首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
【目的】为揭示不同根序的根系形态及碳氮磷化学计量特征在林木不同生长阶段的差异。【方法】以华西雨屏区中龄林(13 a)、成熟林(33 a)和过熟林(53 a)的柳杉人工林为研究对象,对比分析不同林龄柳杉1~5级的根系形态和根功能模块的碳氮磷化学计量特征。【结果】(1)随林龄增加,柳杉1~5级细根直径、比根长和比表面积整体上分别呈先增后减,先减后增和逐渐降低的趋势,而根组织密度则无明显变化规律;随根序增加,同一林龄细根直径整体呈增加趋势,而比根长和比表面积均逐渐降低。(2)随林龄增加,柳杉细根碳含量整体呈先增后减的趋势,磷含量、碳氮比和碳磷比呈先减后增的规律,氮磷比无显著变化。并且,吸收根的氮含量整体高于运输根,运输根的碳含量、碳氮比和碳磷比均高于吸收根。(3)细根碳含量与磷含量呈显著负相关,与碳氮比、碳磷比呈显著正相关。氮含量与磷含量、氮磷比、比根长和比表面积显著正相关,与碳氮比、碳磷比、直径和组织密度显著负相关。【结论】柳杉人工林细根形态和化学计量特征在不同生长阶段和根序上均具有较强的可塑性。研究结果有助于深入认识林木资源吸收策略与养分平衡规律,可为人工林的可持续经营与管理提供理论依据...  相似文献   

2.
次生代谢产物小檗碱、掌叶防己碱和药根碱是黄檗中重要的药用生物碱,本研究在吉林省5 个林业局选取了65 株不同年龄的天然黄檗,利用反相高效液相色谱法研究了黄檗多器官中3 种生物碱含量的季节差异。结果表明:小檗碱在根皮、多年生枝、当年生枝和叶中的季节差异显著,各器官中小檗碱含量夏季最低(叶除外);叶中小檗碱含量,在各个龄组均表现为从春到秋含量依次升高,变化幅度在0.017 ~0.124 mg/ g 之间;小檗碱在根皮中最高, 平均值达到24.27 mg/ g,其余依次是茎皮、多年生枝皮、当年生枝和叶片。掌叶防己碱在根皮、茎皮、当年生枝、叶和幼龄阶段的多年生枝皮中的季节差异显著,秋季含量最高(叶除外);叶中掌叶防己碱含量,在各个龄组均表现为春季最高;掌叶防己碱在茎皮中含量最多,平均值为7.02 mg/ g,其余含量由大到小依次是多年生枝皮、根皮、当年 生枝和叶。药根碱在茎皮、多年生枝皮、当年生枝、叶和成熟阶段的根皮中的季节差异显著,多数器官夏季含量最 低;叶中药根碱含量,在各个龄组均表现为春季最高;药根碱在各个器官中的分布规律与小檗碱一致,根皮中含量最高,平均值为0.84 mg/ g,其余含量由大到小依次是茎皮、多年生枝、当年生枝叶。   相似文献   

3.
雷州半岛不同林龄桉树人工林土壤化学计量特征   总被引:1,自引:0,他引:1  
【目的】理解尾巨桉人工林土壤有机碳、全氮、全磷和全钾含量及其化学计量学特征随林龄(1、2、3、5、7年生)的变化,为研究尾巨桉人工林可持续发展提供理论基础。【方法】运用空间代时间的研究方法,选取立地条件相近的5个林龄的林分,在各林分内设置3块样地,采用5点法分层取样,测定土壤有机碳、全氮、全磷和全钾含量,并计算不同元素之间的计量比。【结果】尾巨桉人工林表层土壤(0~20 cm)的有机碳含量随着林龄增加而增加,但不同林龄表层土壤的全氮含量差异不显著。5年生林地全磷与全钾含量均低于或显著低于(P0.05)其他各林龄;不同林龄林下土壤有机碳和全氮含量均随土层深度增加而下降,土壤全磷及全钾含量随土层深度变化未产生显著差异;随林龄增加,表层土壤碳氮比、碳磷比有增加趋势,土壤磷钾比、碳钾比、氮钾比随着林龄的增加呈现先降低后升高的变化趋势,不同林龄间土壤氮磷比未产生显著差异;相关分析表明:土壤有机碳与土壤全氮、全磷含量呈极显著正相关(P0.01),土壤全氮、全磷及全钾含量间相关性均不显著(P0.05)。【结论】研究区尾巨桉中幼龄期林下土壤碳氮循环速率较低,随林龄增加,土壤有机质矿化速率有所下降。5个林龄土壤磷元素含量较充足,氮元素成为主要限制因子。  相似文献   

