首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究建立了固相萃取(SPE)-高效液相色谱仪(HPLC)-荧光检测器(FLD)测定水体中4种雌激素(雌三醇、17β-雌二醇、炔雌醇和双酚A)的分析方法。水样过C18固相萃取柱净化浓缩,用5.00mL超纯水淋洗,15.00mL甲醇洗脱,洗脱液经氮气吹干后用50%甲醇溶解经HPLC-FLD测定;4种雌激素以甲醇/乙腈/水为流动相(体积比为25:30:45),经InertsilODS-SP-C1(8150mm×4.6mm,5μm)反相色谱柱分离,激发和发射波长分别为280nm和310nm,流速1.0mL.min-1,柱温40℃,进样量20μL,以保留时间定性、外标法定量。该方法的线性范围为5.00~1000.00μg.L-1,且相关性良好(R〉0.9999),4种雌激素的仪器检出限为0.107~0.271μg.L-1,方法检出限为0.214~0.540ng.L-1。在自来水中添加不同浓度的雌激素混合标准溶液,测得溶液中4种物质的加标回收率除炔雌醇为55.71%~66.78%外,其余雌激素的加标回收率均大于85%,相对标准偏差RSD(n=5)均小于4%。该方法灵敏度高、检出限低、重复性和精密性良好,能有效去除基质干扰,可用于水体中痕量雌激素的分析测定。  相似文献   

2.
The detection of genetically modified organisms (GMOs) in food and feed is an important issue for all the subjects involved in raw material control, food industry, and distribution. Because the number of GMOs authorized in the EU increased during the past few years, there is a need for methods that allow a rapid screening of products. In this paper, we propose a method for the simultaneous detection of four transgenic maize (MON810, Bt11, Bt 176, and GA21) and one transgenic soybean (Roundup Ready), which allows routine control analyses to be sped up. DNA was extracted either from maize and soybean seeds and leaves or reference materials, and the recombinant DNA target sequences were detected with 7 primer pairs, accurately designed to be highly specific for each investigated transgene. Cross and negative controls were performed to ensure the specificity of each primer pair. The method was validated on an interlaboratory ring test and good analytical parameters were obtained (LOD = 0.25%, Repeatability, (r) = 1; Reproducibility, (R) = 0.9). The method was then applied to a model biscuit made of transgenic materials baked for the purpose and to real samples such as feed and foodstuffs. On account of the high recognition specificity and the good detection limits, this multiplex PCR represents a fast and reliable screening method directly applicable in all the laboratories involved in raw material and food control.  相似文献   

3.
Qualitative and quantitative Polymerase Chain Reaction (PCR) systems aimed at the specific detection and quantification of common wheat DNA are described. Many countries have issued regulations to label foods that include genetically modified organisms (GMOs). PCR technology is widely recognized as a reliable and useful technique for the qualitative and quantitative detection of GMOs. Detection methods are needed to amplify a target GM gene, and the amplified results should be compared with those of the corresponding taxon-specific reference gene to obtain reliable results. This paper describes the development of a specific DNA sequence in the waxy-D1 gene for common wheat (Triticum aestivum L.) and the design of a specific primer pair and TaqMan probe on the waxy-D1 gene for PCR analysis. The primers amplified a product (Wx012) of 102 bp. It is indicated that the Wx012 DNA sequence is specific to common wheat, showing homogeneity in qualitative PCR results and very similar quantification accuracy along 19 distantly related common wheat varieties. In Southern blot and real-time PCR analyses, this sequence showed either a single or a low number of copy genes. In addition, by qualitative and quantitative PCR using wx012 primers and a wx012-T probe, the limits of detection of the common wheat genome were found to be about 15 copies, and the reproducibility was reliable. In consequence, the PCR system using wx012 primers and wx012-T probe is considered to be suitable for use as a common wheat-specific taxon-specific reference gene in DNA analyses, including GMO tests.  相似文献   

4.
Two PCR methods were developed for specific detection of the trnS-trnG intergenic spacer region of Prunus persica (peach) and the internal transcribed spacer region of Malus domestica (apple). The peach PCR amplified a target-size product from the DNA of 6 P. persica cultivars including 2 nectarine and 1 flat peach cultivar, but not from those of 36 nontarget species including 6 Prunus and 5 other Rosaceae species. The apple PCR amplified a target-size product from the DNA of 5 M. domestica cultivars, but not from those of 41 nontarget species including 7 Maloideae and 9 other Rosaceae species. Both methods detected the target DNA from strawberry jam and cookies spiked with peach and apple at a level equivalent to about 10 μg of total soluble proteins of peach or apple per gram of incurred food. The specificity and sensitivity were considered to be sufficient for the detection of trace amounts of peach or apple contamination in processed foods.  相似文献   

