首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
An internal standard method was previously developed to measure the concentration of a synthetic bitter peptide, beta-CN f193-209, by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The objective of this study was to evaluate the relationship between beta-CN f193-209 concentration in an aqueous extract of aged Cheddar cheese and bitterness intensity of the cheese. Concentrations of beta-CN f193-209 in cheese extracts were determined by MALDI-TOF at 0, 120, 180, and 270 days. Trained panels evaluated the bitterness intensity of the cheeses at 180 and 270 days. Correlation coefficients between MALDI and sensory data at 180 and 270 days were 0.803 and 0.554, respectively. The decreased correlation may be due to the presence of other bitter peptides more responsible for bitterness at longer aging or the production of compounds that mask bitterness intensity.  相似文献   

2.
Application of a sensomics approach on the water-soluble extract of a matured Gouda cheese including gel permeation chromatography, ultrafiltration, solid phase extraction, preparative RP-HPLC, and HILIC combined with analytical sensory tools enabled the comprehensive mapping of bitter-tasting metabolites. LC-MS-TOF and LC-MS/MS, independent synthesis, and sensory analysis revealed the identification of a total of 16 bitter peptides formed by proteolysis of caseins. Eleven previously unreported bitter peptides were aligned to beta-casein, among which 6 peptides were released from the sequence beta-CN(57-69) of the N terminus of beta-casein and 2 peptides originated from the C-terminal sequence beta-CN(198-206). The other peptides were liberated from miscellaneous regions of beta-casein, namely, beta-CN(22-28), beta-CN(74-86), beta-CN(74-77), and beta-CN(135-138), respectively. Six peptides were found to originate from alpha(s1)-casein and were shown to have the sequences alpha(s1)-CN(11-14), alpha(s1)-CN(56-60), alpha(s1)-CN(70/71-74), alpha(s1)-CN(110/111-114), and alpha(s1)-CN(135-136). Sensory evaluation of the purified, synthesized peptides revealed that 12 of these peptides showed pronounced bitter taste with recognition thresholds between 0.05 and 6.0 mmol/L. Among these peptides, the decapeptide YPFPGPIHNS exhibited a caffeine-like bitter taste quality at the lowest threshold concentration of 0.05 mmol/L.  相似文献   

3.
4.
The aim of this work was to determine the relative impact of water-soluble compounds on the gustatory properties of a goat cheese water-soluble extract (WSE). Using a semisynthetic model mixture (MWSE) previously elaborated in physicochemical and gustatory accordance with the cheese WSE (see part 1, Engel et al. J. Agric. Food Chem. 2000, 48, 4252-4259), omission tests were performed. Among the main taste characteristics of the WSE (salty, sour, and bitter), saltiness was explained by an additive contribution of sodium, potassium, calcium, and magnesium cations, whereas sourness was mainly due to a synergistic effect involving sodium chloride, phosphates, and lactic acid and bitterness was found to result from calcium and magnesium chlorides, the impact of which was partially masked by sodium chloride. In contrast, amino acids, lactose, and peptides did not have any significant impact on WSE taste properties. To quantify the contribution of the taste active compounds to bitterness and saltiness, stepwise multiple linear regressions were performed. Those contributions were expressed as a percentage of the considered taste characteristic intensity in the WSE. The model obtained allowed up to 97.4% of the perceived saltiness to be described and approximately 85% of the bitterness.  相似文献   

5.
The first comprehensive quantitative determination of 82 putative taste-active metabolites and mineral salts, the ranking of these compounds in their sensory impact based on dose-over-threshold (DoT) factors, followed by the confirmation of their sensory relevance by taste reconstruction and omission experiments enabled the decoding of the nonvolatile sensometabolome of a red wine. For the first time, the bitterness of the red wine could be demonstrated to be induced by subthreshold concentrations of phenolic acid ethyl esters and flavan-3-ols. Whereas the velvety astringent onset was imparted by three flavon-3-ol glucosides and dihydroflavon-3-ol rhamnosides, the puckering astringent offset was caused by a polymeric fraction exhibiting molecular masses above >5 kDa and was found to be amplified by the organic acids. The perceived sourness was imparted by l-tartaric acid, d-galacturonic acid, acetic acid, succinic acid, l-malic acid, and l-lactic acid and was slightly suppressed by the chlorides of potassium, magnesium, and ammonium, respectively. In addition, d-fructose and glycerol as well as subthreshold concentrations of glucose, 1,2-propandiol, and myo-inositol were found to be responsible for the sweetness, whereas the mouthfulness and body of the red wine were induced only by glycerol, 1,2-propandiol, and myo-inositol.  相似文献   

