首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To determine whether infectious retrovirus was inactivated in bones from FeLV-infected cats after ethylene oxide (ETO) sterilization or preservation in a 98% solution of glycerol in an in vitro cell culture system. SAMPLE POPULATION: Metatarsal bones obtained from 5 FeLV-infected cats and cultured with feline fibroblast cells. PROCEDURE: Metatarsal bones were treated with 100% ETO, a 98% solution of glycerol, or left untreated. Twenty-five flasks of feline fibroblast cells were assigned to 5 groups: negative control, positive control, ETO-treated bone, glycerol-treated bone, and untreated bone with 5 replicates/group for 4 passages. Media and cell samples were harvested from every flask at each passage to measure FeLV p27 antigen and the number of copies of provirus per 100 ng of DNA, respectively. RESULTS: All negative control and ETO-treated group replicates were negative for FeLV p27 antigen and provirus throughout the study. All positive control group replicates were positive for FeLV p27 antigen and provirus at passages 1 to 4. Untreated bone group replicates were positive for FeLV p27 antigen at passages 3 and 4 and provirus beginning at passage 2. Glycerol-treated group replicates had delayed cell replication and were negative for FeLV p27 antigen and provirus at passages 1 to 4 and 2 to 4, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Ethylene oxide sterilization of bone from FeLV-infected cats appeared to abrogate transmission of infectious retrovirus and effectively sterilized bone allografts. Impact for Human Medicine-Additional studies to confirm effectiveness of ETO treatment of allograft tissues for prevention of pathogen transmission via transplantation are warranted.  相似文献   

2.
In felids, feline leukemia virus (FeLV) infection results in a variety of outcomes that range from abortive (virus readily eliminated and never detectable) to progressive infection (persistent viremia and viral shedding). Recently, a novel outcome was postulated for low FeLV infectious doses. Naïve cats exposed to faeces of persistently infected cats seroconverted, indicating infection, but remained negative for provirus and p27 antigen in blood. FeLV provirus was found in some tissues but not in the bone marrow, infection of which is usually considered a necessary stage for disease progression. To investigate the impact of low FeLV doses on young cats and to test the hypothesis that low dose exposure may lead to an unknown pathogenesis of infection without involvement of the bone marrow, 21 cats were infected oronasally with variable viral doses. Blood p27, proviral and viral loads were followed until week 20 post-infection. Tissue proviral loads were determined as well. The immune response was monitored by measuring FeLV whole virus and p45 antibodies; and feline oncornavirus-associated cell membrane antigen (FOCMA) assay. One cat showed regressive infection (transient antigenemia, persistent provirus-positivity, and seroconversion) with provirus only found in some organs at sacrifice. In 7 of the 20 remaining cats FOCMA assay positivity was the only sign of infection, while all other tests were negative. Overall, the results show that FeLV low dose exposure can result in seroconversion during a presumed abortive infection. Therefore, commonly used detection methods do not detect all FeLV-infected animals, possibly leading to an underestimation of the prevalence of infection.  相似文献   

3.
The purpose of this study was to determine if polymerase chain reaction (PCR) could be used to detect FeLV proviral DNA in bone marrow samples of cats with varying suspicion of latent infection. Blood and bone marrow samples from 50 cats and bone marrow from one fetus were collected, including 16 cats with diseases suspected to be FeLV-associated. Serum enzyme-linked immunosorbent assay (ELISA), blood and bone marrow immunofluorescent antibody test (IFA), and blood and bone marrow PCR were performed on each cat, and IFA and PCR on bone marrow of the fetus. Forty-one cats were FeLV negative. Five cats and one fetus were persistently infected with FeLV. Four cats had discordant test results. No cats were positive on bone marrow PCR only. It appears persistent or latent FeLV infection is not always present in conditions classically associated with FeLV.  相似文献   

