首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Extractants employed for routine soil analysis vary from one laboratory to another. Lack of a universal soil extractant is a serious limitation for interpretation of analytical results from various laboratories on nutritional status of a given soil. This limitation can be overcome by developing functional relationships for concentrations of a given nutrient extractable by various extradants. In this study, extractability of Ca, Mg, P, and K in a wide range of soils (0–15 cm) from citrus groves in Florida representing 21 soil series, with varying cultural operations, were compared using Mehlich 3 (M3), Mehlich 1 (M1), ammonium acetate (NH4AOc), pH = 7.0 (AA), 0.2M ammonium chloride (NH4Cl), and ammonium bicarbonate‐DTPA (AB‐DTPA) extractants. Soil pH (0.01M CaCl2) varied from 3.57 to 7.28. The concentrations of Ca or Mg extractable by M3, M1, AA, and NH4Cl were strongly correlated with soil pH (r2 = 0.381–0.482). Weak but significant correlations were also found between AB‐DTPA extractable Ca or Mg and soil pH (r2 = 0.235–0.278). Soil pH relationships with extractable K were rather weak (r2 = < 0.131) for M1 and NH4Cl but non‐significant for M3, AB‐DTPA, and AA. Concentrations of Ca, Mg, and K extractable by M3 were significantly correlated with those by either M1, AA, or NH4Cl extractants. Mehlich 3‐P was significantly correlated with P extractable by M1 extractant only. Mehlich 3 versus AB‐DTPA relationship was strong for K (r2 = 0.964), weaker for Mg and P (r2 = 0.180–0.319), and non‐significant for Ca. With the increasing emphasis on possible use of M3 as an universal soil extractant, data from this study support the hypothesis that M3 can be adapted as a suitable extractant for routine soil analysis.  相似文献   

2.
This study was carried out with the objective of evaluating the effect of citrate concentration on the extraction efficiency of some micronutrients from soil. Composite surface soil samples (0–20 cm) were collected from Eastern Harage Zone (Babile and Haramaya Districts), Wolaita Zone (Damot Sore, Boloso Bombe, Damot Pulasa and Humbo Districts) and Dire Dawa Administrative Council in purposive sampling. The treatments were arranged in completely randomized design (CRD) with three replications. A greenhouse pot experiment with soybean plant was conducted to determine the correlation between soil test methods and the selected micronutrients, such as iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn) in the leaves of the plant. The results showed that, among the different citrate concentrations with strontium chloride (SrCl2) tested for the determination of available Fe, Mn and Zn, the highest correlation coefficients (r = 0.82, p < 0.05), (r = 0.96, p < 0.001) and (r = 0.98, p < 0.001) were found between the diethylenetriamine pentaacetic acid (DTPA) method and 0.02 M strontium chloride (SrCl2)-0.025 M citric acid extractant, respectively. Therefore, 0.02 M SrCl2-0.025 M citric acid extractant is considered to be the most effective for the determination of Fe, Mn and Zn in soils of the studied areas. Similarly, high correlation coefficients (r = 0.97, p < 0.001) were found between DTPA and 0.02 M SrCl2-0.05 M citric acid and (r = 0.88, p < 0.01) between DTPA and 0.02 M SrCl2-0.025 M citric acid extractants for the determination of available Cu from soils. Hence, the 0.02 M SrCl2-0.05 M citric acid extractant was shown to be the best for the determination of Cu in soils of the studied areas. However, considering the use of universal extractant, the 0.02 M SrCl2-0.025 M citric acid extractant could easily be adopted as a procedure for the determination of Fe, Cu, Mn and Zn for both agricultural and environmental purposes. The greenhouse experiment confirmed the result.  相似文献   

