首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fifteen mature cows and 12 two-year-old heifers were superovulated with purified follicle stimulating hormone (FSH-P) to study the relationship between FSH-P dose level and response (measured as number of palpated corpora lutea (CL) and plasma progesterone concentration). The cattle came from a high prolificacy breeding herd for which cows were originally purchased after producing at least two sets of twins; the heifers were bred in the herd. At dose levels of 8, 16, 24 and 28 mg FSH-P in cows, averages respectively of 2.3, 3.5, 6.9 and 11.1 palpable CLs were found. There was an average difference in response of two CLs between heifers and cows (higher in heifers, though not significantly so). The relationship found between progesterone concentration and CL number could be a useful indicator of superovulation success in future experiments. The regression for cows was 1.25±0.11 ng/ml progesterone per unit increase in CL number, with a correlation of 0.92 between the two variables over the CL range 1 to 25. The corresponding value for heifers was 2.74±0.24 ng/ml per CL (correlation 0.94), or 2.50±0.40 ng/ml per CL (correlation 0.83) if one record (29 CL, 84 ng progesterone/ml) was excluded.  相似文献   

2.
Fifteen mature cows and 12 two-year-old heifers were superovulated with purified follicle stimulating hormone (FSH-P) to study the relationship between FSH-P dose level and response (measured as number of palpated corpora lutea (CL) and plasma progesterone concentration). The cattle came from a high prolificacy breeding herd for which cows were originally purchased after producing at least two sets of twins; the heifers were bred in the herd. At dose levels of 8,16, 24 and 28 mg FSH-P in cows, averages respectively of 2.3, 3.5, 6.9 and 11.1 palpable CLs were found. There was an average difference in response of two CLs between heifers and cows (higher in heifers, though not significantly so). The relationship found between progesterone concentration and CL number could be a useful indicator of superovulation success in future experiments. The regression for cows was 1.25 +/- 0.11 ng/ml progesterone per unit increase in CL number, with a correlation of 0.92 between the two variables over the CL range 1 to 25. The corresponding value for heifers was 2.74 +/- 0.24 ng/ml per CL (correlation 0.94), or 2.50 +/- 0.40 ng/ml per CL (correlation 0.83) if one record (29 CL, 84 ng progesterone/ml) was excluded.  相似文献   

3.
Haematological metabolic profiles in heifers could contribute to the development of proxies for oestrous detection and provide clues to further characterize biological changes during oestrus. One hundred and seven beef heifers were observed for oestrous behaviour twice daily for 124 days. Feed intake and productive performance (body weight and composition) traits were measured, and feed efficiency was determined using residual feed intake (kg DM/day). Blood plasma samples were collected when signs of oestrus were observed and every 30 ± 2 days. Heifers were considered in oestrus (n = 71) when plasma progesterone concentrations were <0.6 ng/ml. Least square means of blood metabolic parameters were compared between oestrous and non‐oestrous states and within oestrous groups according to performance traits and age. Heifers in oestrus exhibited higher concentrations of alkaline phosphatase, aspartate aminotransferase (AST), beta‐hydroxybutyric acid, creatine kinase (CK) and triiodothyronine (T3) than heifers in non‐oestrus. Heifers in oestrus revealed lower osmolality and concentrations of calcium, sodium and total protein than during non‐oestrus. Younger (and smaller) heifers had greater concentrations of CK, gamma‐glutamyl transferase (GGT), glucose and sodium than the older heifers. Heifers with lower fatness had increased osmolality and concentrations of cholesterol, CK, phosphorus, sodium and reduced T3 levels. Feed efficient heifers had greater levels of AST, cholesterol and GGT than inefficient heifers. Blood plasma parameters may be complementary to oestrous detection upon further validation; effects of age, feed efficiency, body size and body composition should be considered to optimize this haematological assessment.  相似文献   