4.
The purpose of this investigation was to characterize the shedding pattern of feline leukemia virus (FeLV) RNA in saliva, and to correlate it with the proviral load in whole blood, viral load in plasma, levels of p27 in saliva and plasma, the isolation of infectious FeLV from saliva, and the titers of FeLV-specific antibodies of the IgG and IgA isotypes. We evaluated 24 experimentally FeLV-infected cats for these parameters using real-time RT-PCR and PCR, cell culture assay and sandwich ELISA. We observed that shedding of viral RNA in saliva was a consistent feature in viremic cats. Latently FeLV-infected cats, displaying a very low proviral load, did not shed infectious virus in saliva, but occasionally shed viral RNA. Consequently, salivary shedding of FeLV RNA may not necessarily indicate a transmission potential for susceptible cats. This study also confirmed previous results from our laboratory, showing that a negative result for p27 in plasma, or for viral RNA in plasma or saliva does not exclude FeLV infection, considering that blood cells from those cats contained provirus. We also showed that FeLV RNA and DNA were stable for more than 64 days in saliva samples stored at room temperature. We conclude that the detection of FeLV RNA in saliva may be a useful indicator of viremia, and that the detection of salivary viral RNA by RT-PCR could become a reliable tool for the diagnosis of FeLV infection, which is facilitated by the low invasive method of collection of the samples.  相似文献   

5.
A blind randomized field trial of a commercial FeLV vaccine was conducted. Cats on study were vaccinated with either a commercial FeLV vaccine or a placebo, then housed with FeLV-positive cats in a ratio of approximately 2 study cats to 1 infected cat (results of the first 12 months of the study have been reported). All surviving placebo-treated and FeLV-vaccinated cats were re-vaccinated 1 year after initial exposure to FeLV-infected cats. Exposure continued for an additional 12 months, and the viremia status of the cats was monitored by immunofluorescent antibody (IFA) and ELISA testing at 4-month intervals. During the second year of observation, 1 additional FeLV-vaccinated cat had positive results of 2 consecutive ELISA tests, but remained IFA negative. Classifying this cat as persistently viremic reduced the estimate of the preventable fraction, but did not alter the conclusions drawn earlier, viz, that vaccination appreciably reduces the number of cats that become persistently viremic after long-term natural exposure.  相似文献   

6.
Background: Nonregenerative cytopenias such as nonregenerative anemia, neutropenia, and thrombocytopenia in cats with feline leukemia virus (FeLV) antigen are assumed to be caused by the underlying FeLV infection. In addition, cats with negative FeLV antigen-test results that have cytopenias of unknown etiology often are suspected to suffer from latent FeLV infection that is responsible for the nonregenerative cytopenias.
Objective: The purpose of this study was to assess the role of latent FeLV infection by polymerase chain reaction (PCR) in bone marrow of cats with nonregenerative cytopenias that had negative FeLV antigen test results in blood.
Animals: Thirty-seven cats were included in the patient group. Inclusion criteria were (1) nonregenerative cytopenia of unknown origin and (2) negative FeLV antigen test result. Antigenemia was determined by detection of free FeLV p27 antigen by ELISA in serum. Furthermore, 7 cats with positive antigen test results with nonregenerative cytopenia were included as control group I, and 30 cats with negative antigen test results without nonregenerative cytopenia were included as control group II.
Methods: Whole blood and bone marrow samples were tested by 2 different PCR assays detecting sequences of the envelope or long terminal repeat genes. FeLV immunohistochemistry was performed in bone marrow samples.
Results: Two of the 37 cats (5.4%) in the patient group were positive on the bone marrow PCR results and thus were latently infected with FeLV.
Conclusions and Clinical Importance: The findings of this study suggest that FeLV latency is rare in cats with nonregenerative cytopenias.  相似文献   

7.
Two techniques, leukoagglutination and indirect immunofluorescence, were adapted to test for the presence of antineutrophil antibody in cat serum. The leukoagglutination test was analogous to an indirect Coombs' test. The test was performed on freshly isolated cat blood neutrophils, with the test results read from stained smears (Wright's stain) made from sedimented antiserum-treated neutrophils. A positive test response was indicated by agglutinated neutrophils on the stained smear. The indirect immunofluorescence test was performed by incubating paraformaldehyde-fixed cat blood neutrophils with test serum, after which the neutrophils were stained with fluorescein isothiocyanate-tagged antiglobulin. A positive test response was a ring of fluorescence surrounding the cells, as viewed through a UV microscope. Serum samples (n = 55) from clinically neutropenic cats were tested for the presence of antineutrophil antibody by the indirect immunofluorescence technique. Ten positive-control sera (rabbit anti-cat neutrophil serum) and 10 negative-control sera (normal cat serum) were included. Only the positive control sera exhibited neutrophil fluorescence, indicative of antineutrophil antibody. None of the 55 samples of clinical origin showed any appreciable fluorescence.  相似文献   

