首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flax plants (Linum usitatissimum) of the white (album) flower variety exhibiting typical phytoplasma-like symptoms were found for the first time in Pakistan during 2011. The symptoms included floral virescence, phyllody, little leaf, stunting and stem fasciation. Light microscopy of hand-cut stem sections treated with Dienes’ stain showed blue areas in the phloem region of symptomatic plants. To confirm phytoplasma infection, total DNA was extracted separately from five plants showing virescence/phyllody and from five others showing fasciation, and was amplified by nested PCR using universal 16S rDNA phytoplasma primers P1/P7 followed by R16F2n/R16R2. All samples from plants with virescence/phyllody and fasciation yielded a 1,250 bp PCR product, and identical RFLP profiles using the enzymes AluI and HpaII. Direct sequencing of the 16S rDNA of one representative PCR amplicon (GenBank Accession No. JX567504 for phyllody and Accession No. JX567505 for fasciation) showed highest sequence identity (99%) with 16SrII ‘Candidatus Phytoplasma aurantifolia’ phytoplasmas, and phylogenetic analysis placed the phytoplasma in subgroup 16SrII-D. Disease was successfully transmitted by grafting and by the leafhopper Orosius albicinctus. To our knowledge, flax is a new natural host for 16SrII-D phytoplasmas in Pakistan.  相似文献   

2.
Maize redness (MR), a disease causing midrib, leaf and stalk reddening and abnormal ear development in maize, has been reported from Serbia, Romania and Bulgaria for 50 years. Recent epiphytotics reduced yields by 40%–90% in southern Banat, Serbia. MR was recently associated with the presence of the stolbur phytoplasma, although the epidemiology of the disease remained unknown. Diseased fields in southern Banat were surveyed for potential vectors of the phytoplasma during 2005 and 2006, and high populations of Reptalus panzeri were found. In affected fields, 20% of the R. panzeri individuals and 85% of symptomatic maize plants carried the stolbur phytoplasma. When stolbur phytoplasma-infected R. panzeri were introduced into insect-free mesh cages containing healthy maize plants, midrib and leaf reddening developed on 48% of plants and stolbur phytoplasma was detected in 90% of the symptomatic plants. No symptoms or phytoplasma-positive plants were found in cages without insects. These data indicate that MR symptoms are associated with the stolbur phytoplasma. Reptalus panzeri is both abundant in affected fields and can transmit the stolbur phytoplasma, indicating the insect is likely to be a major vector of MR.  相似文献   

3.
研究了一种人工培养液对各种常见的昆虫(主要是叶蝉)的亲和性和适用性.结果表明,该人工培养液适于本试验中大多数昆虫的人工饲养.用此方法,悬钩子广头叶蝉Macropsis.ftscula Zetterstedt和桤树广头叶蝉Oncopsis alniSchrank分别被再次确认为悬钩子矮化植原体和桤树黄化植原体的传播介体;田旋花麦蜡蝉Hyalesthes obsoletus Signoret再次被确认为葡萄黄化(stolbur)植原体的传播介体.此前,上述三种叶蝉已被传统的人工接种方法鉴定为相应植原体的传播介体.危害桤树的河谷树叶蝉Allygus modestus Scott尽管虫体DNA检测结果经常为阳性,但迄今其人工培养液的检测结果都是阴性,因此,我们认为河谷树叶蝉不是桤树黄化植原体的传播介体.Eppendorf管人工培养液饲养法不仅适用于潜在的植原体介体昆虫的筛选鉴定,而且可用于介体昆虫的生物防治研究.此外,本研究首次发现自然感染了葡萄上的一种被德国人称为"Vergi-lungskrankheit"植原体(AY组)的草地脊冠叶蝉Aprodes makarovi Zachvatkin.  相似文献   