3.
Abstract

Individual soil tests are used to assess plant nutrient element needs. Separate soil tests, however, are time consuming and costly. Our objective was to develop a 0.5M sodium bicarbonate (NaHCO3) soil phosphorus (P) test in combination with 0.005M diethylenetriaminepentaacetic acid (DTPA) so macronutrient dements: ammonium‐nitrogen (NH4‐N), nitrate‐nitrogen (NO3‐N), P, potassium (K), calcium (Ca), and magnesium (Mg); and micronutrients: iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) could be quantified in one extraction. The NaHCO3‐DTPA extracting solution is a combination of 0.5M NaHCO3 and 0.005M DTPA and has a pH of 7.60±0.05. Sodium in the solution enhances the NH4, K, Ca, and Mg extraction; bicarbonate (HCO3) is for P extraction; DTPA chelates Ca, Mg, and micronutrients; and the water is for NO3 extraction. Soil samples (0–15 cm depth) came from two sources. The first set was from 12 N x P dryland proso millet (Panicum miliaceum L.) experiments, conducted from 1985 through 1987 in eastern Colorado. These soils were extracted with potassium chloride (KCl), NaHCO3, ammonium acetate (CH3‐COONH4), DTPA, ammonium bicarbonate DTPA (AB‐DTPA), and with the NaHCO3‐DTPA solutions. The second set included 25 soils from Alabama, Georgia, North Carolina, and South Carolina and were analyzed only for available P with the NaHCO3 and NaHCO3‐DTPA methods. Simple linear correlations for macronutrient elements and micronutrients were highly significant. Critical levels for the macronutrient elements: NO3‐N, P, and K were 27, 11, and 144 mg kg‐1, respectively; and the critical levels for the micronutrients: Fe, Mn, Zn, and Cu were 3.9, 0.35, 0.97, and 0.24 mg kg‐1, respectively.  相似文献   

4.
刘慧  董颖  王玉军  俞元春  姜军  徐仁扣 《土壤》2021,53(5):1040-1047
Mehlich 3(M3)方法可同时提取土壤中磷、钾、钙、镁、铝、铁、锌、锰、铜等多种元素的有效态,提高土壤检测的效率;另外,M3法适用于钙质土、火山灰土、高度风化土等各类土壤,可作为一个“通用”型土壤有效元素提取试剂。但是硝酸铵(NH4NO3)由于管制不易获取,应用M3方法测定土壤有效元素含量时受到极大限制。因此,本研究用另一种易获取的惰性电解质氯化铵(NH4Cl)替代硝酸铵(NH4NO3),评价氯化铵替代硝酸铵M3法的适用性。Pearson相关分析结果表明,用氯化铵替代硝酸铵M3法测得的30种土壤有效磷、钾含量与M3法测定结果呈极显著正相关,其决定系数(R2)分别为0.99(P=2.31×10-55,n=60)和0.98(P=1.52×10-49,n=60)。同时,氯化铵替代硝酸铵M3法和M3法测定的有效钙、镁、铝、铁、锌、锰和铜含量极显著相关,R2值分别为0.98,1.00, 0.99,0.96,0.99,0.95和0.94。氯化铵替代硝酸铵M3–P与酸性、中性和碱性土壤的 Bray–P和Olsen–P极显著相关,R2分别为0.97和0.91 (P=1.42×10-15和1.00×10-21,n=20和40)。同时,利用氯化铵替代硝酸铵M3法测定酸性改良土壤有效磷含量,发现其得到显著提高。因此,氯化铵替代硝酸铵M3法可作为测定各种土壤,以及改良土壤中有效磷、钾和其他金属元素有效态含量的通用方法。  相似文献   