5.
Genetically modified (GM) alfalfa (Medicago sativa) was marketed for the first time in 2005. For countries with established thresholds for GM plants, methods to detect and quantify their adventitious presence are required. We selected acetyl CoA carboxylase as a reference gene for the detection and quantification of GM alfalfa. Two qualitative polymerase chain reaction (PCR) assays (Acc1 and Acc2) were designed to detect alfalfa. Both were specific to alfalfa, amplifying DNA from 12 separate cultivars and showing negative results for PCR of 15 nonalfalfa plants. The limits of detection for Acc1 and Acc2 were 0.2 and 0.01%, respectively. A quantitative real-time PCR assay was also designed, having high linearity (r > 0.99) over alfalfa standard concentrations ranging from 100 to 2.0 x 10(5) pg of alfalfa DNA per PCR. The real-time PCR assay was effective in quantifying alfalfa DNA from forage- and concentrate-based mixed diets containing different amounts of alfalfa meal.  相似文献   

6.
We recently developed a multiplex polymerase chain reaction (PCR) system for the simultaneous detection of four transgenic maize (MON810, Bt176, Bt11, and GA21), one transgenic soybean (Roundup Ready), and two control genes (lectin and zein). Because PCR can lead to ambiguous interpretations due to low specificity, we have developed the ligation detection reaction (LDR) combined with a universal array as a molecular tool to confirm results of PCR analysis. Here, we describe the PCR-LDR-universal array procedure and demonstrate its specificity in revealing the presence of transgenic DNA in experimental samples, raw materials, and commercial foodstuffs.  相似文献   

7.
Three methods of DNA extraction from feed products and four detection methods for the 5'-junction fragment of genetically modified (GM) Roundup Ready soybean (RRS) were compared and evaluated. The DNA extraction methods, including cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), and guanidine hydrochloride (Kit), were assessed for their yields and purity of DNA, extraction time, and reagent cost. The DNA yields of CTAB, SDS, and Kit were 52-694, 164-1750 and 23-105 ng/mg sample, and their extraction time was 2.5-3, 2-2.5, and 1.5-2 h with reagent cost about US dollar 0.24, 0.13, and 1.9 per extraction, respectively. The SDS method was generally well suited to all kinds of feed matrices tested. The limits of detection for the four amplification protocols, including loop-mediated isothermal amplification (LAMP), hyperbranched rolling circle amplification (HRCA), conventional polymerase chain reaction (PCR), and real-time PCR, were 48.5, 4.85, 485, and 9 copies of the pTLH10 plasmid, respectively. The ranked results of the four detection methods were based on multiattribute utility theory as follows (from best to worse): HRCA, LAMP, PCR, and real-time PCR. This comparative evaluation was specifically useful for selection of a highly efficient DNA extraction or amplification method for detecting different GM ingredients.  相似文献   

8.
高效液相色谱法测定栀子苷的含量   总被引:1,自引:0,他引:1  
胡晓丹  张德权  田许  牛渊 《核农学报》2008,22(5):669-673
建立了一种快速测定栀子及栀子黄中栀子苷含量的高效液相色谱分析方法。采用超声波法提取栀子苷,使用Shimpack HRC-ODS色谱柱(4.6mm×250mm,5μm),以甲醇-水(30:70,V/V)为流动相,采用二极管阵列检测器(检测波长240nm)对栀子苷进行测定。结果表明,采用超声波法提取1.0h可将栀子苷提取完全,在2~24μg/ml范围内栀子苷含量与峰面积呈良好的线性关系,相关系数r=0.9986,精密度和稳定性试验相对标准偏差均小于5%,加样回收率达到98.13%。该测定方法简单、准确、精密度高、重现性好。  相似文献   