6.
Bitterness-masking compounds were identified in a natural white mold cheese. The oily fraction of the cheese was extracted and further fractionated by using silica gel column chromatography. The four fractions obtained were characterized by thin-layer chromatography and nuclear magnetic resonance spectroscopy. The fatty acid-containing fraction was found to have the highest bitterness-masking activity against quinine hydrochloride. Bitterness-masking activity was quantitated using a method based on subjective equivalents. At 0.5 mM, the fatty acid mixture, which had a composition similar to that of cheese, suppressed the bitterness of 0.008% quinine hydrochloride to be equivalent to that of 0.0049-0.0060% and 0.5 mM oleic acid to that of 0.0032-0.0038% solution. The binding potential between oleic acid and the bitter compounds was estimated by isothermal titration calorimetry. These results suggest that oleic acid masked bitterness by forming a complex with the bitter compounds.  相似文献   

7.
The taste compounds inducing the blood-like, metallic bitter taste sensation reported recently for a dichloromethane extract prepared from roasted cocoa nibs were identified as a series of 25 diketopiperazines by means of HPLC degustation, LC-MS/MS, and independent synthesis. Among these 25 compounds, 13 cis-configured diketopiperazines, namely, cyclo(L-IIe-L-Phe), cyclo(L-Val-L-Leu), cyclo(L-Pro-L-Pro), cyclo(L-IIe-L-Pro), cyclo(L-Val-L-Tyr), cyclo(L-Ala-L-Tyr), cyclo(L-Phe-L-Ser), cyclo(L-Ala-L-IIe), cyclo(L-Leu-L-Phe), cyclo(L-Pro-L-Val), cyclo(L-Pro-L-Thr), cyclo(L-Pro-L-Tyr), and cyclo(L-Val-L-Val) were identified for the first time in cocoa. In addition, the taste recognition thresholds for the metallic as well as the bitter taste of the diketopiperazines were determined, and after quantitative analysis by using two diastereomeric diketopiperazines as the internal standards, the sensory impact of the diketopiperazines was evaluated on the basis of their dose-over-threshold (DoT) factors calculated as the ratio of the concentration and the threshold concentration of a compound. These data revealed DoT factors above 1.0 exclusively for cis-cyclo(L-Pro-L-Val), cis-cyclo(L-Val-L-Leu), cis-cyclo(L-Ala-L-Ile), cis-cyclo(L-Ala-L-Leu), and cis-cyclo(L-Ile-L-Pro), whereas all of the other diketopiperazines were present below their individual bitter taste threshold concentrations and should therefore not contribute to the cocoa taste. Because the DoT factors do not consider the nonlinear relationship between the concentration and gustatory response of an individual compound, we, for the first time, report on the recording of dose/response functions describing the human bitter taste perception of diketopiperazines more precisely.  相似文献   

8.
Activity-directed fractionation of heated carbohydrate/alanine solutions recently led to the discovery of (+)-(S)-1-(1-carboxyethyl)-5-hydroxy-2-(hydroxymethyl)pyridinium inner salt (1, alapyridaine), and it has been shown that this compound lowers the detection thresholds of sugars, glutamate, and NaCl solutions, whereas no influence on bitter perception was observed. As this class of Maillard-derived pyridinium betaines seemed to be promising targets for further research on their taste modulatory activity, the objective of the present investigation was to screen for bitter taste-suppressing target molecules in combinatorial libraries of pyridinium betaines prepared from 5-(hydroxymethyl)furan-2-aldehyde and amino acid mixtures by use of Maillard-type reaction chemistry instead of synthesizing and purifying each derivative individually. By application of hydrophilic interaction liquid chromatography in combination with the recently developed comparative taste dilution analysis, followed by structure determination, synthesis, and sensory studies, we have now succeeded in identifying 1-carboxymethyl-5-hydroxy-2-hydroxymethylpyridinium inner salt (2) as a potential bitter-suppressing candidate. While tasteless on its own, 2 was found to reduce the bitterness of various bitter tastants such as the amino acid L-phenylalanine, the peptide Gly-Leu, the alkaloid caffeine, and the bitter glycosides salicin and naringin.  相似文献   