5.
《Biosystems Engineering》2002,81(2):213-223
In an uninsulated livestock building with natural ventilation, the air temperature and airflow show a large variation according to the daily variations in weather and season. The objective of this investigation was to determine the diurnal variation in the emission of NH3, CO2 and moisture from an uninsulated building with a deep litter system for growing/finishing pigs and to investigate the influence of air temperature and airflow rate on the NH3 emission. The investigations were carried out in an uninsulated experimental building with 125 growing/finishing pigs in deep litter pens. The building was 12 m wide and 20 m long (240 m2), naturally ventilated but also equipped with exhaust fans. The NH3 concentration, the CO2 concentration, the outside and inside air temperature, the outside and inside relative humidity and the animal activity were measured continuously during 6 days at a constant airflow rate of 146 m3 m−2 h−1. During six nights the effect of airflow rate on the NH3 emission was investigated by changing the airflow rate in steps from 26 to 165 m3 m−2 h−1. The measurements were carried out between day 16 and day 46 from the beginning of the growing period. The NH3 emission from an uninsulated, deep litter building for growing/finishing pigs showed a clear diurnal variation. During the 6 days with constant airflow rate the emission varied from 6 to 247% of the mean, with the minimum around 6.00 a.m. and the maximum around 5.00 p.m. The daily mean of NH3 emission increased from 0·23 to 0·65 gh per pig (day 16–day 43). The diurnal variation of NH3 emission was correlated to the inside air temperature (correlation coefficient rs=0·86–0·91) and the animal activity (rs=0·69–0·83). The increase of NH3 emission with the air temperature followed an exponential pattern. The relative NH3 emission flux increased from 0·2 to 2·0 between the air temperatures −2 to 14°C inside the building. An increase in airflow rate through the building from 26 to 165 m3 m−2h−1 increased the relative NH3 emission flux from 0·4 to 1·4. The CO2 emission during the 6 days at constant airflow rate had a daily mean between 81 and 120 gh−1 per pig with a diurnal variation from 61 to 249% of the mean. The CO2 emission was correlated to the inside air temperature (rs=0·42–0·83) and animal activity (rs=0·67–0·85). The daily mean of water vapour emission increased during the same days between 146 and 408 gh−1 per pig and varied from 18 to 269% of the mean. The water vapour emission was correlated to the inside air temperature (rs=0·53–0·97), animal activity (rs=0·57–0·85) and the water absorption capacity of the inlet air (rs=0·27–0·94). The diurnal variations in NH3, CO2 and water vapour emission were correlated to each other.  相似文献   

6.
Abstract

Interpretation guidelines for the availability of calcium (Ca), magnesium (Mg), and potassium (K) in soilless media have been developed through plant growth studies and comparisons amongst extractants. The extractants used were 70% ethanol (EtOH), water, DTPA, ammonium acetate (NH4OAc) and silver thiourea (AgTu). Ethanol, which removes ions in pore water, extracted only 4.5, 13, and 26% of the Ca, Mg, and K, respectively, that could be extracted by AgTu from Pinus radiata bark of pH 5.66 and CEC of 11.2 cmol+/L. Acidification to pH 4.62 increased these proportions to 22, 40, and 38%. Correlations between water and DTPA for 39 media were excellent for both individual elements and the ratios Ca/Mg, K/Mg, and Ca, Mg, and K/(the sums of their concentrations in the extractants) (r2 = 0.88–0.98). Correlations between these extractants and AgTu and NH4OAc were poor for individual elements (r2 = 0.37–0.75) but high for ratios (r2 = 0.71–0.96). For Petunia ’Celebrity Salmon’ growing in peat media of similar pH but widely different Ca, Mg, and K proportions, the ratios of these elements in the shoots were highly correlated with their ratios in 2 mM DTPA extracts of the media. Similarly high correlations were obtained between the Ca/Mg ratios of the shoots of three Asplenium species growing in pinebark media and this ratio for DTPA, NH4OAc, and AgTu extracts of the media. The results indicate that the ratios of Ca, Mg, and K to one another in water and DTPA extracts of soilless media are good indicators of the availability of these elements to plants. Healthy specimens of the test plants grew in media whose DTPA extracts had a minimum Ca/Mg mole ratio of 1 or 2, depending on the Ca requirements of the species. The upper limit for good growth was deduced to be about 6. Limits for NH4OAc and AgTu extracts were similar to those found for crop plants in soils, at 1.6 or 3 to about 9. Minimum amounts of Ca, Mg, and K extracted by water and DTPA that were adequate for short‐term growth in the absence of further inputs were about 9,2.5, and 5 cmol+/L medium, respectively, at pH 6.0. The effect of pH on cations removed by water and DTPA raises the minima to about 19, 5, and 7.5 cmol+/L at pH 5.0.  相似文献   

