共查询到20条相似文献,搜索用时 0 毫秒
1.
Litterfall, decomposition, and N release in 5-year-old and 8-year-old plantations of Casuarina equisetifolia (Forst.) in the dry tropical region of the Vindhyan plateau were studied during 1989–1990. Maximum litterfall occurred in May. The total litterfall ranged from 7.2 to 9.9t ha-1 year-1 in the 5-year-old stand and from 11.3 to 12.7t ha-1 year-1 in the 8-year-old stand over the 2-year period. Photosynthetic branchlets contributed 87–95% to the total litter. The relative decomposition rates of litter components of the ash-free mass were highest in the rainy months (4.7 to 9.9mg g-1 day-1) followed by winter (2.8 to 3.6 mg g-1 day-1) and lowest in the summer months (1.7 to 3.0 mg g-1 day-1). Similar patterns were observed for N release. The annual decay constant was highest for cone litter and lowest for photosynthetic branchlets. During decomposition, the photosynthetic branchlets showed N immobilization in November and April, the twig litter in March, and the roots in January and February. N release per unit area (g m-2) was maximum from the photosynthetic branchlets (5.3–6.3) followed by cones (4.4) > roots (3.4) > twigs (2.6–3.2). The combination of the litter C:N ratio, moisture, and temperature with the relative decomposition rate in a multiple regression analysis explained 66–84% of the variability in mass loss and 58–66% of the variability in N release. 相似文献
2.
In fast-growing tree plantations, decomposition of leaf litter is considered as a key process of soil fertility. A three-month field experiment, spanning both rainy and dry seasons, was conducted to determine how changes in litter decomposition affect the main parameters of litter quality—namely, the concentrations of phenolic and non-phenolic carbon (C) compounds, nitrogen (N), and fibres, and the litter C mineralization rate. This study was conducted to test (1) if these changes vary according to the compound and to the season, and if they are greater for soluble compounds, and (2) if after a three-month period of field decomposition, the chemical composition of the remaining litter drives C mineralization, as measured in laboratory conditions, through a greater influence on the concentration of N and lignin. We found that the concentrations of water- and methanol-soluble phenolic compounds and the concentrations of non-phenolic compounds decreased during decomposition in all plots and in each season, while the fibre and N concentrations increased. The relationships among litter decomposition, C mineralization, and litter quality depended on the season, which strongly suggests that different processes are involved in dry and rainy seasons. The C mineralization rates were driven by soluble organic compounds in the initial litter and by soluble phenolic compounds in the decomposed litter. 相似文献
3.
M. J. M. Van Meeteren A. Tietema J. W. Westerveld 《Biology and Fertility of Soils》2007,44(1):103-112
To evaluate the effect of climate change on ecosystem functioning, the temperature and moisture response of microbial C, N,
and P transformations during decomposition of Calluna vulgaris (L.) Hull. litter was studied in a laboratory incubation experiment. The litter originated from a dry heathland in the Netherlands
where P limited vegetation growth. Fresh litter was incubated at 5, 10, 15, or 20°C and at a moisture content of 50, 100,
or 200% in a full factorial design. Microbial nutrient transformations and activity were evaluated during two successive periods:
an initial period of 48 days characterized by microbial growth and a second period from 48 to 206 days in which microbial
growth declined significantly. Temperature and moisture response of respiration rate, the metabolic quotient (qCO2), C, N, and P immobilization, net N and P mineralization and nitrification rates were evaluated by performing linear regressions.
Microbial nutrient transformations and microbial activity depended both on temperature and moisture. In the first period,
the respiration rate, qCO2, microbial C and N immobilization, net P mineralization, net N mineralization and net nitrification rates were more strongly
affected by temperature, while the microbial P immobilization rate was more strongly affected by moisture. The respiration
rate, qCO2, P immobilization rate, net P and N mineralization rate, and nitrification rate increased with temperature and moisture,
while the C and N immobilization rate decreased with increasing temperature and increased with moisture. In the second period,
C, N, and P immobilization and net N and P mineralization rates were significantly lower. The respiration rate and qCO2 continued to increase with temperature and moisture, but C and N immobilization rates increased with temperature and declined
with increasing moisture. Net P mineralization rate decreased at higher temperature and moisture, and nitrification rate declined
with increasing temperature and increased with moisture. It was concluded that plant growth in these P-limited systems is
very sensitive to climate change as it strongly relies on the competition for P with microbes, and temperature and moisture
have a large effect on the immobilization rate of available P. 相似文献
4.