4.
The aims of the current study were to illustrate figures for the characteristics of oestrous cycles especially on follicular dynamics, corpus luteum and changes in progesterone and prostaglandin F2alpha, in the Holstein cross-bred dairy heifers. Twenty six healthy and sexual-mature virgin heifers were monitored for signs of oestrus. Their ovaries were sonically examined and the numbers and the sizes of the follicles as well as of the corpus luteum were documented. In our study, no difference in ratio of the 2-wave and 3-wave patterned cycle was evident. Seasons' change did not affect on characteristics oestrous cycles as well as on dynamics of follicles and corpus luteum. The heifers showed high variation in manifesting oestrus especially on a number of hours. The ‘bodily’ oestrous signs lasted longer than did ‘behavioural’ signs and connection of lowering of the back to standing oestrus was established. Certain diversities comparing to of existed dairy breeds were drawn for follicular dynamics, corpus luteum and its progesterone: 1) the 1st an-ovulatory dominant follicles showed higher growth rate and earlier exceeded dominant diameter; 2) the follicle tended to quicker ovulate but with a smaller diameter at ovulation; 3) the corpus luteum exhibited 4−16.5 mm in diameter of central cavity. Connecting to the levels of progesterone, 4) the corpus luteum turned into active, as well as mid-luteal, period quite late, and 5) the duration of the active period of the corpus luteum was shorter, but 6) at the end of the cycle –around the day of oestrus, progesterone remained certain low but significant levels. In conclusion, the Holstein cross-bred dairy heifers in our study faced a problem of delayed post-ovulatory progesterone rise of which underlying causes are needed to be further scrutinised either at endocrine or at cell levels.  相似文献   

5.
Twenty-five 2-3-year-old cycling does weighing 17-25 kg were obtained from semi-nomadic farmers and managed under controlled conditions while simulating the traditional management system. Oestrus was synchronized using progestogen impregnated vaginal pessaries. Blood samples were collected daily for progesterone assay from the day of pessary withdrawal up to one complete oestrous cycle. Oestrus was checked twice daily using vasectomized bucks. Ovulation rate was determined by direct observation of the ovaries following laparotomy on day 5-7 of the oestrous cycle. Following oestrus synchronization, mean ovulation rate was 1.68 +/- 0.13. Mean oestrous cycle length and duration of oestrus were 21.30 +/- 0.28 days and 21.37 +/- 0.24 hours respectively. Plasma progesterone concentrations ranged from non-detectable levels on the day of oestrus to 5.2 +/- 0.28 ng ml at mid-cycle. The duration of elevated progesterone level (greater than 2 ng/ml) was about 12 days. The peak progesterone values did not differ between animals with different ovulation rates. However, the plasma progesterone concentration during the early cycle (days 0-6) was significantly lower in the single ovulators compared with others. There were no major differences in plasma progesterone levels during the oestrous cycle of Red Sokoto does with different ovulation rates.  相似文献   

6.

Background

Declining fertility is a major concern for dairy farmers today. One explanation is shorter and weaker expression of oestrus in dairy cows making it difficult to determine optimal time for artificial insemination (AI). Chemical communication is of interest in the search for tools to detect oestrus or to synchronise or enhance oestrous periods. Pheromones, used in chemical communication within species, can influence reproduction in different ways. The aim here was to investigate whether oestrous cycle length, and duration and intensity of oestrous expression in dairy heifers could be manipulated through exposure to pheromones in oestrual substances from other females.

Methods

Beginning on day 16 of two consecutive control oestrous cycles, ten heifers of the Swedish Red Breed (SRB) were exposed to water. During the two following cycles the heifers were exposed to urine and vaginal mucus, obtained from cows in oestrus. Cyclicity parameters were monitored through hormone measurements, oestrus detection and ultrasonographic examination.

Results

We found no difference in cycle length or in duration of standing oestrus between control and treatment. We did, however, find a tendency of interaction between type of exposure (control or treatment) and cycle number within type of exposure for cycle length (p = 0.068), with the length differing less between the treatment cycles. We also found a tendency of effect of type of exposure on maximal concentration (p = 0.073) and sum of concentrations (p = 0.063) of LH during the LH surge, with values being higher for the control cycles. There were also significant differences in when the different signs of oestrus occurred and in the intensity of oestrous expression. The score for oedema and hyperaemia of external genitalia was significantly higher (p = 0.004) for the control cycles and there was also a significant interaction between type of exposure and time period for restlessness (p = 0.011), with maximum score occurring earlier for treatment cycles.