7.
Evaluation of nutrient status in soil is important for nutritional, environmental, and economical aspects. The objective of this work was to find out the most suitable universal extractant for determination of available phosphorus (P) and nitrate (NO3-) and exchangeable potassium (K), calcium (Ca), and magnesium (Mg) from soils using 0.01 M calcium chloride (CaCl2), 0.01 M barium chloride (BaCl2), 0.1 M BaCl2, 0.02 M strontium chloride (SrCl2), Mehlich 3, and ammonium bicarbonate diethylene triamine penta acetic acid (AB-DTPA) extractants. Composite surface soil samples (0–20 cm) were collected from the Eastern Harage Zone (Babile and Haramaya Districts), Wolaita Zone (Damot Sore, Boloso Bombe, Damot Pulasa, and Humbo Districts), and Dire Dawa Administrative Council by purposive sampling. The experiment was carried out in a completely randomized design (CRD) with three replications. Results indicated that the greatest correlations were found between Mehlich 3 and Olsen method and also between 0.02 M SrCl2 and Olsen method for available P. The amount of NO3 extracted by 0.02 M SrCl2 was significantly correlated to the amount determined by 0.5 M potassium sulfate (K2SO4). The amounts of exchangeable K, Ca, and Mg determined by ammonium acetate (NH4OAc) method were significantly correlated to the amount determined by universal extractants tested. In general, both 0.02 M SrCl2 and Mehlich 3 can serve as universal extractants for the macronutrients considered in this study with the former being more economical when NO3 is included.  相似文献   

8.
Most Brazilian soil-testing laboratories use Mehlich 1 and 1.0 M potassium chloride (KCl) solutions as extractants for the determination of phosphorus (P), potassium (K), and sodium (Na) and for exchangeable calcium (Ca), magnesium (Mg), manganese (Mn), and aluminum (Al) in agricultural soil samples. Other laboratories use a combination of exchangeable ionic resin and KCl procedures. With recent adoption of the inductively coupled plasma (ICP-OES) in routine soil-testing laboratories, soil extraction with 1.0 M ammonium chloride (NH4Cl) became an alternative due to the possibility of determining all exchangeable elements in one run (Ca, Mg, K, Mn, Na, and Al), leaving determination of phosphorus (P) with Mehlich 1 or exchangeable ionic resin. To evaluate the performance of the NH4Cl solution, an experiment was carried out with thirty-seven samples of soils representative of the southernmost state of Brazil, Rio Grande do Sul. Four extraction solutions [Mehlich 1 at soil/solution ratio of 1:10 and 1.0 M ammonium acetate (NH4OAc), 1.0 M KCl, and 1.0 M NH4Cl at soil/solution ratio 1:20] were used with three different shaking times (5, 30, and 60 min). Correlation coefficients among all methods were high. Mehlich 1 did not perform well against NH4OAc and NH4Cl, despite the high correlation coefficients, with values consistently lower for K, even when the time of extraction was increased from 5 to 30 or 60 min. However, for concentrations less than 0.30 cmol kg?1 (i.e., in the range of K deficiency), both solutions performed similarly. Calcium and Mg increased with time of shaking. Comparable values of exchangeable Ca, Mg, and K, as well as of Al and Mn, were obtained with 1.0 M NH4Cl with 60 min shaking and the standard procedures of 1.0 M NH4OAc and 1.0 M KCl. The determination of Al by traditional titration/back-titration of the 1.0 M KCl solution gave slightly greater results compared to ICP-OES obtained using extraction with 1.0 M NH4Cl. The results indicate that for Ca, Mg, Mn, and Al, it is possible to replace the traditional 1.0 M KCl extraction with 1.0 M NH4Cl solution, with 60 min shaking time and a soil/solution ratio of 1:20.  相似文献   