8.
A procedure for measuring in vitro feline neutrophil chemotaxis was developed, using a modified Boyden chamber apparatus and 3-microns-pore polycarbonate filters. A pooled feline serum sample was used as the chemoattractant. Chemotaxis was evaluated in 5 groups of cats: group 1-specific-pathogen-free cats that had not been exposed to feline leukemia virus (FeLV); group 2-previremic, FeLV-infected, specific-pathogen-free cats; group 3-FeLV-viremic, subclinically affected cats; group 4-FeLV-viremic, clinically affected cats; and group 5-sick cats that were not infected with FeLV. Neutrophils from the viremic, clinically affected cats had significantly lower (P less than 0.025) chemotactic responses than did those from subclinically affected, viremic cats. Conversely, neutrophils from cats that were ill due to causes other than FeLV had the highest mean chemotactic values. Among the viremic, subclinically affected cats, a linear relationship was found between age and chemotaxis, indicating that impairment of neutrophil function may be greater in younger viremic cats. However, FeLV-infected cats can not be identified on the basis of neutrophil chemotaxis.  相似文献   

9.
Fifteen specific-pathogen-free cats were experimentally infected with FeLV; 8 cats recovered after transient or nondetectable viremia, and 7 cats became persistently viremic. Four additional cats served as noninfected controls. Antibodies to whole FeLV (ELISA and immunoblot [western] analysis), antibodies to fixed FeLV-infected cells, and virus-neutralizing antibodies were monitored for as long as 3 years after infection. As a group, cats that recovered after acute infection developed higher titer of these various antibodies than did cats that became persistently viremic. However, specific combination or titer of antibodies was not always found in recovered cats or in persistently viremic cats. Six cats that had recovered from acute FeLV infection nearly 3 years earlier were reinfected with the same virus. Three of the cats appeared to be resistant to reinfection, 2 cats became transiently viremic, and 1 cat became persistently viremic. Slight and transient anamnestic ELISA-detectable antibody response to whole virus was seen after reinfection; immunofluorescence- and western blot-detectable responses were not greatly enhanced. Five FeLV-recovered cats were monitored for 2 years; FeLV infection spontaneously recurred in 1 cat.  相似文献   

10.
11.
In a previous experiment a group of 15 specified pathogen free (SPF) cats were experimentally infected with a Swiss isolate of feline immunodeficiency virus (FIV). A group of 15 SPF cats served as FIV negative controls. Nine cats of each group were vaccinated with a recombinant feline leukemia virus (FeLV) vaccine, six cats in each group with a placebo vaccine. All vaccinated cats developed high antibody titers to FeLV and were protected against subsequent FeLV challenge infection. In both control groups five of six cats became persistently infected with FeLV. Unexpectedly, the primary immune response to the vaccine antigen was significantly higher in the FIV positive group than in the FIV negative. The secondary response was stronger in the FIV negative cats. The goal of the present investigation was to further study the immune response in these 30 cats. They were immunized twice with the synthetic peptide L-tyrosine-L-glutamic acid-poly(DL-alanine)-poly(L-lysine) (TGAL) 21 days apart. Blood samples were collected on four occasions during the immunization process. They were tested for antibodies to TGAL, complete blood cell counts and CD4+, CD8+ and pan-T-lymphocyte counts. The following observations were made: (1) in contrast to the FeLV vaccine experiment, the primary immune response to TGAL was not significantly stronger in the FIV positive cats when tested by enzyme-linked immunosorbent assay (2). The absolute size of the CD4+ lymphocyte population was distinctly smaller in the FIV positive than in the FIV negative cats. The lowest CD4+ values were found in the dually FIV/FeLV infected cats. (3) A population of CD8+ lymphocytes was identified that was characterized by a distinctly weaker fluorescence. The size of this population increased in FIV positive and decreased in FIV negative cats during the TGAL immunization experiment. (4) The CD4+:CD8+ ratio increased in FIV negative cats during TGAL immunization from 1.9 to 2.3. In contrast, in FIV positive animals the CD4+:CD8+ ratio decreased significantly from 1.9 to 1.3 during the same period. From these and earlier data it was concluded that in short-term FIV infection the immune response to T-cell dependent antigens may be increased over that of the controls. Immune suppression develops gradually with duration of the infection. The significant drop of the CD4+:CD8+ ratio over a 5 week immunization period suggests that antigenic stimulation may accelerate the development of immune suppression in FIV positive cats. If this is a general feature, FIV infection may provide a particularly interesting model for studying the pathogenesis of AIDS.  相似文献   