4.
The identity of the presumed phytoplasmal pathogen associated with cranberry false-blossom disease has never been fully clarified. In the present study a molecular-based procedure was employed to determine the identity of the phytoplasma. Tissues of cranberry plants exhibiting cranberry false-blossom symptoms were collected from multiple bogs on each of three randomly selected commercial cranberry farms in New Jersey. Leafhoppers, including the known vector Limotettix vaccinii (Van Duzee) (=Scleroracus vaccinii, Euscellis striatulus) and the sharp-nosed leafhopper Scaphytopius magdalensis (Provancher), a known vector of blueberry stunt disease, were collected from two different farms in New Jersey. Nested PCR assays and RFLP analysis of 16S rRNA gene sequences were employed for the detection and identification of the associated phytoplasmas. All of 20 cranberry plants sampled and five out of 14 batches of leafhoppers tested positive for phytoplasma. Virtual RFLP and sequence analyses revealed that all the associated phytoplasmas were members or variants of a new subgroup, 16SrIII-Y. Phylogenetic analysis of 16S rRNA sequences indicated that cranberry false-blossom phytoplasma strains represented a lineage distinct from other 16SrIII subgroups. This is the first report confirming that a new phytoplasma (designated as a new subgroup 16SrIII-Y) is associated with cranberry false-blossom disease and associated with both leafhopper species in New Jersey.  相似文献   

5.
A new disease of sugar beet called Syndrome des Basses Richesses, which appeared in Burgundy and Franche-Comté, France, in 1991, is of uncertain aetiology. However, evidence for aerial transmission of the disease, symptom similarity with yellow wilt and preliminary results of phytoplasma detection, support the hypothesis of a phytoplasma being associated to the disease. A search for a natural phytoplasma vector, was conducted in Franche-Comté in 1997 and 1998, in an area where sugar beet crops had been affected since 1996. A cixiid, tentatively identified as Pentastiridius beieri, not described in the preceding years and not formerly reported as a phytoplasma vector, was present in sugar beet plots in high populations from June to August in 1997 and 1998. Individuals were captured and used for transmission experiments to periwinkle and sugar beet seedlings. They were further tested for the presence of a phytoplasma in their body, using PCR amplification of 16S rDNA of phytoplasmas. In 1997 and 1998, from 2% to 13.3% of the individuals carried a stolbur phytoplasma and insects which tested positive, appeared to have transmitted, through feeding, a stolbur phytoplasma to periwinkles and to sugar beets. This cixiid, whose vectoring capacity of stolbur phytoplasma to plants, is now clearly demonstrated, is available for experimental inoculations, in order to examine the role of phytoplasmas in the Syndrome des Basses Richesses, through the observation of symptom expression in phytoplasma-inoculated plants.  相似文献   

6.
A phytoplasma-associated disease was identified in Brassica campestris (sarson) plants during a survey conducted in Punjab province of Pakistan in 2014–2016. The symptomatic plants showed characteristic symptoms of phyllody and witches’ broom. Phytoplasma presence was detected by polymerase chain reaction on 16S ribosomal and tuf DNAs, followed by RFLP analysis and sequence comparison of the 16S rRNA and tuf genes. The phytoplasma detected was classified in a new ribosomal subgroup designed 16SrIX-H. The phytoplasma presence in phloem tissues of symptomatic sarson samples was also confirmed through light microscopy and transmission studies to healthy plants through dodder and the leafhopper Orosius albicinctus. This is the first report of identification of 16SrIX-H subgroup phytoplasma associated with sarson and its natural vector in Pakistan.  相似文献   

7.
The incidence of Bois Noir (BN) disease in grapevine plots, the population of the vector Hyalesthes obsoletus, and the distribution of stolbur phytoplasma isolates were studied over a 4 year period in five regions of Spain. BN incidence in affected plots ranged from 1 to 75 %. A study of the H. obsoletus population indicated that individuals of this insect vector were identified in most of the sampled plots with low populations, from 0.25–5 individuals per aspiration. The population peaks of H. obsoletus were reached at different dates between June 6th and July 24th, depending on the sampled zone and the year. The percentage of H. obsoletus individuals carrying the phytoplasma showed an average of 55 %. In Aragon, this percentage rose to 76 %. The strain tuf-b of stolbur phytoplasma was the most prevalent type in grapevine plants and H. obsoletus, except in grapevine plants from La Rioja where the strain tuf-a was detected in most plants. A study of the vmp1 gene revealed the presence of four different isolates in grapevine plants and H. obsoletus.  相似文献   