Litter decomposition and nutrient release in relation to atmospheric deposition of S and N in a dry tropical region 总被引:1,自引:0,他引:1
Temporal and spatial variations in litterfall, leaf litter decomposition and nutrient release were quantified along an air pollution gradient around an industrial area in a dry tropical region of India. Significant differences were found in litterfall between the sites. Litter decomposition rates also significantly varied among the study sites. Litter decomposition was faster at sites away from the industrial region with coal-fired power plants. The concentrations of N and P increased, whereas that of Ca and SO4-S decreased in decomposing litter over time. The nutrient release pattern was also modified by atmospheric deposition. Concentrations of SO2 and NO2 were negatively correlated with relative mass loss. Turnover time of nutrients, except SO4-S in decomposing litter was maximal at the site receiving highest atmospheric depositions. The study documents that industrial emissions significantly modified nutrient cycling in adjacent terrestrial ecosystems. 相似文献
5.
Leaf litters from beech (Fagus orientalis Lipsky.) and oak (Quercus robur L.), and needle litters from fir (Abies nordmanniana Spach.) and pine (Pinus sylvestris L.) trees were collected from north-facing site and south-facing site and at three slope positions (top, middle and bottom) on each aspect that varied in soil chemical characteristics (soil pH, cation exchange capacity and base saturation). The litters were analysed for initial total carbon, nitrogen, acid detergent fibre, lignin and cellulose concentrations. Nitrogen, acid detergent fibre and lignin concentrations and carbon:nitrogen and lignin:nitrogen ratios varied significantly within and between species according to soil chemical characteristics on aspects and slope positions. Litter decomposition was studied in the field using the litterbag technique. The litters were placed on two aspects and at three slopes on each aspect in October 2001, and were sampled every 6-month for 2 years. The main effects of aspect, species and slope position on decomposition rates were all statistically significant. Oak leaf litter showed highest decomposition rates, followed by pine, fir and beech litter, and the litters placed on north-facing site decomposed faster than those on the south-facing site. The litters placed at the top slope position decomposed slower than at those at either the bottom or middle positions. Initial lignin concentrations explained most of the variation in decomposition rates between species, and within species for the aspects and the slope positions, but the explained variance showed differences between aspects and slope positions. This result illustrates the important point that litter quality may define the potential rates of microbial decomposition but these are significantly influenced by the biotic and abiotic environment in which decomposition takes place. 相似文献
6.
We studied the spatial and temporal patterns of decomposition of roots of a desert sub-shrub, a herbaceous annual, and four
species of perennial grasses at several locations on nitrogen fertilized and unfertilized transects on a Chihuahuan Desert
watershed for 3.5 years. There were few significant differences between the decomposition rates of roots on the NH4NO3 fertilized and unfertilized transects. Decomposition of all roots followed a two-phase pattern: early rapid mass loss followed
by a long period of low mass loss. Rates of decomposition were negatively correlated with the initial lignin content of the
roots (r=0.90). Mass loss rates of the roots of the herbaceous annual, Baileya multiradiata, were significantly higher than those of the grasses and the shrub, probably as a result of subterranean termites feeding
on B. multiradiata root material. The only location where mass loss rates were significantly different was the dry lake bed, where mass loss
rates were lower than those recorded on the upper watershed. The spatial differences in mass loss rates in the dry lake were
attributable to the high clay content of the soils, which reduced water availability, and to the absence of termites. Non-polar
substances in decomposing roots decreased rapidly during the first year, then decreased at a low but fairly constant rate.