9.
Abstract

An experiment was conducted to assess the suitability of three extractants, water (press‐extract and 1:1.5 volume‐extract), 0.5 M ammonium acetate (NH4OAc) and 0.005 M DTPA for determining plant available manganese (Mn) in peat substrates. Chrysanthemum morifolium was used as a test crop. Substrates were selected for differences in Mn‐content: moss peat with 0, 15, and 30% Mn‐rich clay. The three substrates with each four levels of Mn‐addition were compared. Manganese in the water‐extracts correlated well with the Mn in the plant. Poor correlations of Mn‐NH4OAc and Mn‐DTPA versus Mn in the plant were found, caused by the fact that the clay increased the Mn‐DTPA and Mn‐NH4OAc, but not Mn in the plant. The clay contained Mn which was not available. Only the water‐extracts could be used to assess the availability of Mn. The correlation coefficients of Mn‐DTPA versus Mn‐NH4OAc, of Mn‐DTPA versus Mn‐press‐extract, of Mn‐1:1.5 volume‐extract versus Mn‐NH4OAc, and of Mn‐1:1.5 volume‐extract versus Mn‐DTPA were low. Only Mn‐1:1.5 volume‐extract versus Mn‐press‐extract and Mn‐NH4OAc versus Mn‐press‐extract gave high correlation coefficients.  相似文献   

10.
The effectiveness of eight chemical extraction methods was evaluated on 15 Indian soils for the prediction of plant-available potassium (K+) to Sudan grass (Sorghum vulgare var. sudanensis) grown in modified Neubauer technique. Average amounts of soil K+ extracted were in descending order: Morgan’s reagent > 0.5 M sodium bicarbonate (NaHCO3) > neutral 1N ammonium acetate (NH4OAc) > 1N nitric acid (HNO3) > 0.02 M calcium chloride (CaCl2) > 0.1N HNO3 > Bray and Kurtz No.1> distilled water. The highest simple correlation with plant K+ uptake was obtained with NH4OAc-K+ (r = 0.866**) and the lowest with CaCl2-K+ (r = 0.45*). To develop the predictive models using stepwise regression, plant K+ uptake was used as the dependent variable and the extractable soil K+, pH, sand, silt and organic carbon (C) contents as the independent variables. Based on the final R2, the NH4OAc model was found to be the best predictor of plant-available K+ in the soils when used along with sand and organic C.  相似文献   

11.
Abstract

A new soil extractant (H3A) with the ability to extract NH4, NO3, and P from soil was developed and tested against 32 soils, which varied greatly in clay content, organic carbon (C), and soil pH. The extractant (H3A) eliminates the need for separate phosphorus (P) extractants for acid and calcareous soils and maintains the extract pH, on average, within one unit of the soil pH. The extractant is composed of organic root exudates, lithium citrate, and two synthetic chelators (DTPA, EDTA). The new soil extractant was tested against Mehlich 3, Olsen, and water for extractable P, and 1 M KCl and water‐extractable NH4 and NO2/NO3. The pH of the extractant after adding soil, shaking, and filtration was measured for each soil sample (5 extractants×2 reps×32 soils=320 samples) and was shown to be highly influential on extractable P but has no effect on extractable NH4 or NO2/NO3. H3A was highly correlated with soil‐extractable inorganic N (NH4, NO2/NO3) from both water (r=0.98) and 1 M KCl (r=0.97), as well as being significantly correlated with water (r=0.71), Mehlich 3 (r=0.83), and Olsen (r=0.84) for extractable P.  相似文献   

12.
High levels of phosphorus (P) often induce zinc (Zn) deficiency in plants grown on Zn-poor soils. We investigated P-induced Zn deficiency in durum wheat (Triticum durum L. ‘Carpio’) grown on 16 noncalcareous and 31 calcareous soils differing in levels of available (Olsen) P and available (diethylenetriaminepentaacetic acid (DTPA)-extractable) Zn using micropots. A completely randomized factorial design with two levels of P (0 and 40 mg P kg?1 soil) and Zn (0 and 3 mg Zn kg?1 soil), i.e. four treatments (‘control’, + P, + Zn, and + PZn), were used. Grain yield of control plants depended mainly on the Olsen P level. Phosphorus had a negative effect on yield in 6 soils with Olsen P/ZnDTPA > 25, and Zn a positive one in 5 soils with Olsen P/ZnDTPA > 50; and the + PZn treatment generally resulted in the highest yield. Grain Zn concentration of control plants was negatively correlated with growth and Olsen P. Calcareous soils were less sensitive to P-induced Zn deficiency than noncalcareous soils because phosphate is sorbed by calcite rather than being co-adsorbed with Zn on the Fe oxides. Co-application of P and Zn to soil at low and application of Zn at high Olsen P ensured both maximum yield and grain Zn bioavailability.  相似文献   