4.
【目的】探讨铅(Pb)胁迫对杉木幼苗生长与营养元素吸收的影响及Pb的富集与转移特性。【方法】以1年生杉木幼苗为试验材料,采用盆栽试验,设置0(CK)、250 mg/kg(T1)、500 mg/kg(T2)、750 mg/kg(T3)、1 000 mg/kg(T4)和1 500 mg/kg(T5))Pb胁迫处理,测定不同处理杉木幼苗的形态(株高、地径)、生物量、叶片光合色素含量及各器官(吸收根、运输根、主干、枝、叶)中氮(N)、磷(P)、钾(K)、Pb含量,计算各器官的Pb富集系数和不同处理的Pb转运系数。【结果】①随着土壤中Pb含量的增加,杉木幼苗株高、地径净生长量以及总生物量均呈先升高后下降的趋势,但各处理株高净生长量与CK之间均无显著差异,T4、T5处理地径净生长量和总生物量与CK差异达到显著水平。②随着土壤中Pb含量的增加,叶绿素a、叶绿素b和总叶绿素含量呈先升后降的趋势,其中T5处理的叶绿素a和总叶绿素含量显著小于CK,其余各处理与CK无显著差异,各处理间叶绿素b和类胡萝卜素含量无显著差异。③随着土壤中Pb含量的增加,杉木幼苗各器官的N、K元素含量均呈先升高后下降的趋势;而地下部分P元素含量总体呈上升趋势,地上部分则呈先上升后下降趋势,吸收根、运输根、枝、叶P元素含量均显著大于CK。④随着土壤中Pb含量的增加,杉木幼苗各器官中Pb含量呈上升趋势,且在同一Pb胁迫处理下,各器官Pb含量由大到小依次为吸收根、运输根、主干、叶、枝。⑤随着土壤中Pb含量的增加,杉木幼苗各器官Pb富集系数总体呈先升高后下降的趋势,各处理间Pb转运系数无显著差异。【结论】杉木幼苗对Pb的转运能力有限,但在低含量Pb胁迫环境中生长受到促进,由于杉木生长迅速,因此可将其作为低含量Pb污染地区的造林树种。  相似文献   

5.
以栽培性状较好的红杆铁皮石斛为研究对象,分析其茎、叶不同生长期碳、氮、磷含量在不同季节的生态化学计量变化特征。结果表明:茎中碳、氮、磷含量的变异系数分别为13.71%、24.99%和29.71%,叶中则为4.99%、9.83%和10.42%。茎中碳氮比、碳磷比和氮磷比的变异系数分别为34.38%、46.53%和21.13%,叶中则分别为11.15%、13.20%和8.54%。氮和磷含量在茎、叶中分别呈极显著正相关,氮磷比大小主要受控于磷含量。3—5月碳氮比和碳磷比较高,是铁皮石斛收获的最佳时期。铁皮石斛茎中碳、氮、磷含量及其计量比随季节变化均比叶中变化大。因此茎中碳、氮、磷含量是衡量铁皮石斛养分变化及获取最高碳收益的重要评价指标。  相似文献   