12.
Feline leukaemia virus status of Australian cats with lymphosarcoma   总被引:1,自引:0,他引:1  
OBJECTIVE: To determine the FeLV status of sera and tumours from Australian cats with lymphosarcoma in relation to patient characteristics, tumour characteristics (tissue involvement, histological grade and immunophenotype), haematological and biochemical values. DESIGN: Prospective study of 107 client-owned cats with naturally-occurring lymphosarcoma. PROCEDURE: An ELISA was used to detect FeLV p27 antigen in serum specimens collected from cats with lymphosarcoma. A PCR was used to detect FeLV DNA in formalin-fixed, paraffin-embedded tissue sections containing neoplastic lymphoid cells. The PCR was designed to amplify a highly conserved region of the untranslated long terminal repeat of FeLV provirus. RESULTS: Only 2 of 107 cats (2%), for which serum samples were available, were FeLV-positive on the basis of detectable p27 antigen in serum. In contrast, 25 of 97 tumours (26%) contained FeLV DNA. Of the 86 cats for which both PCR and ELISA data were available, 19(22%) had FeLV provirus in their tumours but no detectable circulating FeLV antigen in serum, while 2 (2%) had FeLV provirus and circulating FeLV antigen. FeLV PCR-positive/ELISA-negative cats (19) differed from PCR-negative/ELISA-negative cats (65) in having fewer B-cell tumours (P = 0.06), more non B-/non T-cell tumours (P = 0.02) and comprising fewer non-Siamese/Oriental pure-bred cats (P = 0.03). CONCLUSIONS: The prevalence of FeLV antigen or provirus was considerably lower in our cohort of cats compared with studies of lymphosarcoma conducted in the Northern hemisphere. This suggests that factors other than FeLV are important in the development of lymphosarcoma in many Australian cats. No firm conclusions could be drawn concerning whether FeLV provirus contributed to the development of lymphosarcoma in PCR-positive/ELISA-negative cats.  相似文献   

13.
Feline leukaemia virus (FeLV) can be a challenging infection to diagnose due to a complex feline host-pathogen relationship and occasionally unreliable test results. This study compared the accuracy of three point-of-care (PoC) FeLV p27 antigen test kits commonly used in Australia and available commercially worldwide (SNAP FIV/FeLV Combo, Witness FeLV/FIV and Anigen Rapid FIV/FeLV), using detection of FeLV provirus by an in-house real-time polymerase chain reaction (qPCR) assay as the diagnostic gold standard. Blood (n = 563) and saliva (n = 419) specimens were collected from a population of cats determined to include 491 FeLV-uninfected and 72 FeLV-infected individuals (45 progressive infections [p27 and qPCR positive], 27 regressive infections [p27 negative, qPCR positive]). Sensitivity and specificity using whole blood was 63% and 94% for SNAP Combo, 57% and 98% for Witness, and 57% and 98% for Anigen Rapid, respectively. SNAP Combo had a significantly lower specificity using blood compared to the other two kits (P = 0.004 compared to Witness, P = 0.007 compared to Anigen Rapid). False-positive test results occurred with all three kits using blood, and although using any two kits in parallel increased specificity, no combination of kits completely eliminated the occurrence of false-positive results. We therefore recommend FeLV proviral PCR testing for any cat that tests positive with a PoC FeLV antigen kit, as well as for any cat that has been potentially exposed to FeLV but tests negative with a FeLV antigen kit, before final assignment of FeLV status can be made with confidence. For saliva testing, sensitivity and specificity was 54% and 100%, respectively, for all three test kits. The reduced sensitivity of saliva testing compared to blood testing, although not statistically significant, suggests saliva testing with the current generation of PoC FeLV antigen kits is unsuitable for screening large populations of cats, such as in shelters.  相似文献   