8.
Phytoplasmas causing a severe decline of three tree species, i.e., Rhus javanica, Hovenia tomentella and Zizyphus jujuba, in Japan were examined for their transmissibility by a leafhopper species Hishimonus sellatus, and for their phylogenetic relatedness. By H. sellatus, Rhus yellows (RhY) phytoplasma was transmissible to white clover and periwinkle seedlings, causing typical symptoms in these plants. Jujube witches' broom (JWB) phytoplasma was also transferred to the host plant, Z. jujuba, by the leafhopper. Because JWB phytoplasma was transmitted to Hovenia tomentella and caused the same symptoms as Hovenia witches' broom (HWB), JWB phytoplasma may be very closely related to HWB phytoplasma. RFLP analysis of the PCR products of 16S rDNA revealed that RhY phytoplasma belongs to the Aster yellows (AY) group, and JWB and HWB phytoplasmas belong to a different group (possibly Elm yellows group). Thus, we found that one species of leafhopper can carry phylogenetically distant phytoplasmas. Received 23 April 2001/ Accepted in revised form 29 October 2001  相似文献   

9.

Plants of corn (Zea mays L.) exhibiting symptoms of stunting and leaf reddening were assayed for the presence of phytoplasma gene sequences through the use of phytoplasma rRNA and ribosomal protein gene and maize bushy stunt (MBS) phytoplasma-specific oligonucleotide primers in polymerase chain reactions (PCR). Polymorphisms in 16S rDNA amplified from diseased plants were those characteristic of phytoplasmas classified in the16S rRNA gene group 16SrI, subgroup IB, of which MBS phytoplasma is a member. Amplification of ribosomal protein (rp) gene sequences in PCR primed by phytoplasma-specific primers confirmed presence of a phytoplasma in the diseased plants. Restriction fragment length polymorphism (RFLP) patterns of the amplified phytoplasma rp gene sequences were similar or identical to those observed for a known strain of MBS phytoplasma. In separate PCR, an MBS-specific oligonucleotide pair primed amplification of a MBS-characteristic DNA from templates derived from the diseased corn. Our data provide the first firm evidence for the presence of maize bushy stunt phytoplasma in corn in Brazil.  相似文献   

10.
In tomato, the stolbur disease caused by ‘Candidatus Phytoplasma solani’ alters developmental processes resulting in malformations of both vegetative and reproductive organs, two stolbur phytoplasma strains PO and C induce mutually distinct symptoms. The aim of the present study was to determine the effect of stolbur phytoplasma-infection on the Salicylic (SA) and Jasmonic (JA) acids hormone signalling pathways and to assess whether pre-activation of these defence pathways could protect tomato against the stolbur disease development. Expression of SA- and JA-dependent marker genes was studied in tomato by qRT-PCR. Results indicated that the SA-mediated defence response was activated by the stolbur phytoplasma strains PO and C in contrast to the JA-dependent defence pathway which was repressed by strain PO but activated by strain C. The two stolbur strains, PO and C, generated different responses, suggesting that the two strains might have distinct virulence factors, in agreement with the fact that they induce distinctive symptoms. In stolbur PO-infected tomato, pre-activation of the JA-dependent defence pathway by methyl jasmonate (MeJA) before infection had no effect on the disease development whereas pre-activation of the SA-dependent defence pathway by treatment with benzothiadiazole (BTH) prior to graft-inoculation of the phytoplasma resulted in a minor delay in phytoplasma multiplication and symptom production. As grafting implicates a high inoculum as compared to insect inoculation, it would be of interest to test BTH treatment in natural conditions.  相似文献   

11.
Mulberry dwarf (MD) phytoplasma was surveyed for its presence in presumably nonvector insects (two species of leafhoppers, thrips, and spider mites) collected from MD-diseased trees. MD phytoplasma was found in all species by nested polymerase chain reaction using specific primers for the 16Sr I-group phytoplasma. By electron microscopy, MD phytoplasma was observed in the salivary glands of the leafhopper Tautoneura mori Matsumura. In addition, the vector ability of T. mori was verified through bioassay; 25% of seedlings inoculated with infective leafhoppers had MD symptoms, suggesting that T. mori may act as a vector of MD phytoplasma in fields in some cases.  相似文献   