9.
The aim of this study was to add to the understanding of changes in taste that occur during the ripening of a bitter Camembert cheese by the evolution of its composition. Physicochemical analyses were performed on rind, under-rind, and center portions of a Camembert cheese selected for its intense bitterness. At each of the six steps of ripening studied organic acids, sugars, total nitrogen, soluble nitrogen, phosphotungstic acid soluble nitrogen, non-protein nitrogen, Na, K, Ca, Mg, Pi, Cl, and biogenic amines were quantified in each portion. Changes in cheese composition seemed to mainly result from the development of Penicillium camemberti on the cheese outer layer. Migration phenomena and the release of potentially taste-active compounds allowed for the evolution of saltiness, sourness, and bitterness throughout ripening to be better understood. Apart from taste-active compounds, the impact of the cheese matrix on its taste development is discussed.  相似文献   

10.
Starting from the known bitter-masking flavanones eriodictyol and homoeriodictyol from herba santa some structurally related hydroxybenzoic acid amides of benzylamines were synthesized and evaluated as masking agents toward bitterness of caffeine by sensory methods. The closest structural relatives of homoeriodictyol, the hydroxybenzoic acid vanillylamides 5-9, were the most active and were able to reduce the bitterness of a 500 mg L(-1) caffeine solution by about 30% at a concentration of 100 mg L(-1). 2,4-Dihydroxybenzoic acid vanillylamide 7 showed a clear dose-dependent activity as inhibitor of the bitter taste of caffein between 5 and 500 mg L(-1). Additionally, it was possible to reduce the bitterness of quinine and salicine but not of the bitter peptide N-l-leucyl-l-tryptophan. Combinations of homoeriodictyol and amide 7 showed no synergistic or antagonistic changes in activity. The results for model compound 7 suggested that the hitherto unknown masking mechanism is probably the same for flavanones and the new amides. In the future, the new amides may be alternatives for the expensive flavanones to create flavor solutions to mask bitterness of pharmaceuticals or foodstuffs.  相似文献   

11.
通过单项比较筛选出混合酸盐法为最佳方法,采用L8(4×24)正交试验及对其结果进行直观和方差分析,确定出苦杏仁脱苦的影响因素依次为是否去皮、换药液次数、浸泡液温度、浸泡液用量、浸泡液种类;影响苦杏仁去毒的因素依次为浸泡液温度、换药液次数、浸泡液用量、是否去皮、浸泡液种类;但各因素的影响间均无显著差异。筛选出的混合酸盐法减少了换药液次数(即废水量),缩短了脱苦时间,保持了杏仁的色香味。最后对苦杏仁脱苦后的废水成功地进行了处理。  相似文献   

12.
The objective of this study was to characterize the effect of ripening on the taste of a typically bitter Camembert cheese. The first step was to select a typically bitter cheese among several products obtained by different processes supposed to enhance this taste defect. Second, the evolution of cheese taste during ripening was characterized from a sensory point of view. Finally, the relative impact of fat, proteins, and water-soluble molecules on cheese taste was determined by using omission tests performed on a reconstituted cheese. These omission tests showed that cheese taste resulted mainly from the gustatory properties of water-soluble molecules but was modulated by a matrix effect due to fat, proteins, and cheese structure. The evolution of this matrix effect during ripening was discussed for each taste characteristic.  相似文献   

13.
The high-oleic trait of peanut (Arachis hypogaea L.) has been suggested to have a positive impact on the roasted peanut sensory attribute. A series of lines derived by backcrossing the high-oleic trait into several existing cultivars were compared with their parent cultivars at locations in Florida, Georgia, North Carolina, and Texas. Breeders grew their high-oleic lines and parents in three-replicate tests at one or two locations. The Florida high-oleic line F435-2-3-B-2-1-b4-B-B-3-b3-b3-1-B was grown at each location. The test included normal- and high-oleic variants of F435, GK 7, NC 7, NC 9, Sunrunner, Tamrun 96, and Tamspan 90. Sound-mature kernel samples were roasted, ground into paste, and evaluated by a sensory panel using a 14-point flavor intensity unit (fiu) scale. Background genotype had an effect (P < 0.01) on the heritable sensory attributes roasted peanut, sweet, and bitter. Oleate level had a positive effect on roasted peanut intensity, increasing it by 0.3 fiu averaged across all seven background genotypes. However, the magnitude of improvement varied across background genotypes. The high-oleic trait had no effect or increased the intensity of the roasted peanut attribute in each background genotype. The increase was greatest in Tamrun 96 (+0.6 fiu, P < 0.05) and Spanish genotypes Tamspan 90 (+0.4 fiu, P < 0.05) and F435 (+0.4 fiu, P < 0.10). A change of 0.5 fiu or more should be perceptible to consumers. Interaction between oleate level and background genotype was detected for sweet (P < 0.10) and bitter (P < 0.01) attributes. The trait had an increasing effect on the bitter attribute only in the background genotype of Tamspan 90 (+0.7 fiu, P < 0.01). There was a nonsignificant increase in bitterness in the other Spanish background genotype, F435. Changes in bitterness in runner- and Virginia-type backgrounds were close to zero. Incorporation of the high-oleic trait into peanut cultivars is likely to improve the intensity of the roasted peanut attribute, but it may also increase the bitter attribute in Spanish genotypes.  相似文献   