14.
In the past, feline leukaemia virus (FeLV) infection, and also latent FeLV infection, were commonly associated with lymphoma and leukaemia. In this study, the prevalence of FeLV provirus in tumour tissue and bone marrow in FeLV antigen-negative cats with these tumours was assessed. Seventy-seven diseased cats were surveyed (61 antigen-negative, 16 antigen-positive). Blood, bone marrow, and tumour samples were investigated by two polymerase chain reaction (PCR) assays detecting deoxyribonucleic acid (DNA) sequences of the long terminal repeats (LTR) and the envelope (env) region of the FeLV genome. Immunohistochemistry (IHC) was performed in bone marrow and tumour tissue. None of the antigen-negative cats with lymphoma was detectably infected with latent FeLV. The prevalence of FeLV viraemia in cats with lymphoma was 20.8%. This suggests that causes other than FeLV play a role in tumorigenesis, and that latent FeLV infection is unlikely to be responsible for most feline lymphomas and leukaemias.  相似文献   

15.
Cats exposed to feline leukemia virus (FeLV), a naturally occurring gammaretrovirus develop either progressive or regressive infection. Recent studies using analyses with enhanced sensitivity have correlated loads throughout FeLV with the clinical outcome, though remarkably, during the acute phase of infection, proviral and viral RNA burdens in the peripheral blood do not differ between groups. We hypothesized that viral loads in specific leukocyte subsets influence the infection outcome. Using a method established to determine the proviral and cell-associated viral RNA loads in specific leukocyte subsets, we evaluated viral loads in eleven FeLV-exposed specific pathogen-free (SPF) cats 2.5 years post-infection. Six cats had undergone regressive infection whereas five were persistently viremic. Aviremic cats had lower total proviral blood loads than the persistently infected cats and FeLV proviral DNA was shown to be integrated into genomic DNA in four out of four animals. Lymphocytes were predominantly infected vs. moncytes and granulocytes in aviremic cats. In contrast, persistently viremic cats were provirus-positive in all leukocyte subsets. The acute phase kinetics of FeLV infection were analyzed in two additional cats; an early lymphoreticular phase with productive infection in lymphocytes in both cats and in monocytes in one cat was followed by infection of the granulocytes; both cats became persistently infected. These results indicate that FeLV persistent viremia is associated with secondary viremia of bone marrow origin, whereas regressive cats only sustain a non-productive infection in low numbers of lymphocytes.  相似文献   

16.
《Veterinary microbiology》2015,175(2-4):167-178
Cats persistently infected with the gammaretrovirus feline leukemia virus (FeLV) are at risk to die within months to years from FeLV-associated disease, such as immunosuppression, anemia or lymphoma/leukemia. The integrase inhibitor raltegravir has been demonstrated to reduce FeLV replication in vitro. The aim of the present study was to investigate raltegravir in vivo for its safety and efficacy to suppress FeLV replication. The safety was tested in three naïve specified pathogen-free (SPF) cats during a 15 weeks treatment period (initially 20 mg then 40 mg orally b.i.d.). No adverse effects were noted. The efficacy was tested in seven persistently FeLV-infected SPF cats attained from 18 cats experimentally exposed to FeLV-A/Glasgow-1. The seven cats were treated during nine weeks (40 mg then 80 mg b.i.d.). Raltegravir was well tolerated even at the higher dose. A significant decrease in plasma viral RNA loads (∼5×) was found; however, after treatment termination a rebound effect was observed. Only one cat developed anti-FeLV antibodies and viral RNA loads remained decreased after treatment termination. Of note, one of the untreated FeLV-A infected cats developed fatal FeLV-C associated anemia within 5 weeks of FeLV-A infection. Moreover, progressive FeLV infection was associated with significantly lower enFeLV loads prior to infection supporting that FeLV susceptibility may be related to the genetic background of the cat. Overall, our data demonstrate the ability of raltegravir to reduce viral replication also in vivo. However, no complete control of viremia was achieved. Further investigations are needed to find an optimized treatment against FeLV. (250 words)  相似文献   

