 and 10.0 microM, respectively.  相似文献   

3.
Hexane and ethyl acetate phases of the methanol extract of Macaranga monandra showed fungal growth inhibition of Colletotrichum acutatum, C. fragariae and C. gloeosporioides, Fusarium oxysporum, Botrytis cinerea, Phomopsis obscurans, and P. viticola. Bioassay-guided fractionation led to the isolation of two active clerodane-type diterpenes that were elucidated by spectroscopic methods (1D-, 2D-NMR, and MS) as kolavenic acid and 2-oxo-kolavenic acid. A 96-well microbioassay revealed that kolavenic acid and 2-oxo-kolavenic acid produced moderate growth inhibition in Phomopsis viticola and Botrytis cinerea.  相似文献   

4.
Zopfiellin, a novel cyclooctanoid natural product isolated from Zopfiella curvata No. 37-3, was evaluated in a 96-well microtiter assay for fungicidal activity against Botrytis cinerea, Colletotrichum acutatum, Colletotrichum fragariae, Colletotrichum gloeosporioides, and Fusarium oxysporum. Zopfiellin exhibited pH-dependent activity, with the most mycelial growth inhibition demonstrated at pH 5.0. Mass spectrometry and nuclear magnetic resonance spectroscopy studies indicated that zopfiellin undergoes structural changes with changes in pH. At pH 5.0, zopfiellin showed the greatest activity against B. cinerea (IC(80) = 10 microM), C. gloeosporioides (IC(80) = 10 microM), and C. fragariae (IC(80) = 10 microM) and intermediate activity against C. acutatum (IC(80) = 30 microM), and was not active against F. oxysporum (IC(80) > 100 microM).  相似文献   

5.
Essential oils from three different Asteraceae obtained by hydrodistillation of aerial parts were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). Main compounds obtained from each taxon were found as follows: Arnica longifolia carvacrol 37.3%, alpha-bisabolol 8.2%; Aster hesperius hexadecanoic acid 29.6%, carvacrol 15.2%; and Chrysothamnus nauseosus var. nauseosus beta-phellandrene 22.8% and beta-pinene 19.8%. Essential oils were also evaluated for their antimalarial and antimicrobial activity against human pathogens, and antifungal activities against plant pathogens. No antimalarial and antimicrobial activities against human pathogens were observed. Direct bioautography demonstrated antifungal activity of the essential oils obtained from three Asteraceae taxa and two pure compounds, carvacrol and beta-bisabolol, to the plant pathogens Colletotrichum acutatum, C. fragariae and C. gloeosporioides. Subsequent evaluation of antifungal compounds using a 96-well micro-dilution broth assay indicated that alpha-bisabolol showed weak growth inhibition of the plant pathogen Botrytis cinerea after 72 h.  相似文献   

6.
Essential oil of Haplopappus greenei A. Gray was obtained by hydrodistillation of aerial parts, which were subsequently analyzed by gas chromatography and gas chromatography-mass spectrometry. Major components were identified as carvacrol (8.7%), beta-pinene (7.6%), trans-pinocarveol (6.2%), and caryophyllene oxide (5.8%), respectively. In total, 104 components representing 84.9% of the investigated essential oil were characterized. Furthermore, the essential oil was evaluated for antimalarial, antimicrobial, and antifungal activities. However, only antifungal activity was observed against the strawberry anthracnose-causing fungal plant pathogens Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides using the direct overlay bioautography assay. Major essential oil components were also evaluated for antifungal activity; the carvacrol standard demonstrated nonselective activity against the three Colletotrichum species and the other compounds were inactive.  相似文献   

7.
Activity of quinones on colletotrichum species   总被引:4,自引:0,他引:4  
The antifungal activity of 1,4-naphthoquinones, 1,2-naphthoquinones, 1,4-benzoquinones, and anthraquinones from our natural products collection was tested by direct bioautography to identify natural products with potential use in agricultural fungal pathogen control. Quinones demonstrated good to moderate antifungal activity against Colletotrichum spp. Colletotrichum fragariae was the most sensitive species to quinone-based chemistry, Colletotrichum gloeosporioides had intermediate sensitivity, while Colletotrichum acutatum was the species least sensitive to these compounds.  相似文献   