Water-soluble compounds decreased rapidly (50–60% of initial concentration) during the first 3–6 months. Lignin concentrations
of roots of perennial grasses were higher than those of herbaceous annual plants and woody shrubs. Lignin concentrations increased
in all species during decomposition. The chemical changes in decomposing roots followed the patterns described for decomposing
litter in mesic environments.
Received: 20 January 1997 相似文献
7.
Rates of dung decomposition and the associated accumulation of soil transported to the surface were compared for dung deposited during a dry and a wet season in a Costa Rican pasture. Average decomposition rates for the first 140 days after deposition were significantly lower for dung patches deposited at the beginning of the dry season than for patches deposited at the beginning of the wet season (0.73 vs. 1.50 g/day-1 on a dry weight basis). A strong linear relationship was found between dung removal and soil accumulation at the original soil surface, with an average of 2.0 g soil accumulated for every gram of dung which was removed. This relationship was not affected by deposition season. The lack of a seasonal difference, along with the relatively low decomposition rates during the wet season, were explained by the dominance of termites in the dung patches throughout the year. Evidence of dung beetle activity was never recorded during the dry season and was found in only 18 of the 45 dung patches recovered during the wet season. 相似文献
8.
不同作物秸秆在旱地和水田中的腐解特性及养分释放规律 总被引:30,自引:3,他引:30
以水稻、小麦、玉米秸秆和油菜、蚕豆青秆为研究对象,采用尼龙网袋法,研究了不同秸秆翻埋入旱地和水田后的腐解特性及养分释放规律,以期为紫色丘陵区农业秸秆循环利用和秸秆还田技术提供理论依据。结果表明:秸秆翻埋还田后,5种供试秸秆腐解速率均表现为前期(0~60 d)快、后期(60~360 d)慢。经过360 d的腐解,旱地秸秆累积腐解率为52.88%~75.80%,表现为油菜水稻玉米小麦蚕豆趋势,且蚕豆青秆累积腐解率显著低于其余秸秆;水田中秸秆累积腐解率为45.01%~62.12%,表现为水稻玉米小麦油菜蚕豆趋势。5种秸秆在旱地和水田中养分释放率均表现为钾磷氮碳,在试验终点,旱地中秸秆碳、氮、磷和钾释放率分别为65.50%~87.37%、54.64%~69.72%、89.65%~98.96%和79.92%~96.63%,且油菜秸秆养分释放率高于其他4种秸秆;水田中秸秆碳、氮、磷、钾释放率变幅分别为49.95%~69.57%、32.89%~77.11%、90.70%~96.80%、77.45%~90.47%。总体表现为秸秆在旱地土壤中的累积腐解率和养分释放率均大于水田,旱地油菜和水稻秸秆较易腐解,水田水稻和玉米秸秆较易腐解释;秸秆中钾素释放速率较高。 相似文献
9.
G. Seneviratne 《Biology and Fertility of Soils》2000,31(1):60-64
Litter of high quality is required for increased soil organic matter turnover and improved crop production in tropical agroecosystems.
Studies on litter quality using plant residues have produced inconsistent results. This study reports on previously published
data on litter quality, in an attempt to define universal chemical determinants controlling N release in tropical agriculture.
N concentrations and polyphenol/N ratios are determinants of the N release of plant residues with limited N concentrations,
i.e. of <2% and <1%, respectively. Lignin levels and lignin/N ratios were not observed to be good predictors of N release.
The C/N ratio was found to be the best determinant of N release for a wide range of residue N concentrations. More specifically,
critical levels of C and plant nutrients which limit the enzyme activities of microbial decomposers were found to be important
for determining nutrient release.
Received: 9 February 1999 相似文献
10.