Conclusions

No evidence of altered oestrous cycle length or duration of oestrus after exposure of females to oestrous substances from other females was found. Expression of oestrus, and maybe also LH secretion, however, seemed influenced by the exposure, with the effect of treatment being suppressive rather than enhancing.  相似文献   

7.
This report reviews the most recent developments in prostaglandin‐based oestrous synchronization programmes for postpartum dairy cows and addresses the efficiency of controlled breeding protocols based on such developments for cows with abnormal ovarian conditions. A double prostaglandin protocol applied 11–14 days apart seems to be capable of bringing most cows to oestrus. Because of varying oestrus onset times, improved conception rates are obtained following artificial insemination (AI) at detected oestrus rather than fixed‐time AI in prostaglandin‐treated cows. The administration of oestradiol or human chorionic gonadotrophin, or both these hormones, after prostaglandin treatment, improves the synchrony of oestrus yet does not enhance the conception rate. Progesterone‐based treatments for oestrous synchronization are considered the most appropriate for non‐cyclic or anoestrous postpartum dairy cows; prostaglandin alone being ineffective because of the absence of a mature corpus luteum in these cows. Improved oestrus synchrony and fertility rate have been reported using short‐term progesterone treatment regimes (7–9 days) with or without oestradiol benzoate combined with the use of a luteolytic agent given 1 day before, or at the time of, progesterone withdrawal. The ovulation synchronization (Ovsynch) protocol, based on the use of gonadotrophin releasing hormone and prostaglandin, was developed to coordinate follicular recruitment, CL regression and the time of ovulation. This protocol allows fixed time insemination and has proved effective in improving reproductive management in postpartum dairy cows. However, timed AI following Ovsynch seems to have no beneficial effects in heifers, because of an inconsistent follicle wave pattern, and in anoestrous cows, given their lack of prostaglandin responsive CL. To date, there are several prostaglandin based, fixed‐time insemination oestrous synchronization protocols for use in early postpartum dairy cows with ovarian disorders such as ovarian cysts and acyclicity.  相似文献   

8.
Plasma progesterone was measured in 14 normally cycling heifers and cows subjected to non-surgical recoveries of embryos. A radioimmunoassay (RIA) method was used for progesterone determination. The average progesterone concentration increased from 7.5 to 11.6 ng/ml in 8 of the animals following treatment with PMSG on day 8–12. Six animals had a decrease from 5.0 ± 2.1 to 3.9 ± 2.5 ng/ml. The overall increase was from 6.4 ± 2.7 ng/ml to 8.3 ± 4.8 ng/ ml. Prostaglandin F2a-analogue (cloprostenol) treatment resulted in a sharp decrease in plasma progesterone followed by a rapid increase to an average of 46.8 ng/ml on day 16. A high degree of variability in this peak value was observed, and it was not correlated with the number of corpora lutea. The superovulatory cycle was generally prolonged. The heat following the superovulatory treatment was silent, and a typical ovarian resting period was observed during which the progesterone concentration remained low and the ovaries small.  相似文献   

9.
Difficulty in observing oestrus is a problem for many dairy farmers performing AI. Finding ways to synchronize oestrous cycles or strengthen display of oestrus without hormonal treatments would be of great interest because many consumers object to the use of exogenous hormones on healthy animals. Modification of reproductive cycles through chemical communication has been reported in several species including cattle. LH is an important regulator of the follicular phase and could possibly be subject to pheromonal influence. This study focuses on the effect of volatile compounds from oestrous substances on LH pulsatility preceding the preovulatory LH surge in cattle. Four heifers of the Swedish Red breed were kept individually in isolation. Exposure to water during the control cycle (CC), and bovine oestrous urine and vaginal mucus during the treated cycle (TC), started simultaneously with induction of oestrus. Blood sampling at 15‐min intervals started 37 h after administration of PGF and continued for 8 h. Monitoring of reproductive hormones, visual oestrus detection and ultrasonographic examination of the ovaries continued until ovulation had occurred. The mean concentration of LH at pulse nadir was significantly higher during TC (2.04 ± 0.18 ng/ml) than during CC (1.79 ± 0.16 ng/ml), and peak amplitude was significantly higher during CC (Δ1.03 ± 0.09) than during TC (Δ0.87 ± 0.09). No other parameters differed significantly between the two cycles. We conclude that the difference in LH pulsatility pattern may be an effect of exposing heifers to oestrous vaginal mucus and/or urine and that the mechanism behind this needs further investigation.  相似文献   