6.
【目的】探讨长期施肥下紫色水稻土氮、磷养分活化能力及其与 pH 和有机碳的量化关系,为土壤 培肥提供参考。【方法】选取连续 36 年不施肥的低肥力(LF)、氮磷钾平衡施肥的中肥力(MF)和有机无机 配施的高肥力(HF)处理,研究不同肥力土壤氮磷养分含量及其活化度的演变特征,分析土壤 pH、有机碳与氮 磷活化度的关系。【结果】MF 和 HF 土壤的作物产量显著高于 LF 土壤。LF 土壤全氮、全磷含量基本稳定,碱 解氮含量显著增加而有效磷含量略有降低,MF 和 HF 土壤全氮、全磷、碱解氮和有效磷含量均呈极显著增加趋势; LF、MF、HF 土壤全氮含量年增加量分别为 5.5、14.2、17.0 mg/kg,碱解氮年增量为 0.40、1.05、1.32 mg/kg, 全磷年增量为 0.8、17.1、18.0 mg/kg,有效磷年增量为 -0.03、2.05、1.85 mg/kg。MF 和 HF 土壤氮磷活化度 比 LF 土壤提高 8.15%~428.77%;氮活化度与 pH 和有机碳不存在线性关系,磷活化度与 pH 呈极显著负相关, 与有机碳呈显著正相关。年施 N 240 kg/hm2 、P2 O5 120 kg/hm2 ,氮含量于 13 年后、磷含量于 9 年后达到饱和。 【结论】氮磷钾平衡施肥或有机无机肥配施是提升西南丘陵区水稻土氮磷养分含量及其活化能力的重要措施。  相似文献   

7.
【目的】研究氮磷钾用量及配比对黄瓜矿质元素吸收和产量的影响,为黄瓜的优化施肥和产量的提高提供理论依据。【方法】春季在拱圆大棚内,以"中农2号"黄瓜品种为试材,采用无机基质栽培方式,研究浇灌氮磷钾用量和配比不同的营养液对黄瓜功能叶片矿质元素含量和黄瓜产量的影响。【结果】钾肥施用量和配比不变的条件下,增加氮磷用量,可使黄瓜叶片中的氮磷含量升高,但钾含量降低;随着钾肥施用量的增多,促进了黄瓜叶片对钾的吸收,抑制了对氮磷的吸收。增加氮的用量和配比可以提高黄瓜叶片中的镁、钙和锌含量,而铁含量呈先升高后降低的趋势;增加磷和钾的用量和配比均抑制了黄瓜叶片对钙、镁与锌的吸收,促进了对铁的吸收;氮、磷对锰的吸收起到了协同增效作用,钾对锰的吸收具有拮抗作用。增加氮磷的用量和配比可显著提高黄瓜的单果质量、单株结果数和单株产量,而增加钾的用量和配比却未表现出明显的增产效应。【结论】为促进黄瓜对矿质元素的吸收和产量的提高,要合理施用氮磷钾肥料,在本试验条件下,氮磷钾用量配比为2∶2∶1.2(N 196 mg/L、P 196 mg/L、K 117.5mg/L)时,黄瓜产量最高。  相似文献   

8.
红花对氮磷钾的吸收与分配规律研究   总被引:1,自引:0,他引:1  
【目的】研究红花(Carthamus tinctoricus L.)对氮、磷、钾的吸收特征,为红花科学施肥提供依据。【方法】在大田条件下,以红花3个株系(2-3、H-7、BH-1)为材料,采用完全随机试验设计,研究幼苗期、花蕾期和成熟期红花不同器官对氮、磷、钾的吸收与分配规律,并分析氮、磷、钾累积量与产量的关系。【结果】幼苗期氮素以叶中较高,磷素和钾素含量均以茎、叶较高;与幼苗期相比,花蕾期根、茎、叶中氮、磷、钾含量下降,转移到花和蕾等器官中;成熟期根、茎、叶中氮、磷、钾含量持续下降,养分转移到种子和苞叶等器官中,氮的分布特征表现为种子叶苞叶根茎,磷的分布特征表现为种子苞叶叶根茎,钾的分布特征表现为苞叶种子根茎叶。同一生育期,不同红花材料的氮、磷、钾累积量有明显差异。苗期氮、磷、钾累积量较低,花蕾期迅速增加,成熟期持续增加。从花、籽粒中氮、磷、钾累积量占花蕾期、成熟期对应养分累积量的比例可知,红花花对磷、钾的需求量大于氮;红花籽粒对磷的需求量最大,其次为氮和钾。【结论】植株体内养分含量随红花的生长而变化,养分累积量表现为钾氮磷,干花和籽粒产量与氮、磷、钾累积量有明显关系,花蕾期对磷钾需求量大,成熟期对磷氮需求量大。  相似文献   