13.
Abstract

Water treatment residuals (WTR) can adsorb tremendous amounts of phosphorus (P). A soil that had biosolids applied eight times over 16 years at a rate of 6.7 Mg ha?1 y?1 contained 28 mg kg?1 ammonium–bicarbonate diethylenetriaminepentaacetic acid (AB‐DTPA), 57 mg kg?1 Olsen, 95 mg kg?1 Bray‐1, and 53 mg kg?1 Mehlich‐III extractable P. To 10 g of soil, WTRs were added at rates of 0, 0.1, 1, 2, 4, 6, 8, and 10 g, then 20 mL of distilled deionized H20 (DI) were added and the mixtures were shaken for 1 week, filtered, and analyzed for soluble (ortho‐P) and total soluble P. The soil–WTR mixtures were dried and P extracted using DI, AB‐DTPA, Olsen, Bray‐1, and Mehlich‐III. Results indicated that all methods except AB‐DTPA showed reduced extractable‐P concentrations with increasing WTR. The AB‐DTPA extractable P increased with increasing WTR rate. The water‐extractable method predicted P reduction best, followed by Bray‐1 and Mehlich‐III, and finally Olsen.  相似文献   

14.
Twenty-four surface soils (0–15 cm) were collected from Tal land soils (vertisols) in the southern part of Bihar state in India. Six extractants were used to predict the extractability and their suitability for measuring available zinc (Zn) in these soils. Pot experiment with chickpea (Cicer arietinum cv. C-235) as test crop was conducted with five levels of Zn (0, 2.5, 5.0, 7.5, and 10.0 mg kg?1) to determine critical levels of Zn in soils and chickpea. The efficiency rating of different extractants in extracting available Zn from soils followed the order ethylenediaminetetraacetic acid (EDTA)–ammonium carbonate [(NH4)2CO3] > diethylenetriaminepentaacetic acid (DTPA)–ammonium bicarbonate (NH4HCO3) > DTPA– calcium chloride (CaCl2) > DTPA–sodium bicarbonate (NaHCO3) > magnesium nitrate [Mg (NO3)2] > magnesium chloride (MgCl2). The DTPA-CaCl2-extractable Zn was significantly and positively correlated with clay, organic carbon, cation exchange capacity, dry-matter yield, and plant Zn concentration and uptake but significantly and negatively correlated with soil pH. These properties attributed 87% variability in DTPA-CaCl2-extractable Zn.  相似文献   

15.
Abstract

A new soil test procedure using 1M NH4Cl was developed for the extraction of plant‐available cadmium (Cd) from soils. Five grams of soil is weighed into a 50‐mL polyethylene vial to which 30 mL of 1M NH4Cl solution is added. The soil suspension is then shaken on a horizontal shaker for 16 h at 25°C at 180 cycles per min. The suspension is then centrifuged at 2,500g for 5 min and the supernatant filtered through a 0.45 μm nitrocellulose filter under vacuum. Cadmium in the extract is then determined at 228.8 nm on a graphite furnace equipped atomic absorption spectrophotometer. A highly significant correlation was observed between the natural logarithm (In) of 1M NH4Cl‐extractable Cd in soils and the Cd content in the grain of durum wheat (Triticum turgidum var. durutn L.) grown on the same soils (r = 0.974, p = 3.8 x 10‐7). In comparison with several commonly used extradants, such as ABDTPA, CaCl2, NH4OAc, and NH4NO3, the 1M NH4Cl‐extracted Cd from soils was found to be a better index of Cd availability.  相似文献   