10.
The objectives of this study were to establish the characteristics of oestrous behaviour in Ovsynch (induction of ovulation through administration of GnRH-PGF2-GnRH in a systemic manner on 0, seventh and ninth day respectively) and Ovsynch plus Norprolac (Quinagolide hydrochloride – an inhibitor of prolactin secretion) treated Murrah buffalo heifers and to determine the relationships between this behaviour and the plasma concentrations of oestradiol-17β (E2), total oestrogen, and progesterone. Oestrus was detected by visual observations of oestrus signs, per rectal examination of genitalia and bull parading thrice a day during treatment period. Among all the symptoms, it was observed that bull mounting of heifers in oestrus was highest. Examination of genital tracts per rectum revealed that the cervix was relaxed, uterus was turgid and ovaries had palpable follicle in animals with oestrus. The peak concentrations of E2 (10.81 ± 0.62 pg/ml) and total oestrogen (17.11 ± 1.21 pg/ml) occurred at 9.45 ± 0.85 and 9.64 ± 0.93 h after second GnRH administration, respectively, in Ovsynch treated animals. However, the peak levels of E2 (20.02 ± 2.87 pg/ml) and total oestrogen (32.71 ± 3.15 pg/ml) occurred at 10.18 ± 0.50 and 10.36 ± 0.75 h after second GnRH administration, respectively, in Ovsynch plus Norprolac treated animals. Plasma progesterone concentration was basal (0.20 ± 0.001 ng/ml) during the peri-oestrus period. The plasma progesterone concentration was the lowest on the day of oestrus and increased to register a peak on day 13 ± 2 of the cycle. Oestrous behaviour was positively correlated with the peak concentration of E2 (p < 0.001) and total oestrogen (p < 0.001) during the peri-oestrus period. Inhibition of prolactin by Norprolac administration significantly increased the concentration of E2 and total oestrogen during oestrus in buffaloes in comparison to those recorded in animals subjected to Ovsynch protocol alone. In conclusion, our results suggest that the peak concentrations of E2 and total oestrogen and mean level of E2 and total oestrogen during the peri-oestrus period are the important factors contributing the behavioural manifestation of oestrus in buffalo cows.  相似文献   

11.
Shortened and weakened oestrous signs in dairy cows may cause a failure of oestrus detection and artificial insemination timing error leading to poor reproductive performance. The aims of this study were to investigate the duration of standing oestrus in high-producing dairy cows under a free stall system, to determine the duration of expression of secondary oestrous signs before and after standing oestrus (Expt 1) and to compare the duration and intensity of oestrus between cows and heifers (Expt 2). Cattle were checked for primary and secondary oestrous signs at an interval of 4 h. Heat detection aids were also used. In Expt 1, of 56 cows which were detected in oestrus, 36 cows (64.3%) showed standing oestrus and other 20 cows (36.6%) showed secondary oestrous signs only. Duration of the standing oestrus was 6.6 +/- 6.3 h on average (+/-SD), ranging between 2 and 32 h. The cows in standing oestrus showed secondary oestrous signs during a period from 9.6 +/- 8.1 h before onset of standing to 18.4 +/- 18.8 h after the end of standing oestrus. In the cows that did not show standing oestrus, expression of secondary oestrous signs were observed for 25.7 +/- 20.5 h, which was 7.5 h shorter than the average duration of oestrus in cows showing standing oestrus. In Expt 2, nine (82%) of the 11 lactating cows in oestrus showed standing, while all the 10 heifers exhibited standing oestrus. Average duration of standing oestrus was 6.4 +/- 4.3 h in cows and 6.2 +/- 3.9 h in heifers, respectively. It may be concluded that the duration of standing oestrus is substantially shortened in lactating dairy cows, and more than one-third of cows did not show standing oestrus. In cows showing standing oestrus, duration of expression of secondary oestrous signs before and after standing is not shortened. Duration of standing oestrus in heifers was as short as that in cows.  相似文献   

12.
Plasma progesterone profiles were used to assess superovulatory responses in cyclic yaks (n=10) in terms of the number of ovulations and the number of embryos recovered. The animals were synchronized into oestrus following Ovsynch treatment. All the animals received a total of 200 mg Folltropin divided into morning and evening and spread over 4 days, beginning on day 10 of the oestrus cycle (day of expected oestrus=day 0). Plasma samples for progesterone estimation were collected daily starting from the day of expected synchronized oestrus to the day of flushing. All the animals were palpated per rectum on the day of flushing in order to record the number of corpora lutea. Of an estimated 27 ovulations from the nine yaks, only 16 embryos were recovered. Plasma progesterone profiles from individual yaks suggested that a poor superovulatory response in terms of embryo recovery in some animals was caused by the lysis of corpora lutea before flushing which was carried out 7 days after superovulatory oestrus. It was suggested that flushing 5 days post superovulatory oestrus could improve the superovulatory response in this species.  相似文献   