9.
为建立一种能同时快速检测弓形虫、环形泰勒虫、新孢子虫3种甘南牦牛血液原虫的多重PCR检测方法,掌握3种血液原虫在甘南牦牛中的流行情况,本研究以弓形虫hypothetical protein基因、环形泰勒虫Tams1基因、新孢子虫Nc-p43基因为靶标设计3对特异性引物,通过优化多重PCR反应条件,建立检测3种血液原虫的多重PCR方法,并检测甘南地区629份牦牛血清样品,进行流行病学分析。结果显示,建立的牦牛3种血液原虫多重PCR检测方法,具有特异性强、敏感性高和重复性好的优点,检测弓形虫、环形泰勒虫和新孢子虫DNA的最低浓度分别为0.01、0.02、0.01 ng·μL-1;流行病学调查结果显示,弓形虫、环形泰勒虫和新孢子虫的阳性率分别为4.29%、3.66%、5.88%,并存在混合感染现象,整体混合感染率为13.68%;季节性流行病学分析显示,3种原虫单一感染率均为冬季最高、春季最低(P>0.05),整体感染率为冬季最高、夏季最低(P>0.05)。按不同年龄分析,0~3岁牦牛3种原虫的整体感染率为27.83%,大于3岁的整体感染率27.46%(P>0.05)。分析风...  相似文献   

10.
We report the development of a duplex real-time Polymerase Chain Reaction (PCR) for the simultaneous detection and quantification of wheat- and barley-derived DNA. We used a single primer pair to amplify the single-copy gene PKABA1 from wheat and barley, using minor-groove-binding probes to distinguish between the two cereals. The assay was fully specific, and different wheat and barley cultivars exhibited similar Ct values, indicating stability across cultivars with respect to allelic and copy number composition. The limits of detection were 5 and 10 PCR-forming units for wheat and barley, respectively, making the duplex assay as sensitive as other singleplex reference gene systems published. We were able to detect both wheat and barley simultaneously in real food samples, and the duplex assay is considered to be suitable as an endogenous reference gene system for the detection and quantification of wheat and barley in genetically modified organisms (GMO) and other food and feed analyses.  相似文献   

11.
Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate.  相似文献   

12.
根据GenBank中致病性嗜水气单胞菌特异性的气溶素基因序列,设计1对引物,利用普通PCR技术扩增获得hlyA基因片段,并克隆到pMD-18T载体上作为阳性标准品。通过对SYBR GreenⅠ荧光定量PCR反应条件的优化,建立了快速检测致病性嗜水气单胞菌的SYBR GreenⅠ荧光定量诊断方法,以此为基础研制出试剂盒。试剂盒扩增产物的熔解曲线分析只出现1个单特异峰,无引物二聚体,对非致病性嗜水气单胞菌、弗氏柠檬酸杆菌、迟缓爱德华菌、柱状黄杆菌均无阳性信号扩增,重复性好,灵敏度可达1.0x101拷贝/uL。结果表明研制的致病性嗜水气单胞菌SYBR GreenⅠ实时荧光定量PCR试剂盒具有特异、灵敏、快速、重复性好等特点,适合于大鲵临床样品的检测。  相似文献   

13.
The genetically modified (GM) food/feed quantification depends on the reliable detection systems of endogenous reference genes. Currently, four endogenous reference genes including sucrose phosphate synthase (SPS), GOS9, phospholipase D (PLD), and ppi phosphofructokinase (ppi-PPF) of rice have been used in GM rice detection. To compare the applicability of these four rice reference genes in quantitative PCR systems, we analyzed the target nucleotide sequence variation in 58 conventional rice varieties from various geographic and phylogenic origins, also their quantification performances were evaluated using quantitative real-time PCR and GeNorm analysis via a series of statistical calculation to get a "M value" which is negative correlation with the stability of genes. The sequencing analysis results showed that the reported GOS9 and PLD taqman probe regions had detectable single nucleotide polymorphisms (SNPs) among the tested rice cultivars, while no SNPs were observed for SPS and ppi-PPF amplicons. Also, poor quantitative performance was detectable in these cultivars with SNPs using GOS9 and PLD quantitative PCR systems. Even though the PCR efficiency of ppi-PPF system was slightly lower, the SPS and ppi-PPF quantitative PCR systems were shown to be applicable for rice endogenous reference assay with less variation among the C(t) values, good reproducibility in quantitative assays, and the low M values by the comprehensive quantitative PCR comparison and GeNorm analysis.  相似文献   