16.
The extraction of earth alkaline and alkali metals (Ca, Mg, K, Na), heavy metals (Mn, Fe, Cu, Zn, Cd, Pb) and Al by 1 M NH4NO3 and 0.5 M NH4Cl was compared for soil samples (texture: silt loam, clay loam) with a wide range of pH(CaCl2) and organic carbon (OC) from a forest area in W Germany. For each of these elements, close and highly significant correlations could be observed between the results from both methods in organic and mineral soil horizons. The contents of the base cations were almost convertible one‐to‐one. However, for all heavy metals NH4Cl extracted clearly larger amounts, which was mainly due to their tendency to form soluble chloro complexes with chloride ions from the NH4Cl solution. This tendency is very distinct in the case of Cd, Pb, and Fe, but also influences the results of Mn and Zn. In the case of Cd and Mn, and to a lower degree also in the case of Pb, Fe, and Zn, the effect of the chloro complexes shows a significant pH dependency. Especially for Cd, but also for Pb, Fe, Mn, Zn, the agreement between both methods increased, when pH(CaCl2) values and/or contents of OC were taken into account. In comparison to NH4Cl, NH4NO3 proved to be chemically less reactive and, thus, more suitable for the extraction of comparable fractions of mobile heavy metals. Since both methods lead to similar and closely correlated results with regard to base cations and Al, the use of NH4NO3 is also recommended for the extraction of mobile/exchangeable alkali, earth alkaline, and Al ions in soils and for the estimation of their contribution to the effective cation‐exchange capacity (CEC). Consequently, we suggest to determine the mobile/exchangeable fraction of all elements using the NH4NO3 method. However, the applicability of the NH4NO3 method to other soils still needs to be investigated.  相似文献   

17.
Abstract

Fifty soil samples (0–20 cm) with corresponding numbers of grain, potatoes, cabbage, and cauliflower crops were collected from soils developed on alum shale materials in Southeastern Norway to investigate the availability of [cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and manganese (Mn)] in the soil and the uptake of the metals by these crops. Both total (aqua regia soluble) and extractable [ammonium nitrate (NH4NO3) and DTPA] concentrations of metals in the soils were studied. The total concentration of all the heavy metals in the soils were higher compared to other soils found in this region. Forty‐four percent of the soil samples had higher Cd concentration than the limit for application of sewage sludge, whereas the corresponding values for Ni, Cu, and Zn were 60%, 38%, and 16%, respectively. About 70% the soil samples had a too high concentration of one or more of the heavy metals in relation to the limit for application of sewage sludge. Cadmium was the most soluble of the heavy metals, implying that it is more bioavailable than the other non‐essential metals, Pb and Ni. The total (aqua regia soluble) concentrations of Cd, Cu, Zn, and Ni and the concentrations of DTPA‐extractable Cd and Ni were significantly higher in the loam soils than in the sandy loam soils. The amount of NH4NCyextractable metals did not differ between the texture classes. The concentrations of DTPA‐extractable metals were positively and significantly correlated with the total concentrations of the same metals. Ammonium nitrate‐extractable metals, on the other hand, were not related to their total concentrations, but they were negatively and significantly correlated to soil pH. The average concentration of Cd (0.1 mg kg‐1 d.w.) in the plants was relatively high compared to the concentration previously found in plants grown on the other soils. The concentrations of the other heavy metals Cu, Zn, Mn, Ni, and Pb in the plants were considered to be within the normal range, except for some samples with relatively high concentrations of Ni and Mn (0–11.1 and 3.5 to 167 mg kg‘1 d.w., respectively). The concentrations of Cd, Cu, Zn, Ni, and Mn in grain were positively correlated to the concentrations of these respective metals in the soil extracted by NH4NO3. The plant concentrations were negatively correlated to pH. The DTPA‐extractable levels were not correlated with plant concentration and hence DTPA would not be a good extractant for determining plant availability in these soils.  相似文献   