13.
This study was conduct to determine the influence of dietary protein on the response of plasma insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding proteins (IGFBPs) to exogenous growth hormone releasing peptide-2 (GHRP-2 or KP 102) in Holstein steers. Eight 16-month-old Holstein steers were grouped by liveweight to two feeding treatments; high protein (HP; CP 1.38 kg/day and TDN 4.5 kg/day DM intake, n=4) or low protein (LP; CP 0.66 kg/day and TDN 4.42 kg/day DM intake, n=4). The experiment was a single reverse design whereby each group was injected twice daily with GHRP-2 (12.5 microg/kg body weight (BW)/day) or saline solution into the jugular vein for a 6-day period. Plasma IGF-1 in the HP group were higher than in the LP group (P<0.05), but plasma 34 kDa IGFBP-2 was lower in the HP than the LP group (P<0.05). The amplitude of the maximum growth hormone (GH) peaks responding to GHRP-2 injection were higher at day 1 than at day 6 of saline or GHRP-2 treatment in both LP and HP steers (P<0.05). The area under the GH response curve for 180 min after the GHRP-2 injection was not significantly different between the LP and the HP groups at days 1 and 6. A response in plasma IGF-1 concentration to GHRP-2 treatment in the HP group was observed at day 1 (198.9+/-18.1 ng/ml), day 2 (195.2+/-21.1 ng/ml) and day 6 (201.3+/-14.8 ng/ml) (P<0.05). No increase in plasma IGF-1 was observed from GHRP-2 administration in the LP group. Although the response of plasma IGF-1 concentration to GHRP-2 administration was increased in the HP group (P<0.05), there was no apparent effect of GHRP-2 treatment on plasma 38-43 kDa IGFBP-3 and 34 kDa IGFBP-2 at days 2 and 6 of treatment. In conclusion, it is proposed that the 34 kDa IGFBP-2 is sensitive to dietary protein level and may play an important role in the regulation of circulating IGF-1 in ruminant. In addition, increased plasma IGF-1 concentration observed in the HP group in response to the GHRP-2 treatment did not appear to affect plasma IGFBPs.  相似文献   

14.
Eight heifers, aged 16–17 months and showing normal oestrous cycles, were immunized against a recombinant porcine inhibin α subunit immunogen, together with another 10 heifers of the same age as controls and treated with placebo immunogen. Primary (1 mg immunogen) and two booster (0.5 mg immunogen each) immunizations were administered at 28‐day intervals. Ten days after the second booster immunization, both groups of heifers underwent a superovulation treatment. Each animal was given an intravaginal progesterone releasing sponge, which was withdrawn 7 days following an i.m. injection of 0.5 mg cloprostenol. Heifers were treated with FSH for 4 days and artificially inseminated after oestrus occurred. The embryos were flushed and evaluated 7 days after insemination. Immunization significantly (p < 0.01) increased blood antibody titres against recombinant porcine inhibin α subunit, from pre‐immunizaion and control values of approximately 0.06 of ELISA 450 nm reading to 0.6 to 0.7 after two or three immunizations. The immunized heifers produced on average 15.8 ± 2.8 embryos, significantly (p < 0.05) higher than the yield of 8.3 ± 1.5 in the controls. The number of transferable embryos were non‐significantly higher in immunized than in control heifers (9.6 ± 3.1 vs 5.8 ± 1.6, p > 0.05). The peak plasma oestradiol concentrations were significantly higher in immunized than in control heifers, both immediately after FSH treatment and 20 days thereafter. Plasma P4 concentrations after superovulation were in the range of 20 ng / ml in the immunized heifers, significantly (p < 0.05) higher than the values approximately 15 ng / ml in control heifers. These results indicated that prior immunization against inhibin α subunit stimulated production of antibodies against inhibin, which enhanced follicular developmental response to superovulation and lead to higher yield of total and transferable embryos. Therefore immunization combined with the conventional superovulatory gonadotrophin treatment, can be a simple and efficient method to produce low cost bovine embryos.  相似文献   