8.
Essential oils of Salvia macrochlamys and Salvia recognita were obtained by hydrodistillation of dried aerial parts and characterized by gas chromatography and gas chromatography-mass spectrometry. One hundred and twenty identified constituents representing 97.7% in S. macrochlamys and 96.4% in S. recognita were characterized, and 1,8-cineole, borneol, and camphor were identified as major components of the essential oils. The oils were evaluated for their antimalarial, antimicrobial, and antifungal activities. Antifungal activity of the essential oils from both Salvia species was nonselective at inhibiting growth and development of reproductive stroma of the plant pathogens Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides. S. macrochlamys oil had good antimycobacterial activity against Mycobacterium intracellulare; however, the oils showed no antimicrobial activity against human pathogenic bacteria or fungi up to a concentration of 200 microg/mL. S. recognita oil exhibited a weak antimalarial activity against Plasmodium falciparum.  相似文献   

9.
The chemical composition of the essential oil of kenaf (Hibiscus cannabinus) was examined by GC-MS. Fifty-eight components were characterized from H. cannabinus with (E)-phytol (28.16%), (Z)-phytol (8.02%), n-nonanal (5.70%), benzene acetaldehyde (4.39%), (E)-2-hexenal (3.10%), and 5-methylfurfural (3.00%) as the major constituents. The oil was phytotoxic to lettuce and bentgrass and had antifungal activity against Colletotrichum fragariae, Colletotrichum gloeosporioides, and Colletotrichum accutatum but exhibited little or no algicidal activity.  相似文献   

10.
The isolation and structure elucidation of antifungal constituents of the steam-distilled essential oil fraction of Artemisia dracunculus are described. Antifungal activities of 5-phenyl-1,3-pentadiyne and capillarin against Colletrotichum fragariae, Colletrotichum gloeosporioides, and Colletrotichum acutatum are reported for the first time. The relative abundance of 5-phenyl-1,3-pentadiyne is about 11% of the steam-distilled oil, as determined by GC-MS. Methyleugenol was also isolated and identified as an antifungal constituent of the oil.  相似文献   

11.
Three continuous assays are described for lipoxygenase (LOX), hydroperoxide lyase (HPL) and alcohol dehydrogenase (ADH) in leek tissue. The catalytic activity of LOX showed significant difference (significance level 5%) between linolenic acid (9.43 x 10(-)(4) katals per kg protein) and linoleic acid (2.53 x 10(-)(4) katals per kg protein), and the pH-optimum of LOX was 4.5-5.5 against linoleic acid. The catalytic activity of HPL was statistically the same for 9-(S)-hydroperoxy-(10E,12Z)-octadecadienoic acid (1.01 x 10(-)(2) katals per kg protein) and 13-(S)-hydroperoxy-(9Z,11E)-octadecadienoic acid (7.69 x 10(-)(3) katals per kg protein). ADH showed a catalytic activity of 5.01 x 10(-)(4) katals/kg of protein toward hexanal. Model experiments with crude enzyme extract from leek mixed with linoleic acid or linolenic acid demonstrated differences in the amount of produced aroma compounds. Linoleic acid resulted in significantly most hexanal, heptanal, (E)-2-heptenal, (E)-2-octenal, (E,E)-2,4-decadienal, pentanol, and hexanol, whereas linolenic acid resulted in significantly most (E)-2-pentenal, (E)-2-hexenal, (E,Z)-2,4-heptadienal, (E,E)-2,4-heptadienal, and butanol. Leek LOX produced only the 13-hydroperoxide of linoleic acid and linolenic acid.  相似文献   

12.
Bioassay-directed isolation of antifungal compounds from an ethyl acetate extract of Ruta graveolens leaves yielded two furanocoumarins, one quinoline alkaloid, and four quinolone alkaloids, including a novel compound, 1-methyl-2-[6'-(3' ',4' '-methylenedioxyphenyl)hexyl]-4-quinolone. The (1)H and (13)C NMR assignments of the new compound are reported. Antifungal activities of the isolated compounds, together with 7-hydroxycoumarin, 4-hydroxycoumarin, and 7-methoxycoumarin, which are known to occur in Rutaceae species, were evaluated by bioautography and microbioassay. Four of the alkaloids had moderate activity against Colletotrichum species, including a benomyl-resistant C. acutatum. These compounds and the furanocoumarins 5- and 8-methoxypsoralen had moderate activity against Fusarium oxysporum. The novel quinolone alkaloid was highly active against Botrytis cinerea. Phomopsis species were much more sensitive to most of the compounds, with P. viticola being highly sensitive to all of the compounds.  相似文献   