Ping Liu Osbert J. Sun Jianhui Huang Linghao Li Xingguo Han 《Biology and Fertility of Soils》2007,44(1):211-216
We studied the occurrence of nonadditive effects of litter mixtures on the decomposition (the deviation of decomposition rate
of litter mixtures from the expected values based on the arithmetic means of individual litter types) of litters from three
plant species (i.e., Stipa krylovii Roshev., Artemisia frigida Willd., and Allium bidentatum Fisch. ex Prokh. & Ikonn.-Gal.) endemic to the grassland ecosystems of Inner Mongolia, northern China and the possible role
of initial litter N and P on such effects. We mixed litters of the same plant species that differed in N and P concentrations
(four gradients for each species) in litterbags and measured mass losses of these paired mixtures after 30 and 80 days under
field conditions. We found the occurrence of positive, nonadditive effects of litter mixtures and showed that the magnitude
of the nonadditive effects were related to the relative difference in the initial litter N and P concentrations of the paired
litters. 相似文献
11.
E. S. Jensen 《Biology and Fertility of Soils》1996,24(1):39-44
The immobilization and mineralization of N following plant residue incorporation were studied in a sandy loam soil using15N-labelled field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) straw. Both crop residues caused a net immobilization of soil-derived inorganic N during the complete incubation period of 84 days. The maximum rate of N immobilization was found to 12 and 18 mg soil-derived N g–1 added C after incorporation of pea and barley residues, respectively. After 7 days of incubation, 21% of the pea and 17% of the barley residue N were assimilated by the soil microbial biomass. A comparison of the15N enrichments of the soil organic N and the newly formed biomass N pools indicated that either residue N may have been assimilated directly by the microbial biomass without entering the soil inorganic N pool or the biomass had a higher preference for mineralized ammonium than for soil-derived nitrate already present in the soil. In the barley residue treatment, the microbial biomass N was apparently stabilized to a higher degree than the biomass N in the pea residue treatment, which declined during the incubation period. This was probably due to N-deficiency delaying the decomposition of the barley residue. The net mineralization of residue-derived N was 2% in the barley and 22% in the pea residue treatment after 84 days of incubation. The results demonstrated that even if crop residues have a relative low C/N ratio (15), transient immobilization of soil N in the microbial biomass may contribute to improved conservation of soil N sources. 相似文献
12.
Litterfall, litter decomposition and nutrient release patterns in four native tree species raised on coal mine spoil at Singrauli, India 总被引:16,自引:0,他引:16
Litterfall, leaf litter decomposition and N and P release were studied in four tree species (Dalbergia sissoo, Azadirachta indica, Pongamia pinnata and Shorea robusta) planted on a mine spoil habitat. Annual litterfall varied from 1220 kg ha–1 in the S. robusta stand to 3620 kg ha–1 in the A. indica stand. The fast-growing species A. indica and D. sissoo exhibited higher litter production in comparison to the other two slow-growing species. The total N returned to the soil
through litterfall ranged from 8.6 kg ha–1 year–1 in the S. robusta stand to 36.5 kg ha–1 year–1 in the D. sissoo stand. The annual percent leaf litter mass loss was distinctly greater in A. indica (73%) and D. sissoo (69%) in comparison to P. pinatta (59%) and S. robusta (47%). The mean relative decomposition rates of leaf litter material were maximum in the rainy season and minimum in summer.
Rainfall and its associated variables exhibited greater control over litter docomposition than temperature. Lignin and water-soluble
compounds were better predictors of annual mass loss rates accounting for 90% variability. Mass loss was positively correlated
with N and P mineralization rates. Lignin was the best predictor of annual N and P mineralization rates. Nutrient release
pattern differed; constant release occurred in A. indica, initial release followed by delayed immobilization and release occurred in D. sissoo and P. pinnata, and initial immobilization followed by gradual release was noticed in S. robusta. A. indica and D. sissoo, showing high litterfall and rapid litter decomposition rate, hold promise for the rehabilitation of nutrient-poor coal mine
spoils. On the other hand, S. robusta with less litterfall and a slow decomposition rate may prove disadvantageous.
Received: 10 March 1998 相似文献
13.