12.
The main viticultural production areas in Spain were surveyed in 1994, 1995 and 1996 for the occurrence and incidence of Grapevine Yellows diseases associated to phytoplasmas. Samples from 300 plants showing symptoms of phytoplasma infection were collected from grapevine fields in the Spanish regions of Aragón, Catalonia and Navarra and analysed by PCR with specific primers for a non-ribosomal DNA of stolbur/Bois Noir (BN) and of Flavescence dorée (FD) phytoplasma. Nested PCR with universal primers P1/P7 and fU5/rU3 was also used. In the survey conducted in 1994 and 1995 only BN/stolbur phytoplasma was detected. The incidence of symptomatic plants was low in five plots of Catalonia from 3% to 18% in 1994 and 1995, respectively, and high in two plots of Navarra, from 60% to 80%. In the survey conducted in 1996 the incidence of symptomatic plants in Catalonia increased (6–80%) due to the presence of FD in five plots in the Northeastern Catalonia. An epidemiological study was carried out in two BN-affected plots of two regions from 1994 to 1997, with the evaluation of potential vectors and of host plants. The stolbur phytoplasma was found in individuals from different insect species belonging to the families Cicadellidae and Delphacidae. Some wild plants naturally infected with stolbur phytoplasma around the infected grapevines were: Convolvulus arvensis, Lavandula officinalis, Polygonum convolvulus, Solanum nigrum, and Thymus officinalis. The incidence of the disease in one BN-infected grapevine plot increased from 3.4% in 1994 to 18.40% in 1997.  相似文献   

13.
California privet (Ligustrum ovalifolium Hassk.) plants exhibiting leaf yellowing, witches’ broom, dieback and decline symptoms were observed for two years (2010–2011) in three gardens at Adana region (Turkey). DNA isolated from symptomatic and healthy plants was used to amplify 16S rDNA fragments by direct and nested-PCR. Phytoplasmas were detected in 21 symptomatic plants, out of 30 samples collected, whilst no PCR amplifications were obtained from asymptomatic plants. BLAST analysis of the 16S rDNA showed that the phytoplasma found in L. ovalifolium from Turkey, denoted as Turkish Ligustrum witches’ broom phytoplasma (TuLiWB), most closely resembled members of group 16SrII (peanut witches’ broom group) and shared up to 92 % sequence identity. Based on in silico 16S rDNA RFLP analysis and automated calculation of the pattern similarity coefficient, TuLiWB showed molecular characteristics different from all previously described phytoplasma species to represent a new taxon. Similar indication also emerged from the phylogenetic tree which allocated it in a novel discrete subclade within the phytoplasma clade. This is the first report on the presence of a phytoplasma affecting L. ovalifolium and whether this novel phytoplasma is the same agent reported as a mycoplasma-like organism (MLO) and associated with witches’ broom disease of Ligustrum in Korea (1989) is yet to be determined.  相似文献   

14.
Between 1994 and 1998 a field study was conducted to identify plant hosts of the European stone fruit yellows (ESFY) phytoplasma in two apricot growing regions in southern and southwestern France where the incidence of apricot chlorotic leaf roll was high. A total of 431 samples from 51 different plant species were tested for the presence of phytoplasmas by PCR using universal and ESFY-specific primers. ESFY phytoplasma was detected in six different wild growing Prunus species exhibiting typical ESFY symptoms as well as in symptomless dog rose bushes (Rosa canina), ash trees (Fraxinus excelsior) and a declining hackberry (Celtis australis). The possible role of these plant species in the spread of ESFY phytoplasma is discussed. PCR-RFLP analysis of ribosomal DNA amplified with the universal primers was carried out to characterize the other phytoplasmas found. Thus, elm yellows phytoplasma, alder yellows phytoplasma and rubus stunt phytoplasma were detected in declining European field elm trees (Ulmus carpinifolia Gled), in declining European alder trees (Alnus glutinosa) and in proliferating Rubus spp. respectively. The presence of rubus stunt phytoplasma in great mallow (Malva sylvestris) and dog rose was demonstrated for the first time. Furthermore, the stolbur phytoplasma was detected in proliferating field bindweed (Convolvulus arvensis) and a previously undescribed phytoplasma type was detected in red dogwood (Cornus sanguinea). According to the 16S rDNA-RFLP pattern this new phytoplasma belongs to the stolbur phytoplasmas group.  相似文献   