9.
不同种植年限蔬菜地土壤养分变化规律研究   总被引:3,自引:0,他引:3  
【目的】调查西双版纳地区蔬菜主要种植基地的土壤养分状况,为蔬菜地土壤养分的合理、科学管理提供理论依据。【方法】通过田间调查与取样分析相结合的方法进行。【结果】1随种植水稻年限的延长,土壤pH值和土壤碱解氮含量呈逐年平缓下降趋势,土壤有机质、有效磷和速效钾含量均呈逐年平缓增加趋势,土壤有效养分逐年平衡;2随种植蔬菜年限的延长,土壤pH值、有机质含量均呈逐年显著下降趋势,而且种植蔬菜年限越长,下降趋势越显著。土壤碱解氮、有效磷和速效钾含量呈极显著上升趋势,而且种植年限越长,平均每年增加量越大;3种植蔬菜的土壤,在氮、磷、钾三种元素中,土壤有效磷平均每年增加率最大,速效钾次之,碱解氮最小,导致土壤有效养分失衡。【结论】种植蔬菜导致土壤有机质含量逐年减少,土壤酸性逐年增强,土壤中氮、磷、钾有效养分含量逐年增加,且养分失衡。  相似文献   

10.
【目的】为糜子氮、磷高效利用种质资源筛选提供依据.【方法】对来自不同生态区的5个糜子品种全生育期内氮、磷累积、分配规律及利用效率进行研究.【结果】糜子植株中氮、磷含量从苗期至成熟期均呈逐渐下降的趋势.品种间氮积累量在不同生育期差异显著;品种间磷积累量,除抽穗期差异不显著,其余生育期均差异显著.糜子品种间产量及氮、磷利用效率差异显著.‘榆糜3号’产量及氮磷利用效率均最高,分别是806.67 kg/hm~2,7.68 kg/kg和53.14 kg/kg;‘晋黍8号’产量最低,为240.83 kg/hm~2;‘宁糜17号’氮和磷利用效率最低,分别为2.73 kg/kg和25.14 kg/kg.‘榆糜3号’的产量及氮磷利用效率比同条件下最低品种的产量、氮和磷利用效率分别提高了234.95%、181.32%和111.38%.【结论】在半干旱条件下,糜子氮磷积累量、利用效率、生产效率与籽粒产量显著正相关.综合分析各项指标表明,‘榆糜3号’是5个参试品种中产量最高,氮磷利用效率最高的品种.  相似文献   

11.
【目的】揭示子午岭林区不同发育阶段油松人工林土壤理化性质的变化规律,为该地区油松人工林的地力维护提供理论依据。【方法】采用典型样地调查方法,在甘肃省正宁县中湾林场,以荒坡为对照,测定不同发育阶段(幼龄林、中龄林、近熟林、成熟林)油松人工林土壤的物理性质和主要养分含量,并对各指标进行相关性分析。【结果】在油松人工林不同发育阶段,土壤含水量变化不明显;成熟林阶段土壤体积质量和孔隙度明显优于荒坡和其余各发育阶段林地;随林龄的增长,土壤有机质、全氮含量呈上升趋势,土壤pH逐渐下降,速效磷、速效钾、硝态氮、铵态氮呈波动变化;相关性分析发现,土壤有机质、全氮和pH之间均存在相关性,其中有机质与全氮极显著正相关,pH与有机质、全氮显著负相关。【结论】从土壤持续发育的过程来看,在黄土高原子午岭林区营造油松人工林可以使林地土壤的理化性质得到持续改善,土壤养分进一步增加。  相似文献   