14.
This study was carried out to determine the cholesterol removal rate and resulting changes in flavor, fatty acid and bitter amino acid production in reduced-cholesterol Cheddar cheese, made by cream separation followed by 10% beta-cyclodextrin (beta-CD) treatment. The cholesterol removal from the cheese was 92.1%. The production of short-chain free fatty acids (FFAs) increased the ripening time in control and cream-treated cheeses. The quantity of short-chain FFAs released between treatments during ripening was different, while not much difference was found in the production of neutral volatile compounds in the samples. Reduced-cholesterol cheese produced much higher levels of bitter amino acids than the control. In sensory analysis, the texture score of control Cheddar cheese increased significantly with ripening time; however, that of the cream treatment group decreased dramatically with ripening time. On the basis of our results, we conclude that the cheese made from beta-CD-treated cream had a higher rate of cholesterol removal and ripened rapidly.  相似文献   

15.
In order to find new flavor modifiers, various short chain gingerdione derivatives were synthesized as structural analogues of the known bitter masker homoeriodictyol and evaluated by a sensory panel for masking and sweetness enhancing activities. 1-(4-Hydroxy-3-methoxyphenyl)hexa-3,5-dione ([2]-gingerdione) and the homologue 1-(4-hydroxy-3-methoxyphenyl)hepta-3,5-dione ([3]-gingerdione) at concentration ranges 50-500 mg kg (-1) showed the most promising masking activity of 20-30% against bitterness of a 500 mg kg (-1) aqueous caffeine solution. Additionally, both compounds were able to reduce the bitterness of a 5 mg kg (-1) quinine solution by about 20%; however, the bitter tastes of salicine, the model peptide H-Leu-Trp-OH, and KCl solutions were not reduced. Whereas for bitter masking activity a vanillyl moiety seems to be important, some of the tested isovanillyl isomers showed an interesting sweet enhancing effect without exhibiting a significant intrinsic sweetness. The isomer 1-(3-hydroxy-4-methoxyphenyl)hexa-3,5-dione ([2]-isogingerdione) at 100 mg kg (-1) caused a significant and synergistic increase of 27% of sweet taste of a 5% sucrose solution.  相似文献   

16.
Polyclonal antibodies raised against the plasmin-released 1-28 phosphopeptide from bovine beta-casein [i.e., beta-CN(f1-28)4P] specifically recognized the tryptic beta-casein 1-25 and 2-25 peptides, whatever the degree of phosphorylation, but were unresponsive to the shortened beta-casein 16-22 phosphopeptide. These antibodies were able to recognize the parent bovine beta-casein as well as the homologous water buffalo protein, but they could not detect the homologous counterparts from ovine and caprine milks. Such antibodies were used in competitive enzyme-linked immunosorbent assays to monitor the plasmin-mediated release of the 1-28 phosphopeptide from beta-casein and to evaluate the residual native beta-casein in bovine cheese sampled during ripening. Applications of these polyclonal antibodies are suggested mainly for estimating the age of hard cheeses and, possibly, for tracing the presence of bovine casein in fresh ovine and caprine cheeses.  相似文献   