17.
Although it is assumed that fecal shedding of feline leukemia virus (FeLV) constitutes a transmission potential, no study has been performed showing that feces of infected cats can be a source of infection. In this study, we investigated fecal viral shedding of FeLV and its role in viral pathogenesis with the goal to improve infection control. FeLV RNA and DNA levels were determined in rectal swabs of experimentally infected cats by real-time PCR, and the results were correlated with proviral and viral loads in whole blood and plasma, respectively, and plasma p27 levels. All antigenemic cats shed FeLV RNA and DNA in feces. To determine whether the viral RNA detected was infectious, virus isolation from feces was also performed. Infectious virus was isolated from feces of antigenemic cats, and these results perfectly correlated with the isolation of virus from plasma. Na?ve cats exposed to these feces seroconverted, showing that infection through feces took place, but remained negative for the presence of FeLV provirus and p27 in blood, an outcome so far not described. Some of the organs collected after euthanasia were provirus positive at low copy numbers. From these results it is concluded that fecal shedding of FeLV plays a role in transmission, but it is probably of secondary importance in viral pathogenesis. Nevertheless, sharing of litter pans by susceptible and viremic cats could increase the environmental infectious pressure and appropriate measures should be taken to avoid unnecessary viral exposure.  相似文献   

18.
FeLV infection is still considered to account for most disease-related deaths in pet cats. Different treatment attempts with various drugs were performed in the past but none resulted in healing or complete virus elimination. Therefore, it caused a sensation when Horber and Mayr [Horber, D., Mayr, B., 1991. Prax. 19, 311-314; Horber, D., Schnabl, W., Mayr, B., 1992. Tierarztl. Umschau 47, 556-560; Mayr, B., Horber, D., 1992. Kleintierprax. 37, 515-518] published that they were able to cure 80 to 100% FeLV-infected cats from viremia by using an immunomodulating compound. Articles in cat breeder and cat owner journals appeared assuming that obviously there is a rescue for FeLV-infected cats suffering from this deadly infection. The immunomodulator [Buttner, M., 1993. Comp. Immun. Microbiol. Infect. Dis. 18, 1-10] used in those studies was the so-called 'paramunity inducer' PIND-ORF (Baypamun, Bayer, Leverkusen, Germany) consisting of inactivated parapox ovis virus. Since that time, Baypamun is the most commonly used drug for treatment of FeLV infection in Germany and other European countries. Four placebo-controlled double-blind trials were performed to determine the therapeutic efficacy of Baypamun and other compounds in naturally FeLV-infected cats under controlled conditions.  相似文献   

19.
20.
Infection with feline leukemia virus (FeLV) was demonstrated immunohistologically in 218 necropsied cats suffering from enteritis. The animals were divided into three groups according to histopathological criteria. The first group exhibited the signs of feline panleukopenia in intestine, lymphoid tissues, and bone marrow. Only 1.6% of these animals were FeLV-infected. The animals of the second group had histopathological alterations as seen in cats suffering from feline panleukopenia, but these were found only in the intestine and not in lymphoid tissues or bone marrow. Of these 71.9% were infected with FeLV. The third group consisted of all other cats suffering from enteritis of which 6.3% were FeLV-positive. The association between FeLV infection and the lesions seen in the animals of group 1 (feline panleukopenia) and group 3 (other types of enteritis) is statistically not significant whereas the alterations exhibited by the cats of group 2 are significantly FeLV-associated. Cats with FeLV-associated enteritis (group 2) are of a mean age of about 2.5 years and are significantly older than animals with feline panleukopenia which are of a mean age of about half a year. Thus a FeLV-associated enteritis exists as a histopathologically recognizable condition which sometimes might be mistaken for feline panleukopenia in routine post-mortem investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号