12.
通过对福建省惠安县不同林龄短枝木麻黄人工林不同发育阶段小枝单宁含量及氮磷再吸收率的研究,探讨了短枝木麻黄林分发育过程中的营养保存策略。结果表明,幼龄林(5年生)成熟小枝中的总酚(TP)、可溶性缩合单宁(ECT)总缩合单宁(TCT)含量及蛋白质结合能力(PPC)显著高于成熟林(21年生)和衰老林(38年生)。随着林分发育,成熟小枝中N含量显著升高,而P含量呈降低趋势。不同发育阶段林分成熟小枝中N:P比均大于20,且随着林龄的增加而升高。磷再吸收率(PRE)显著高于氮再吸收率(NRE),均以成熟林分最高。这表明短枝木麻黄小枝单宁含量与养分再吸收受林龄影响,其养分保存机制会随着林分生长发育的变化而进行调节。  相似文献   

13.
【目的】研究不同海拔梯度金佛山方竹林土壤化学计量、笋产量特征及关系,阐明其对海拔变化的响应规律。【方法】选取四川盆地南缘古蔺县3种海拔梯度(1 400~1 600 m、1 600~1 800 m和1 800~2 000 m)金佛山方竹林为研究对象,测定土壤碳、氮、磷含量及笋产量,计算土壤生态化学计量特征。【结果】①随海拔升高,土壤有机碳、全氮、全磷含量呈增加趋势(13.03~65.35 g/kg,1.63~5.57 g/kg,0.2~1.27 g/kg),全钾含量随海拔梯度升高呈先减少后增加趋势(12.69~19.90 g/kg)。依据全国第二次土壤普查养分分级标准,研究区土壤有机碳、全氮和全磷含量在高海拔地区含量处于高水平,而全钾在不同海拔分布均处于中等水平。②随海拔升高,土壤C/N、C/P和N/P均呈先增加后减小趋势(8.17~13.57,52.99~131.66,4.56~9.77),不同海拔梯度间差异显著(P<0.05),土壤化学计量特征较土壤养分含量对海拔变化的响应敏感,该区主要缺磷区域集中在低海拔地区,相对富磷区域集中在高海拔地区。③笋产量随海拔梯度升高表现为先减小后增加的趋势(496.88~1 966.88 kg/hm~2),笋产量与全磷、有效磷呈极显著正相关,与水解性氮呈显著正相关,与C/P、N/P呈极显著负相关,金佛山方竹林土壤磷含量是影响笋产量的主要因素。【结论】3个海拔土壤养分、土壤化学计量比和笋产量差异明显,1800~2000m立地条件下笋产量较高,土壤磷含量对笋产量影响显著。  相似文献   

14.
【目的】为探明香根草在煤矸石山生长的养分利用状况、生态适应策略及利用香根草进行煤矸石的植被恢复提供理论依据。【方法】以贵州省六盘水大河煤矿煤矸石山种植年限为4、5、8、15年的香根草为研究对象,分别对其根、茎、叶的氮(N)、磷(P)、钾(K)化学计量特征进行研究。【结果】①随着种植年限延长,根、茎、叶中N和K含量变化不显著,茎、叶中P含量逐渐减少;②4个种植年限的香根草不同器官中养分含量均表现为根部较少,茎、叶部分较多;③不同种植年限香根草根、茎、叶中N∶P值均小于14,随着种植年限延长,叶中N∶K呈小幅度升高趋势,茎、叶中P∶K呈降低趋势;④根、茎、叶中N、P、K含量及化学计量比基本存在显著或极显著的相关关系。【结论】香根草在煤矸石山生长过程中主要受N限制;为了适应其恶劣的环境条件,将自身的养分调节、限制在最低养分需求水平并维持动态平衡;地上部分养分含量分配较多,以此保证其能在煤矸石山上正常生长。  相似文献   

15.
植物叶片功能性状及其相互关系越来越受到关注.以松嫩草地66种草本植物为研究对象,测量叶片干物质含量、比叶面积、叶片厚度、叶片氮含量、叶片磷含量、叶绿素含量和类胡萝卜素含量,检验性状间的相互关系,比较不同功能群(多年生根茎禾草,多年生丛生禾草,多年生杂类草,1年生或2年生草本)间性状的差异性.结果表明,叶片厚度变异系数最大,比叶面积、叶片氮含量、叶片磷含量、叶绿素含量和类胡萝卜素含量之间存在显著的正相关关系;叶片于物质含量与叶片磷含量没有显著的相关关系,与其它叶片性状呈显著的负相关关系;叶片厚度只与叶片干物质含量和比叶面积呈显著的负相关关系,与其它叶片性状不相关.叶片干物质含量、比叶面积、叶片厚度、叶片氮、磷含量在4个功能群间差异显著,叶绿素含量和类胡萝卜素含量在各个功能群间差异不显著;多年生根茎禾草和多年生丛生禾草叶片的7个性状差异不显著;多年生根茎禾草和多年生丛生禾草的叶片干物质含量高于多年生杂类草和1年生或2年生草本,其它性状小于这两个功能群.  相似文献   