14.
Multiplex PCR procedures were developed for simultaneously detecting multiple target sequences in genetically modified (GM) soybean (Roundup Ready), maize (event 176, Bt11, Mon810, T14/25), and canola (GT73, HCN92/28, MS8/RF3, Oxy 235). Internal control targets (invertase gene in corn, lectin and beta-actin genes in soybean, and cruciferin gene in canola) were included as appropriate to assess the efficiency of all reactions, thereby eliminating any false negatives. Primer combinations that allowed the identification of specific lines were used. In one system of identification, simultaneous amplification profiling (SAP), rather than target specific detection, was used for the identification of four GM maize lines. SAP is simple and has the potential to identify both approved and nonapproved GM lines. The template concentration was identified as a critical factor affecting efficient multiplex PCRs. In canola, 75 ng of DNA template was more effective than 50 ng of DNA for the simultaneous amplification of all targets in a reaction volume of 25 microL. Reliable identification of GM canola was achieved at a DNA concentration of 3 ng/microL, and at 0.1% for GM soybean, indicating high levels of sensitivity. Nonspecific amplification was utilized in this study as a tool for specific and reliable identification of one line of GM maize. The primer cry1A 4-3' (antisense primer) recognizes two sites on the DNA template extracted from GM transgenic maize containing event 176 (European corn borer resistant), resulting in the amplification of products of 152 bp (expected) and 485 bp (unexpected). The latter fragment was sequenced and confirmed to be Cry1A specific. The systems described herein represent simple, accurate, and sensitive GMO detection methods in which only one reaction is necessary to detect multiple GM target sequences that can be reliably used for the identification of specific lines of GMOs.  相似文献   

15.
Quality assurance is a major issue in the food industry. The authenticity of food ingredients and their traceability are required by consumers and authorities. Plant species such as barley (Hordeum vulgare), rice (Oryza sativa), sunflower (Helianthus annuus), and wheat (Triticum aestivum) are very common among the ingredients of many processed food products; therefore the development of specific assays for their specific detection and quantification are needed. Furthermore, the production and trade of genetically modified lines from an increasing number of plant species brings about the need for control within research, environmental risk assessment, labeling/legal, and consumers' information purposes. We report here the development of four independent real-time polymerase chain reaction (PCR) assays suitable for identification and quantification of four plant species (barley, rice, sunflower, and wheat). These assays target gamma-hordein, gos9, helianthinin, and acetyl-CoA carboxylase sequences, respectively, and were able to specifically detect and quantify DNA from the target plant species. In addition, the simultaneous amplification of RALyase allowed bread from durum wheat to be distinguished. Limits of detection were 1 genome copy for barley, sunflower, and wheat and 3.3 copies for rice real-time PCR systems, whereas limits of quantification were 10 genome copies for barley, sunflower, or wheat and approximately 100 haploid genomes for rice real-time PCR systems. Real-time PCR cycling conditions of the four assays were stated as standard to facilitate their use in routine laboratory analyses. The assays were finally adapted to conventional PCR for detection purposes, with the exception of the wheat assay, which detects rye simultaneously with similar sensitivity in an agarose gel.  相似文献   

16.
Shrimp and crab are well-known as allergenic ingredients. According to Japanese food allergy labeling regulations, shrimp species (including prawns, crayfishes, and lobsters) and crab species must be differentially declared when ≥10 ppm (total protein) of an allergenic ingredient is present. However, the commercial ELISA tests for the detection of crustacean proteins cannot differentiate between shrimp and crab. Therefore, two methods were developed to discriminate shrimp and crab: a shrimp-PCR method with postamplification digestion and a crab-PCR method that specifically amplifies a fragment of the 16S rRNA gene. The sensitivity and specificity of both PCR methods were verified by experiments using DNA extracted from 15 shrimp species, 13 crab species, krill, mysid, mantis shrimp, other food samples (cephalopod, shellfish, and fish), incurred foods, and commercial food products. Both PCR methods could detect 5 pg of DNA extracted from target species and 50 ng of genomic DNA extracted from incurred foods containing 10 ppm (μg/g) total protein of shrimp or crab. The two PCR methods were considered to be specific enough to separately detect species belonging to shrimp and crab. Although false-positive and false-negative results were obtained from some nontarget crustacean species, the proposed PCR methods, when used in conjunction with ELISA tests, would be a useful tool for confirmation of the validity of food allergy labeling and management of processed food safety for allergic patients.  相似文献   

17.
Two analytical methodologies for the simultaneous analysis of eight sulfonamide antibiotics in animal feeds were developed. Analytes were extracted in a simple and rapid procedure by manual shaking with an ethyl acetate/ultrapure water mixture (99:1, v/v) without further sample cleanup. Mean recoveries ranging from 72.7% to 99.4% with relative standard deviations below 9% were achieved from spiked animal feed samples. Determination was carried out by high-performance liquid chromatography using fluorometric detection with precolumn derivatization. The separation of the derivatized compounds was performed using two different chromatographic columns: a conventional C(18) column and a recently available core-shell particle Kinetex C(18) column. Both methods were validated in-house in six different feed matrices, and the two approaches were compared. The experiments showed that the method using the Kinetex column was superior with regard to speed of analysis and precision, both under repeatability and intermediate reproducibility conditions. The limits of detection and quantification were also greatly improved, below 0.10 and 0.34 μg/g, respectively. Finally, this novel approach was successfully applied to the analysis of real feed samples.  相似文献   