18.
In this study, complexation extractants ammonium bicarbonate diethylene triamine pentaacetic acid (AB-DTPA), diethylene triamine pentaacetic acid (DTPA), and ethylene diamine tetraacetic acid (EDTA) and mild cation-exchange extractants calcium chloride (CaCl2) and ammonium nitrate (NH4NO3) were used to evaluate the bioavailability of soil cadmium (Cd) to cacao in the field. Among the five extractants, the extractable Cd generally followed the order EDTA > DTPA > AB-DTPA > CaCl2 > NH4NO3. Correlation analysis was done between the extractable Cd in soil and total Cd content of cacao tissues (nibs, shells, leaves, and pods). The Cd extracted by CaCl2 and NH4NO3 was significantly (P < 0.05) correlated with some of the tissues but their Pearson correlation coefficients were weak. In contrast, extractants AB-DTPA, DTPA, and EDTA showed stronger, significant correlations to the Cd concentration in all four tissues. Overall, regression analysis demonstrated that AB-DTPA, DTPA, or EDTA can be used to predict bioavailable Cd in soils for cacao. Of these, AB-DTPA and DTPA both showed the strongest correlations compared to EDTA. However, the ease of preparation and the superior shelf-life of DTPA over AB-DPTA make it the preferred reagent for Cd bioavailability extractions from cacao soils and is currently being used to develop cost-effective soil treatments to reduce bioavailable Cd to cacao plants.  相似文献   

19.
Twenty surface (0–15 cm) samples of acidic soils were analyzed for water soluble (WS), exchangeable (EX), lead displaceable (Pb-disp.), acid soluble (AS), manganese (Mn) oxide occluded (MnOX), organically bound (OB), amorphous Fe oxide occluded (AFeOX), crystalline iron (Fe) oxide occluded (CFeOX) and residual (RES) fractions of Mn, and also for extractable Mn in some common soil extractants: (diethylenetriaminepentaacetic acid (DTPA) (pH 7.3), DTPA (pH 5.3), AB-DTPA (pH 7.6), Mehlich-3 (pH 2.0), Modified Olsen, 0.005 M calcium chloride (CaCl2), 1 M magnesium chloride (MgCl2) and ion exchange resins. The WS-Mn fraction showed a significant and positive correlation with Mn extractable in DTPA (pH 5.3) and AB-DTPA (pH 7.6), while both WS-Mn and EX-Mn fractions correlated significantly and positively with Mn concentration and uptake by maize plants grown in these soils. The AB-DTPA (pH 7.6) and DTPA (pH 5.3) appeared suitable to assess the availability of Mn in acidic soils.  相似文献   

20.
Abstract

The NH4HCO3‐DTPA (AB‐DTPA), 1 MNH4HCO3, 0.005 M DTPA, pH=7.6, was proposed as a multi‐element extractant, for evaluating macro and micronutrients availability to plants. AB‐DTPA was also evaluated as a soil test, for assessing boron availability and toxicity to alfalfa. In a pot experiment, ten soils of Northern Greece were used to assess AB‐DTPA as an extractant of available boron to wheat (Triticum aestivum L., cv. Yecora), in comparison with hot water and saturation extract. Boron (B) was added as borax (Na2B4O7*10H2O) to the ten soils, at rates equal to 0, 3, and 5 mg B kg‐1. Wheat was grown in pots containing the boron amended soils to the stage of tillering, and dry aboveground biomass, B concentration and B uptake by wheat were determined. AB‐DTPA extractable B was significantly greater than saturation extract and similar to hot water at each B application rate, and was correlated significantly with hot water (r=0.84), or with saturation extract (r=0.48). Extractable boron by all extractants, boron concentration in wheat and boron uptake were significantly affected by the soil x B application rate interaction. In assessing B availability to wheat using AB‐DTPA as a soil test, CEC should be included in the regression equation for B concentration, or pH for B uptake. However, the corresponding adjusted coefficients of determination for B concentration (adjusted R2=0.46) and B uptake (adjusted R2=0.48) were similar or lower to those of hot water (adjusted R2=0.45 and 0.60, respectively) and the saturation extract (adjusted R2=0.70 and 0.49, respectively), when the latter two soil tests were used in the regression equations without the inclusion of any soil property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号