Interactions between litter quality, decomposition and soil fertility: a laboratory study 总被引:1,自引:0,他引:1
Leaf litters from beech (Fagus sylvatica L.) and oak (Quercus robur L.) trees were collected from mixed, deciduous woodlands growing on three soil types that varied in mineral nutrient concentrations and N mineralisation potential. Litter quality, including %N, %Mn, %P, acid detergent fibre, cellulose, Klason lignin, phenylpropanoid constituents of lignin, hexose and pentose sugar (mainly from hemicelluloses) varied within species according to soil type. However, oak and beech showed the opposite responses to soil nutrient status for most of these variables. The litters were incubated in the laboratory for 12 months (at 18 °C and constant moisture) on beds of forest floor material from two soils of contrasting high nutrient material (HNM) or low nutrient material (LNM) nutrient status to investigate litter quality and substrate interactions. At 4, 8 and 12 months there were significant differences in mass losses from oak and beech litters from all sites, and for each litter type exposed to the HNM and LMN soils. At 12 months mean mass losses were higher for HNM treatment (38.7% oak, 27.8% beech) than for the LNM treatment (30.6% oak, 25.5% beech). However, the beech and oak litters from the different sites consistently responded in opposite ways on the same soil treatment reflecting site-related effects on litter quality. Initial concentration of Klason lignin was the best predictor for mass losses from litter species and litter types. Intra-specific variation in rates of litter decomposition of beech and oak litters from different sites, and differences in their interactions with the two forest floor materials, illustrate the complexities of proximate controls on decomposition that are often masked in system-level studies. 相似文献
14.
The comparative decomposition of tropical leaf litters (e.g. Andropogon gayanus, Casuarina equisetifolia, Faidherbia albida) of different qualities was investigated under laboratory conditions during a 60-day incubation period conducted with a typical oxisol. Total CO2-C, soil inorganic N, microbial biomass (fumigation-extraction), -glucosidase and dehydrogenase activities were determined over the incubation to assess how they responded to the addition of inorganic N (+N). Cumulative CO2-C evolved from the litter-amended soils was higher than that recorded for the unamended control soil. For the unfertilized treatment (0 N), correlation coefficients calculated between initial chemical data and CO2 flux during the first day of incubation were r =0.963 for water soluble-C and 0.869 for soluble carbohydrates (P <0.05). At the end of the incubation, the amounts of CO2-C in the F. albida- and A. gayanus-amended soils were higher than that in the C. equisetifolia-amended treatment. Cumulative net N immobilization increased during the first 30 days of incubation, the amounts being similar for A. gayanus- and C. equisetifolia-amended soil and higher than that recorded in the F. albida-amended treatment. Soil microbial biomass and enzyme activities increased in the litter-amended soils during the first 15 days of incubation and decreased (except for the dehydrogenase activity) thereafter. The addition of inorganic N modified the patterns of CO2-C respiration and net N immobilization. The magnitude of these modifications varied according to the litter quality. The use of an accurate indicator based on several litter components to predict the amplitude of organic material decomposition is discussed. 相似文献
15.
Biochar addition to soil has been generally associated with crop yield increases observed in some soils, and increased nutrient availability is one of the mechanisms proposed. Any impact of biochar on soil organisms can potentially translate to changes in nutrient availability and crop productivity, possibly explaining some of the beneficial and detrimental yield effects reported in literature. Therefore, the main aim of this study was to assess the medium-term impact of biochar addition on microbial and faunal activities in a temperate soil cropped to corn and the consequences for their main functions, litter decomposition and mineralization. Biochar was added to a corn field at rates of 0, 3, 12, 30 tons ha−1 three years prior to this study, in comparison to an annual application of 1 t ha−1.Biochar application increased microbial abundance, which nearly doubled at the highest addition rate, while mesofauna activity, and litter decomposition facilitated by mesofauna were not increased significantly but were positively influenced by biochar addition when these responses were modeled, and in the last case directly and positively associated to the higher microbial abundance. In addition, in short-term laboratory experiments after the addition of litter, biochar presence increased NO2 + NO3 mineralization, and decreased that of SO4 and Cl. However, those nutrient effects were not shown to be of concern at the field scale, where only some significant increases in SOC, pH, Cl and PO4 were observed.Therefore, no negative impacts in the soil biota activities and functions assessed were observed for the tested alkaline biochar after three years of the application, although this trend needs to be verified for other soil and biochar types. 相似文献
16.