18.
As the genetically modified organisms (GMOs) labeling policies are issued in many countries, qualitative and quantitative polymerase chain reaction (PCR) techniques are increasingly used for the detection of genetically modified (GM) crops in foods. Qualitative PCR and TaqMan real-time quantitative PCR methods to detect and identify three varieties of insect resistant cotton, i.e., Mon531 cotton (Monsanto Co.) and GK19 and SGK321 cottons (Chinese Academy of Agricultural Sciences), which were approved for commercialization in China, were developed in this paper. Primer pairs specific to inserted DNAs, such as Cowpea trypsin inhibitor (CpTI) gene of SGK321 cotton and the specific junction DNA sequences containing partial Cry1A(c) gene and NOS terminator of Mon531, GK19, and SGK321 cotton varieties were designed to conduct the identified PCR assays. In conventional specific identified PCR assays, the limit of detection (LOD) was 0.05% for Mon531, GK19, or SGK321 in 100 ng of cotton genomic DNA for one reaction. Also, the multiplex PCR method for screening the three GM cottons was also established, which could save time and cost in practical detection. Furthermore, a real-time quantitative PCR assay based on TaqMan chemistry for detection of insect resistant gene, Cry1A(c), was developed. This assay also featured the use of a standard plasmid as a reference molecule, which contained both a specific region of the transgene Cry1A(c) and an endogenous stearoyl-acyl carrier protein desaturase (Sad1) gene of the cotton. In quantitative PCR assay, the quantification range was from 0.01 to 100% in 100 ng of the genome DNA template, and in the detection of 1.0, 3.0, and 5.0% levels of three insect resistant cotton lines, respectively, all of the relative standard deviations (RSDs) were less than 8.2% except for the GM cotton samples with 1.0% Mon531 or GK19, which meant that our real-time PCR assays involving the use of reference molecule were reliable and practical for GM insect resistant cottons quantification. All of these results indicated that our established conventional and TaqMan real-time PCR assays were applicable to detect the three insect resistant cottons qualitatively and quantitatively.  相似文献   

19.
摘要:本研究建立了一种二温式多重PCR技术,用于对虾白斑综合症病毒(white spot syndrome virus ,WSSV)和桃拉综合症病毒(taura syndrome virus ,TSV)的复合检测。根据对虾白斑综合症病毒和桃拉综合症病毒的基因序列分别设计了两对特异引物F1 、R1和 F1、 R2,利用该PCR能特异扩增出WSSV和TSV基因片段,结果表明:二温式多重PCR技术具有较高的特异性和敏感性,最低能检测到WSSV核酸模板10pg,TSV核酸模板100pg,且对其它一些对虾病原呈现阴性。  相似文献   

20.
Toward the development of reliable qualitative and quantitative Polymerase Chain Reaction (PCR) detection methods of transgenic tomatoes, one tomato (Lycopersicon esculentum) species specific gene, LAT52, was selected and validated as suitable for using as an endogenous reference gene in transgenic tomato PCR detection. Both qualitative and quantitative PCR methods were assayed with 16 different tomato varieties, and identical amplified products or fluorescent signals were obtained with all of them. No amplified products and fluorescent signals were observed when DNA samples from 20 different plants such as soybean, maize, rapeseed, rice, and Arabidopsis thaliana were used as templates. These results demonstrated that the amplified LAT52 DNA sequence was specific for tomato. Furthermore, results of Southern blot showed that the LAT52 gene was a single-copy gene in the different tested tomato cultivars. In qualitative and quantitative PCR analysis, the detection sensitivities were 0.05 and 0.005 ng of tomato genomic DNA, respectively. In addition, two real-time assays employing this gene as an endogenous reference gene were established, one for the quantification of processed food samples derived from nontransgenic tomatoes that contained degraded target DNA and the other for the quantification of the junction region of CaMV35s promoter and the anti-sense ethylene-forming enzyme (EFE) gene in transgenic tomato Huafan No. 1 samples. All of these results indicated that the LAT52 gene could be successfully used as a tomato endogenous reference gene in practical qualitative and quantitative detection of transgenic tomatoes, even for some processed foods derived from transgenic and nontransgenic tomatoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号