17.
The aim of this study was to identify the bitter receptor(s) that recognize the bitter taste of the soy isoflavone genistein. Screening of all 25 human bitter receptors revealed genistein as agonist of hTAS2R14 and hTAS2R39. Genistein displayed threshold values of 4 and 8 μM on hTAS2R14 and hTAS2R39 and EC(50) values of 29 and 49 μM, respectively. In addition, the behavior of structurally similar isoflavonoids was investigated. Although the two receptors are not closely related, the results for hTAS2R14 and hTAS2R39 were similar toward most isoflavonoid aglycones. By trend, threshold values were slightly lower on hTAS2R14. Glucosylation of isoflavones seemed to inhibit activation of hTAS2R14, whereas four of five glucosylated isoflavones were agonists of hTAS2R39, namely, glycitin, genistin, acetylgenistin, and malonylgenistin. A total of three hydroxyl substitutions of the A- and B-rings of the isoflavonoids seemed to be more favorable for receptor activation than fewer hydroxyl groups. The concentration of the trihydroxylated genistein in several soy foods exceeds the determined bitter receptor threshold values, whereas those of other soy isoflavones are around or below their respective threshold value. Despite its low concentration, genistein might be one of the main contributors to the bitterness of soy products. Furthermore, the bioactive isoflavonoids equol and coumestrol activated both receptors, indicating that their sensory impact should be considered when used as food ingredients.  相似文献   

18.
Improved analytical techniques for bitter limonoids in citrus and citrus juices can expedite the evaluation of freeze-induced citrus damage for citrus growers and juice quality for citrus juice producers. Microbore normal-phase and reverse-phase chromatography coupled to a mass spectrometer operating in a positive ion atmospheric pressure chemical ionization and electrospray ionization modes were found to be rapid, selective, and sensitive methods for the analysis of the bitter limonoids limonin and nomilin in citrus juices. Analysis was performed on a chloroform extract of citrus juice to which an internal standard was added. The methods are capable of detecting citrus limonoids in citrus juice in the 60-200 picogram range and quantifying citrus juice limonoids in concentrations as low as 120 picograms. An accurate "total limonoid bitterness" in citrus juice, as represented by the combined occurrence of limonin and nomilin, is easily determined by these methods.  相似文献   

19.
A database consisting of 224 di- to tetradecapeptides and five amino acids was compiled to study quantitative structure-activity relationships of bitter peptides. Partial least-squares regression-1 analysis was conducted using the amino acid three z-scores and/or three parameters (total hydrophobicity, residue number, and log mass values) as X-variables and bitterness values (log 1/T where T is the bitterness threshold) as Y-variables. Using the three parameters only, significant models (p < 0.001) were obtained describing the entire data set as well as data subsets, except that comprised only of octa- to tetradecapeptides. For data sets comprising different peptide lengths, the models were improved by including the three z-scores at the N-terminal and C-terminal positions. Correlation coefficients for bitterness prediction of 48 dipeptides and 12 pentapeptides were 0.75 (RMSEP = 0.53) and 0.90 (RMSEP = 0.48), respectively. Bulky hydrophobic amino acids at the C terminus and bulky basic amino acids at the N terminus were highly correlated to bitterness.  相似文献   

20.
On the basis of the recent findings that "biogenic amines" can also be formed during thermal food processing from their parent amino acids in a Strecker-type reaction, the formation of 3-aminopropionamide, the biogenic amine of asparagine, was investigated in model systems as well as in thermally processed Gouda cheese. The results of model studies revealed that, besides acrylamide, 3-aminopropionamide was also formed in amounts of 0.1-0.4 mol % when asparagine was reacted in the presence of either glucose or 2-oxopropionic acid. Results of a second series of model experiments in which [(13)C(4)(15)N(2)]-asparagine ([(13)C(4)(15)N(2)]-Asn) and unlabeled 3-aminopropionamide were reacted together in the presence of glucose revealed a >12-fold higher efficacy of 3-aminopropionamide in acrylamide generation as compared to asparagine. Both [(13)C(3)(15)N(2)]-3-aminopropionamide and [(13)C(3)(15)N(1)]-acrylamide were formed during [(13)C(4)(15)N(2)]-Asn degradation in a ratio of about 1:4, supporting the idea that 3-aminopropionamide is a transient intermediate in acrylamide formation. In this study, 3-aminopropionamide was identified and quantified for the first time in foods, namely, in Gouda cheese. Although the fresh cheese contained low amounts of 3-aminopropionamide, its concentrations were much increased to approximately 1300 mug/kg after thermal processing. In isotope labeling studies, performed by administering to the cheese [(13)C(4)(15)N(2)]-Asn in a ratio of 1:2 as compared to the "natural" concentrations of asparagine, similar ratios of unlabeled/labeled 3-aminopropionamide and unlabeled/labeled acrylamide were determined. Thus, 3-aminopropionamide could be verified as a transient intermediate of acrylamide formation during food processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号