Efforts to model woody debris dynamics are limited by our empirical understanding of the patterns and drivers of decomposition. This knowledge gap is significant in tropical forests, particularly in the dry tropics where research has been minimal and where forest regeneration is a management priority. Here, we coupled trait-function relationships in decomposing logs with indices of microbial and insect activity in a regenerating Costa Rican dry forest. We cut and placed logs (∼18 cm dia) of eight tree species in ground contact at two sites. We assessed density loss and element dynamics in sapwood and heartwood twice annually over two years. At time 0 and year 2, we measured lignin, nitrogen, structural carbohydrates, extractives, insect galleries, and two residue ‘signatures’ of fungal rot type: dilute alkali solubility (DAS; higher for brown rot) and lignin:glucan loss (higher for white rot). After two years, sapwood mean density losses ranged from 11.6 to 44.4% among tree species (excluding one thoroughly-degraded species). The best predictor of sapwood density loss was initial pH, but this correlation was negative, contrasting positive correlations proposed for temperate forests. Mean heartwood density losses were consistently less than those in sapwood, and although heartwood extractives contents were as high as 16.4%, trait correlations were insignificant. Insect galleries contributed little to density loss (<3%), and DAS and lignin loss patterns indicated dominance by white rot fungi. This was often matched by dense fungal zone line patterns (spalting), outlining many small territories. Perhaps as a consequence, element patterns were spatially variable, with overall trends roughly similar to those from temperate studies (e.g., Ca gain, P, K loss). Estimated CO2 fluxes from logs ranged from ∼25 to 75% percent of annual fluxes from litter fall. This collectively implies an important role for wood decomposition in dry forest carbon cycling, and in our case, it shows an interesting pattern suggesting high decomposer spatial complexity but low functional diversity. 相似文献
17.
Water-stable aggregates and associated organic matter in forest,savanna, and cropland soils of a seasonally dry tropical region,India 总被引:5,自引:0,他引:5
The study was undertaken to quantify the distribution of soil in different size fractions of water-stable aggregates, and organic C, total N, and total P associated with these aggregates, along a gradient of forest-savanna-cropland in the Indian dry tropics. The effect of residue (wheat straw) amendment under dryland cultivation was also investigated. Proportions of macroaggregates (>0.3 mm) were highest in the forest and lowest in the cropland soil and ranged from 58–66% in forest, to 55% in savanna and 25–36% in cropland. In contrast, microaggregates (<0.3 mm) were highest in cropland (64–75%), followed by savanna (45%), and lowest in forest soil (34–42%). Organic C, total N, and total P associated with the macroaggregates ranged from 6.52–29.56, to 0.62–2.44 and 0.06–0.15 g kg-1 soil, respectively, while the respective values in microaggregates were 4.99–22.11, 0.42–2.01, and 0.07–0.19 g kg-1 soil. This study indicates that land-use changes (conversion of forest into savanna and cropland) reduce the organic matter input to the soil and the proportion of macroaggregates. The application of wheat straw did not significantly influence the organic C and total N levels (P>0.05) in the short term, although the proportion of macroaggregates increased, indicating an improvement in soil structure. Thus soil degradation after conversion of natural systems to cropland can be arrested up to some extent by residue input to the soil. 相似文献
18.