15.
The study was conducted on six Murrah buffalo synchronized and induced to oestrus. An indwelling catheter was placed in the jugular vein of each buffalo 4 days before the expected onset of the oestrus following the induced oestrus and blood samples were collected at 8 h intervals from each animal throughout the oestrous cycle. Plasma immunoreactive inhibin, follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol-17β and progesterone were estimated by radioimmunoassay to study the variations in the peripheral levels of these hormones and their inter-relationships in order to elucidate the feedback systems controlling them during the oestrous cycle of buffalo. Plasma inhibin levels ranged between 391.25 and 631.97 pg/ml during various phases of the oestrous cycle and were found to be higher than reported in cows. Peak LH and FSH levels during oestrus were 38.40 ± 9.21 and 24.04 ± 4.75 ng/ml, respectively and estradiol-17β and progesterone were 19.50 ± 5.51 pg/ml and 0.61 ± 0.25 ng/ml, respectively. The mean plasma inhibin concentration on the day of oestrus was 562.5 ± 18.9 pg/ml. Levels of FSH in the plasma showed three mid-cycle elevations which corresponded to comparatively lower inhibin and elevated estradiol-17β levels during the same period. From this observation it was deduced that both inhibin and estradiol-17β have a feed-back regulatory effect on FSH secretion in buffalo.  相似文献   

16.
SUMMARY Progesterone releasing intravaginal devices (PRIDs) were used in 4 experiments involving 67 cattle to study the effect of the stage of the oestrous cycle and of oestradiol benzoate (ODB) administration on the time interval from PRID removal to oestrus and/or ovulation. Cows in which PRIDs were inserted on days 2 to 4 of the oestrous cycle for 14 days were subsequently observed by endoscopy to ovulate significantly later than cows given identical treatments on days 13 and 14 of the cycle. The concentration of progesterone was higher in the former group at the time PRIDs were removed and remained at a higher level for 3 days thereafter. The length of the oestrous cycle of untreated heifers was significantly longer than in heifers treated for 12 days with PRIDs only inserted on day 3 of cycle (19.7 v 18.2; p <0.01). Treatment with PRIDs inserted for 12 days together with ODB further shortened the cycle length from 18.2 days to 16.9 days (p <0.01). The intervals from PRID removal to onset of standing oestrus in heifers treated with PRID only and those treated with PRID and ODB were 80h and 45h, respectively (p <0.01); the respective variances were 280 and 4; p <0.01). Plasma progesterone concentration, at PRID removal, was 3 times higher in heifers treated with PRID only than in heifers treated with PRID and ODB (p <0.01) and the interval from PRID removal to the lowest progesterone value following it was 3.8 and 1.2 days for the 2 groups, respectively (p <0.05). The study indicated that the stage of oestrous cycle at PRID insertion is an important factor which influences the interval from withdrawal of PRIDs to ovulation. The results suggest closer synchronisation would follow insertion in the mid-luteal phase (Day 13 to 14) or use of ODB treatment at the time of insertion of PRIDs.  相似文献   

17.
OBJECTIVE: To compare the timing of onset of oestrus and ovulation, characteristics of oestrus, and fertility in Bos indicus heifers synchronised with a progesterone releasing intravaginal insert (IVP4) and administration of oestradiol benzoate (ODB) either at the time of removal of the insert or 24 h later. Design: Cohort study. PROCEDURE: Bos indicus and Bos indicus cross heifers were treated on two farms (Farm A, n = 273; Farm B, n = 47) with an IVP4 for 8 days with 1.0 mg of ODB administered at the time of device insertion and 250 mg of cloprostenol at the time of device removal. Heifers in the ODB-0 group were administered 0.75 mg of ODB at the time of device removal while heifers in the ODB-24 group were administered the same dose of ODB 24 h after device removal. Heifers were inseminated once daily after detection of oestrus. Heifers not detected in oestrus by 72 h after removal of inserts were inseminated at that time. Oestrus was detected in heifers on Farm A using heatmount detectors while on Farm B oestrus in heifers was monitored using radiotelemetry of mounting pressure. Ovarian follicular development was monitored daily in 30 heifers on Farm B from the time of administration of inserts until ovulation to a maximum of 96 h after removal of inserts, and again 11 days after removal of inserts (Day 19). A blood sample was collected from all heifers on Farm B on Day 19 and analysed for plasma concentration of progesterone. Pregnancy was diagnosed 6 to 8 weeks after insemination. RESULTS: Administration of ODB at the time of removal of inserts shortened the time interval to oestrus and ovulation (P < 0.001), increased the number of mounts recorded during oestrus (P = 0.04) and reduced the odds of pregnancy (P = 0.03). The proportion of heifers ovulating on Farm B was 67% and was not affected by treatment group (P = 0.61). The mean diameter of the largest follicle measured in ovaries was greater at the time of removal of inserts (9.1 +/- 0.6 vs 10.7 +/- 0.4; P = 0.03) and at the expected time of the LH surge (8.1 +/- 0.4 vs 11.5 +/- 0.3 mm; P < 0.001) in heifers that ovulated compared to heifers that failed to ovulate, respectively. Emergence of a new follicular wave was not detected during the synchronisation treatment in heifers that failed to ovulate. Concentrations of progesterone in plasma on Day 19 were less in non-pregnant heifers (P = 0.05) compared to heifers subsequently diagnosed as pregnant to insemination and were affected by the diameter of the ovulatory follicle (P = 0.01). CONCLUSION: Administration of ODB at the time of removal of inserts can shorten the time interval to oestrus and ovulation and can reduce fertility when insemination is carried out once daily. Further work is needed to determine if prolonged suppression of follicular development, anovulatory oestrus and premature ovulation occuring in some heifers is associated with administration of ODB.  相似文献   