15.
通过透射电子显微镜,在从宁夏回族自治区固原市彭阳县红河镇采集的表现叶片上卷、红叶、气生薯症状的马铃薯样品叶脉韧皮部筛管细胞内观察到大量直径为500~700 nm的球形植原体粒子。以提取的感病和健康马铃薯叶片总DNA为模板,应用植原体16S rRNA基因和rp基因通用引物进行PCR扩增,从感病样品中扩增得到了长度均约为1.2 kb的片段。对获得基因核酸一致性比较分析表明,马铃薯僵顶植原体宁夏株系16S rRNA基因与‘Candidatus Phytoplasma fragariae’槭树株系(MK501642)16S rRNA基因核酸一致性最高,为99.7%,rp基因与‘Ca.P.fragariae’云南马铃薯YN-2G株系(KJ144889)rp基因核酸一致性最高,为100%;基于16S rRNA基因和rp基因构建系统进化树发现,马铃薯僵顶植原体宁夏株系与16SrⅫ-E亚组成员聚在一起。基于透射电镜观察和基因序列比较分析,证明宁夏发生的马铃薯僵顶病与植原体侵染相关,该植原体在分类地位上属于植原体16SrⅫ-E亚组。  相似文献   

16.
ABSTRACT The syndrome "basses richesses" of sugar beet (SBR) was first observed in 1991 in Burgundy, France. A cixiid planthopper, Pentastiridius beieri, has been proved to be involved in the transmission to sugar beet of a stolbur phytoplasma, which could be detected in some affected plants. In 2000, periwinkle and sugar beet exposed to field-collected cixiids developed symptoms similar to SBR on sugar beet. Use of 4'-6-diamidino-2-phenylindole (DAPI) staining and transmission electron microscopy confirmed the presence of phytoplasma in some of the plants, which were also positive for this pathogen in a polymerase chain reaction (PCR) analysis. A phloem-restricted gram-negative bacteria was seen in all other plants with symptoms but PCR-negative for phytoplasma. Three primer pairs reported as diagnostic for phloem-limited bacteria were tested but only primers specific for 'Candidatus Phlomobacter fragariae' gave a positive signal, which related to the presence of DAPI-stained bacteria-like objects in diseased plants. Although phytoplasma and bacterium-like organisms were associated with the same macroscopic symptoms on sugar beet, histochemical analysis of phloem cells showed that phytoplasma were associated with cell necrosis and cell wall lignification, while bacteria were associated with these same abnormalities as well as deposit of phenolic compounds in the lumen of phloem cells.  相似文献   

17.
Bois noir (BN) is an economically important grapevine yellows disease induced by the stolbur phytoplasma and principally vectored by the cixiid Hyalesthes obsoletus. This study addresses the involvement of other planthoppers and/or leafhoppers in BN epidemics in the South Banat district of northeastern Serbia, by performing transmission experiments and multilocus typing of stolbur phytoplasma isolates to determine the vector‐related characteristics of the disease. Transmission trials were conducted with adults of two cixiid congeners, Reptalus panzeri and R. quinquecostatus, which were found to harbour stolbur phytoplasma in the vineyards under study. A molecular characterization of stolbur phytoplasma isolates was performed by sequence analysis and/or RFLP typing of the two housekeeping genes tuf and secY and the two membrane proteins stamp and vmp1. Transmission trials with naturally infected R. panzeri adults from either the BN‐infected vineyards or maize redness (MR)‐affected maize fields revealed a high stolbur phytoplasma transmission efficiency to grapevines. In contrast, experiments conducted with stolbur‐positive R. quinquecostatus originating from BN‐infected vineyards, provided no evidence for a vector role of this species. Seven stolbur phytoplasma genotypes, all of which were tuf‐b types, were detected among the grapevine‐ and insect‐associated field samples according to the tuf/secY/vmp1/stamp typing. STOLg was the genotype most frequently found in naturally infected grapevine (42%), as well as R. panzeri originating from the vineyards (85%) and maize fields (98%). The same genotype was found in all experimental plants inoculated by R. panzeri, confirming its vectorship of the disease.  相似文献   