Kevin B. McTiernanMarie-Madeleine Coûteaux Björn BergMatty P. Berg Rosa Calvo de AntaAntonio Gallardo Werner KratzPietro Piussi Jean RemacleAmalia Virzo De Santo 《Soil biology & biochemistry》2003,35(6):801-812
The objective of this investigation was to assess the changes in chemical composition (lignin, cellulose, hemicelluloses, non-structural compounds, N, and ash) of decomposing litter. Standard Pinus sylvestris needle litter, originating from southern Sweden, was incubated in litterbags at 15 sites selected from the Netherlands to south Spain. The changes in chemical composition of this litter were determined using near infrared reflectance spectroscopy. The hypothesis was that standard (chemically uniform) litter decomposing under a range of climates would show different dynamics of accumulation and loss of C-fractions, N, and ash, relative to mass loss. It was shown that, for a given mass-loss value (10, 20, 30, 40, or 50%), the proportion of lignin, cellulose, hemicelluloses, non-structural compounds, N, and ash in the decomposing pine needles differed between sites. Lignin concentration in the litter residue at 50% mass loss ranged from approximately 26 to 43%, cellulose from 19 to 27%, hemicelluloses from 7 to 11%, non-structural compounds from 19 to 25%, N from 0.7 to 1.3%, and ash content from 1.4 to 10.1%. Lignin concentrations showed the highest range of variation. Lignin concentrations during decomposition were positively related to moisture factors as significant correlations were found with actual evapotranspiration and were improved in multiple regressions by the mean annual precipitation or the water surplus. Cellulose was degraded further at sites with high precipitation whereas hemicellulose degradation was related to temperature. This leads to the conclusion that the remaining organic matter produced by standard litter decomposition within the studied climatic range of variations tended to be more recalcitrant under wet and warm climatic conditions than under cold or dry climate. 相似文献
19.
T.Z. Dawes 《Pedobiologia》2010,53(4):241-246
This study examines changes in the abundance and diversity of soil macroinvertebrate taxa and soil water storage across different disturbance treatments in a tropical savanna woodland in northern Australia. Nine plots representing three habitat disturbance treatments (uncleared savanna woodland; 25-year-old regrowth following past clearing; cleared areas) were sampled for macrofauna using soil pits in April 2003. Sub-surface soil moisture (0-0.4 m) was measured at 0.1 m intervals over the 2002/2003 wet season. Termites represented 55% of total individuals sampled. Abundance of soil macrofauna was greatest in uncleared plots and lowest in cleared plots, with the latter treatment also having the lowest taxon diversity. Mean abundances of termites, earthworms and ants were greatest in uncleared treatment plots. Five termite species from four genera were present, with Microcerotermes nervosus constituting 47% of termite species identified. Of the wood-, grass- and polyphagous-feeding termites present, wood-feeding species were restricted to uncleared treatment plots and grass-feeders to regrowth treatment plots. A shift in termite nesting habits from epigeal to hypogeal was observed from uncleared to cleared treatments. Soil water storage was lowest in the dry season and highest during the monsoon, and varied significantly across habitat disturbance treatments at the start and end of the wet season. Cleared plots were least effective in the capture of the first wet season rains, and uncleared treatment plots showed the greatest capacity to retain soil water during the transition from wet to dry season. The negative effects of habitat disturbance on soil water storage may have been partially mediated by the observed changes in soil macrofauna, especially termites. 相似文献
20.
Effect of bamboo harvest on dynamics of nutrient pools,N mineralization,and microbial biomass in soil 总被引:1,自引:0,他引:1
A. S. Raghubanshi 《Biology and Fertility of Soils》1994,18(2):137-142
The effect of harvesting bamboo savanna on the dynamics of soil nutrient pools, N mineralization, and microbial biomass was examined. In the unharvested bamboo site NO
inf3
sup-
-N in soil ranged from 0.37 to 3.11 mg kg-1 soil and in the harvested site from 0.43 to 3.67 mg kg-1. NaHCO3-extractable inorganic P ranged from 0.55 to 3.58 mg kg-1 in the unharvested site and from 1.01 to 4.22 mg kg-1 in the harvested site. Over two annual cycles, the N mineralization range in the unharvested and harvested sites was 0–19.28 and 0–24.0 mg kg-1 soil month-1, respectively. The microbial C, N, and P ranges were 278–587, 28–64, and 12–26 mg kg-1 soil, respectively, with the harvested site exhibiting higher values. Bamboo harvesting depleted soil organic C by 13% and total N by 20%. Harvesting increased N mineralization, resulting in 10 kg ha-1 additional mineral N in the first 1st year and 5 kg ha-1 in the 2nd year following the harvest. Microbial biomass C, N and P increased respectively by 10, 18, and 5% as a result of bamboo harvesting. 相似文献