13.
调查鉴定了广州地区龙舌兰科观叶木本植物也门铁树[Dracaena arborea(Willdo)Link.]和象脚丝兰(Yucca elephantipes Regel )上的11种真菌病害,其病原真菌分别为:可可球二孢(Botryodiplodia theobromae Pat.)、辣椒炭疽菌(Colletotrichum capsici Butler & Bisby)、弯孢霉(Curvularia sp.)、围小丛壳[Glomerella cingulata(Stonem.) Spauld. et Schrenk]、龙舌兰小球腔菌(Leptosphaeria agaves Syd. et Butl.)、钝孢小球腔菌(L.obtusispora Speg.)、龙血树拟茎点霉(Phomopsis dracaenae Sahni)、龙血树生拟茎点霉(P.dracaenicola Z.D.Jiang, P.G. Xi et P.K. Chi)、丝兰拟茎点霉[P. yuccae(Cooke) Grove]和丝兰叶点霉(Phyllosticta yuccae Bissett).其中,围小丛壳引起的也门铁树炭疽病和钝孢小球腔菌引起的象脚丝兰叶斑病发生普遍而严重.  相似文献   

14.
Eight volatile products characterizing strawberry aroma, which is generated from the oxidative degradation of linoleic and linolenic acids by a lipoxygenase (LOX) pathway, were examined because of their antifungal activity against Colletotrichum acutatum, one of the causal agents of strawberry anthracnose. In this study, the effects of aldehydes, alcohols, and esters on mycelial growth and conidia development were evaluated. (E)-Hex-2-enal was found to be the best inhibitor of mycelial growth [MID (minimum inhibitory doses)=33.65 microL L(-1)] and of spore germination (MID=6.76 microL L(-1)), while hexyl acetate was the least effective of all volatile compounds tested (MID=6441.89 microL L(-1) for mycelial growth and MID=1351.35 microL L(-1) for spore germination). Furthermore, the antifungal activity of (E)-hex-2-enal on susceptibility of strawberry fruits to C. acutatum was also confirmed. The presence of these molecules in jars containing strawberry fruits inoculated with a suspension of spores inhibited the fungus growth and prevented the appearance of symptoms. Moreover, a study of the effects of (E)-hex-2-enal on conidial cells of C. acutatum was evaluated by transmission electron microscopy. This volatile compound altered the structures of the cell wall and plasma membrane, causing disorganization and lysis of organelles and, eventually, cell death.  相似文献   

15.
Bitter gourd ( Momordica charantia L.) pericarp, placenta, and seed extracts were previously shown to induce apoptosis in HL60 human leukemia cells. To determine the active component that induces apoptosis in cancer cells, bitter gourd ethanol extract was fractionated by liquid-liquid partition and silica gel column chromatography. Several fractions obtained by silica gel column chromatography inhibited growth and induced apoptosis in HL60 cells. Among them, fraction 7 had the strongest activity in inhibiting growth and inducing apoptosis in HL60 cells. A component that induced apoptosis in HL60 cells was then isolated from fraction 7 by another silica gel column chromatography and high-performance liquid chromatography (HPLC) using a C18 column and was identified as (9Z,11E,13E)-15,16-dihydroxy-9,11,13-octadecatrienoic acid (15,16-dihydroxy alpha-eleostearic acid). 15,16-Dihydroxy alpha-eleostearic acid induced apoptosis in HL60 cells within 5 h at a concentration of 160 microM (50 microg/mL). (9Z,11E,13E)-9,11,13-Octadecatrienoic acid (alpha-eleostearic acid) is known to be the major conjugated linolenic acid in bitter gourd seeds. Therefore, the effect of alpha-eleostearic acid on the growth of some cancer and normal cell lines was examined. alpha-Eleostearic acid strongly inhibited the growth of some cancer and fibroblast cell lines, including those of HL60 leukemia and HT29 colon carcinoma. alpha-Eleostearic acid induced apoptosis in HL60 cells after a 24 h incubation at a concentration of 5 microM. Thus, alpha-eleostearic acid and the dihydroxy derivative from bitter gourd were suggested to be the major inducers of apoptosis in HL60 cells.  相似文献   