18.
Since 2000, a disease has occurred with high levels of incidence in crops of cauliflower grown in the green belt area of the city of S?o Paulo, Brazil. The symptoms are characterized by stunting, malformation of the inflorescence, reddening leaves, and vascular necrosis, suggesting infection by phytoplasma. These symptoms are similar to those described in Brassicas species affected by the aster yellows (16SrI) group of phytoplasma. In the present study, a phytoplasma from the 16SrIII-J subgroup was identified in cauliflower plants based on actual and virtual RFLP patterns and phylogenetic analysis, and was distinct from the phytoplasmas frequently associated with aster yellows disease in Brassicas. Pathogenicity assays using dodder confirmed that the identified phytoplasma is the agent of the observed disease, which is here designated as cauliflower stunt. Consequently, this species of Brassica may be recognized as a new host for subgroup 16SrIII-J, which has frequently been found in diverse species cultivated in Brazil. The spatial pattern of diseased plants was determined in ten cauliflower plots of 300 to 728 plants each. All plants in these plots were evaluated by visual assessments, assigned as diseased or healthy and mapped. The dispersion index and Taylor’s power law were determined for various quadrat sizes and the results showed that the diseased plants were distributed in a random pattern in fields with a low disease incidence and in an aggregated pattern in fields with a disease incidence greater than 25?%. According to an isopath area analysis, diseased plants were predominantly present in the field borders, suggesting that the pathogen is possibly introduced by vector(s) from the external area.  相似文献   

19.
A stolbur‐type phytoplasma is the putative pathogen of grapevine yellows disease that causes economic damage to vineyards in most growing areas around the world. The pathogen is known to be transmitted to vines by two planthoppers, Hyalesthes obsoletus and Reptalus panzer; the latter is found in Europe but has not yet been observed in Israel. The establishment of a vector–pathogen–plant relationship requires that the pathogen and the vector meet on a shared host plant. This does not happen in the ecosystem examined here, where two different principal host plants for the obligate pathogen and its vector exist: the pathogen is established on vines, while its vector, H. obsoletus, develops on Vitex agnus‐castus. The present study verified that: (i) the vector cannot complete its life cycle on vines; (ii) V. agnus‐castus does not grow in the immediate vicinity of vines, and does not harbour the pathogen; and (iii) the pathogen is not vertically transmitted from mother to offspring. Moreover, in a thorough search of plants in vine growing areas, no other plants were found that host both the vector and the pathogen. However, it was found that the planthopper can acquire the phytoplasma from infected vines. Nonetheless, this does not prove the ability of the planthopper to further transmit the pathogen to vines and does not explain the presence of the vector on the non‐preferred vines. Thus, the enigma of the pathogen–vector–host triangle in this system remains unresolved.  相似文献   

20.
Mamejvo (Enicostemma axillare Raynal) is a perennial herb with diversified health benefits. It was found to be affected by a witches?? broom disease under the field conditions at Anand, Gujarat, India. Affected plants were 53.33% reduced in height due to shortened internodes, leading to typical witches?? broom symptoms. Flower size was reduced significantly in the affected plants compared with the healthy ones and their petal color gradually turned green (virescence). Affected plants produced 2.5 times more dry herbage than the normal plants but with less active ingredient (swertiamarin). Symptomatic plants died early while root suckers from such plants failed to establish after transplanting. DAPI stained transverse sections of affected shoot tips showed the presence of discrete greenish fluorescence in the phloem cells under UV light. Amplification of 1.2?kb phytoplasma specific rDNA fragment from diseased tissue confirmed the presence of the pathogen. Further characterization of the pathogen through virtual rDNA?CRFLP pattern and rDNA sequence based phylogeny suggested that the pathogen, Enicostemma witches?? broom phytoplasma, belonged to 16SrII?CC group of ??Ca Phytoplasma aurantifolia??.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号