18.
雌酮主动免疫对美利奴母羊发情产羔和生殖内分泌的影响   总被引:3,自引:0,他引:3  
20头母羊在配种季节开始前6周和3周,用雌酮免疫原免疫2次(E组),13头不作处理为对照(C组)。免疫不影响母羊正常发情,可使母羊产羔率由115.38%提高到156.25%,发情当天的LH水平显著提高(3.06±0.61对1.93±0.88miu/ml);发情周期黄体期的孕酮水平亦增加,周期12天时差异显著(9.31±3.53对3.71±0.92ng/ml);整个发情周期内E组的睾酮水平显著高于C组,而17β-雌二醇水平两组间无差异。  相似文献   

19.
A detailed clinical-endocrine investigation was performed in 6 repeat breeder heifers (RBH) with the aim being to ascertain whether endocrine asynchronism exists at luteal regression and during early pregnancy. The heifers were first studied during an open cycle and then after insemination when 3 heifers became pregnant. Circulating plasma levels of PGF2 alpha metabolite were measured every 2nd h, while progesterone (P4) levels were measured every 6th h. The oestrous period and intervals between the onset of oestrus and ovulation were relatively longer, compared with what is normally seen in heifers. Plasma levels of P4 at the onset of oestrus were higher than normal, but it was concluded that the plasma levels of PGF2 alpha metabolite and P4 in RBH at luteal regression and early pregnancy were normal.  相似文献   

20.
OBJECTIVE: To compare the reproductive performance and pattern of onset of oestrus in dairy heifers in which oestrous cycles were synchronised with two doses of prostaglandin (PG) F2alpha and oestrus was synchronised with oestradiol benzoate (ODB). PROCEDURE: Dairy heifers in two herds (herd A, n = 192; herd B, n = 267) were treated with two doses of an analogue of PGF2alpha (cloprostenol, 375 microg, IM) 12 days apart. Heifers not detected in oestrus 48 h after the last dose of PGF2alpha were either left untreated (No ODB, n = 147) or treated with ODB (0.75 mg IM, n = 126). Onset of oestrus was monitored at 0, 24, 48, 80, 96 and 120 h after the last dose of PGF2alpha Heifers were inseminated on detection of oestrus. RESULTS: After the last dose of PGF2alpha, oestrous detection rates at 80 h (43.5 vs 72.6%, P < 0.001), 96 h (74.1 vs 84.9%, P =0.025) and 120 h (78.2 vs 86.3%, P = 0.082) were less in the No ODB compared to the ODB heifers, respectively. Conception rates (percentage pregnant that were inseminated) were greater in the No ODB compared to the ODB heifers (64.3% vs 47.6%, respectively; P = 0.006), while pregnancy rates (percentage pregnant that were treated) were also greater in the No ODB compared to the ODB heifers, but differences were not significant (50.3% vs 41.1%, respectively; P = 0.068). CONCLUSION: Administration of ODB to heifers not in oestrus 48 h after a two-dose PGF2alpha treatment increases the percentage of heifers detected in oestrus by 80 h, 96 h and 120 h after treatment, by an estimated 29%, 11% and 8%, respectively. However, administration of ODB decreases conception rates by an estimated 17%, and may decrease pregnancy rates (estimated 9% difference). Results are consistent with the hypothesis that ODB can increase submission rates but reduce conception rates following a two dose treatment with PGF2alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号