16.
Widdrol (1) was tested against the necrotrophic plant pathogens Botrytis cinerea and Colletotrichum gloeosporioides. While 1 was found to be inactive against C. gloeosporioides, it showed a selective and effective control of B. cinerea, significantly inhibiting the mycelial growth of the fungus at concentrations of 100 ppm and above. In addition, the biotransformation of 1 by both fungi was studied. Incubation with C. gloeosporioides and B. cinerea afforded four and one biotransformation products (2-6), respectively. Biotransformation with C. gloeosporioides was highly regioselective, yielding for the most part oxidation products at C-10: 10-oxowiddrol (2), 10beta-hydroxywiddrol (3), 10alpha-hydroxywiddrol (4), and 14alpha-hydroxywiddrol (5). The structures of all products were determined on the basis of their spectroscopic data, including coupling constants, two-dimensional NMR analysis (heteronuclear multiple quantum coherence, heteronuclear multiple bond correlation, and nuclear Overhauser enhancement spectroscopy), and nuclear Overhauser effect. The biotransformation products were then tested against B. cinerea and found to be inactive. These results shed further light on the structural modifications, which may be necessary to develop selective fungal control agents against B. cinerea.  相似文献   

17.
Many naturally occurring plant volatiles are known to have antifungal properties. However, they have limited use because they diffuse rapidly in air. In this in vitro study, acetaldehyde was chosen as a prototype volatile in order to study the controlled release of antifungal volatiles from cyclodextrins (CD). The major postharvest pathogens Alternaria alternata, Botrytis cinerea, and Colletotrichum acutatum were exposed to the pure volatile for 7 days at 23 degrees C. Acetaldehyde was most effective against A. alternata, followed by C. acutatum, and B. cinerea, with 0.12, 0.56, and 1.72 microL/L in air being required to inhibit fungal growth, respectively, according to the bioassay developed. Second, the effectiveness of the new beta-CD-acetaldehyde release system was evaluated against A. alternata for 7 days at 23 degrees C. Sufficient volatile was released from 0.7 g of beta-CD-acetaldehyde to prevent fungal growth in vitro.  相似文献   

18.
苹果炭疽菌低毒性菌株的筛选及控病效果   总被引:1,自引:0,他引:1  
苹果炭疽菌(Colletotrichum gloeosporioides)感染能对苹果采后造成严重经济损失,利用弱致病菌株先侵入寄主组织后诱发植物产生抗病性,可以减轻植物病害的发生和危害。本研究利用离子注入和交变磁场处理的方法诱导产生苹果炭疽菌的低毒株,并进行筛选。通过调查菌株生长情况及在苹果上发生的病斑的大小,获得低毒株,对其在苹果上的保护作用进行测定,发现离子注入C100-2-5低毒株和磁场处理C0.25-1-2低毒株对苹果有较好的保护作用。  相似文献   

19.
The crude methanolic extract of Zuccagnia punctata was active toward the fungal pathogens of soybean Phomopsis longicolla and Colletotrichum truncatum. Assay guided fractionation led to the isolation of two chalcones, one flavanone and a new caffeoyl ester derivative as the compounds responsible for the antifungal activity. Another new caffeoyl ester derivative was isolated from the antifungal chloroform extract but proved to be inactive against the soybean infecting fungi up to 50 microg/mL  相似文献   

20.
采用菌丝生长抑制和分生孢子萌发抑制的试验方法,以草莓枯萎病菌为靶标病原菌,研究了江苏省内运行稳定的21个大型沼气工程的沼液及其无菌滤液对草莓枯萎病菌的生长抑制特性。结果表明,所有沼气工程的沼液对草莓枯萎病菌的菌丝生长都有不同程度的抑制作用,不同运行年限的沼气池沼液以及不同发酵原料的沼液对草莓枯萎病菌的抑制效果均无显著差异,但不同贮液阶段的沼液对其抑菌效果影响显著。沼液的无菌滤液对草莓枯萎病菌菌丝的生长没有抑制作用;沼液及其无菌滤液对草莓枯萎病菌分生孢子的萌发均有不同程度的抑制作用,猪粪沼液及其无菌滤液对草莓枯萎病菌分生孢子萌发的抑制作用好于牛粪沼液。沼液对生产上常见的5种植物病原真菌的抑制效果有显著差别。沼液中的拮抗微生物是沼液抑菌防病的主要因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号