16.
【目的】 分析棉花生育前期氮素吸收分配与氮效率将有助于棉花生产中氮肥基施和追施的分配以及氮肥利用率的提高。【方法】 以新陆早45号和新陆早48号为材料,采用营养液培养的方法,设置6个供氮水平(0、7.5、10、15、17.5、30 mmol/L,分别以N0、N7.5、N10、N15、N17.5、N30表示),培育43 d后将其收获。测定棉花各器官干物质量、氮素积累量、氮吸收效率、氮利用效率以及磷素和钾素积累量等指标。【结果】 棉花幼苗各干物质量、单株氮含量、地上部分氮含量、氮积累量、氮吸收效率以及磷素和钾素积累量均随氮浓度的增加呈先升高后降低的趋势;根冠比和氮利用效率均随氮浓度的增加而降低。氮水平在17.5 mmol/L时显著增加了根和地上部干物质量,但降低了棉花根冠比。17.5 mmol/L的氮水平显著提高了棉花地上部分氮含量、单株氮含量、积累量和吸收效率以及磷和钾积累量,但降低了氮的利用效率。新陆早48号各测定指标显著高于新陆早45号。【结论】 营养液中有助于棉苗各生长指标增长的氮素浓度为17.5 mmol/L。适合机采的Ⅰ式果枝新陆早48号较不适合机采的Ⅱ式果枝新陆早45号长势更强。  相似文献   

17.
【目的】了解外源氮、磷添加后云南松苗木各器官及土壤中氮、磷、钾化学计量比的变化特征,为云南松苗木培育过程中养分的合理管理提供依据。【方法】以2年生云南松苗木为试材,设置氮、磷配施试验,每种肥料设置3个施肥水平,氮肥的施用水平为0,0.4和0.8 g/株,磷肥的施用水平为0,0.8和1.6 g/株,共9个施肥处理组合。施肥后2,4,6个月分别测定苗木根、茎、叶及土壤的氮(N)、磷(P)、钾(K)含量,计算N∶P、N∶K、K∶P,探讨施肥对云南松苗木 土壤氮、磷、钾化学计量比的影响。【结果】施肥处理后2,4,6个月,9个施肥处理组合的云南松苗木根、茎、叶平均N∶P分别为2.85~4.30,3.60~5.12和5.18~6.65,总体上表现为氮受限,其中根的平均N∶P以氮肥0.8 g/株+磷肥0.8 g/株处理最小,茎、叶的平均N∶P以氮肥0.4 g/株+磷肥0.8 g/株处理最小;平均K∶P分别为3.72~5.87,5.04~7.26和5.62~7.71,均以氮肥0.4 g/株+磷肥0.8 g/株处理最小;平均N∶K分别为0.71~0.78,0.71~0.74和0.89~0.93,总体上均以氮肥 0.4 g/株处理最大。根、叶N∶P、K∶P随苗木的生长呈现降低趋势,茎N∶P、K∶P表现为先降低后升高的趋势;根、叶N∶K随苗木的生长呈现出先降低后增加的趋势,茎N∶K呈现增加趋势。施肥后2,4,6个月各施肥处理组合土壤的平均N∶P、N∶K和K∶P分别在3.48~4.58,0.70~0.74,4.93~6.52内波动,随着时间推移,N∶P、K∶P呈现先降低后增加的趋势,N∶K呈增加趋势。氮、磷配施改变了苗木与土壤的相关关系,且这种关系存在明显的时间变异,施肥处理后2个月内云南松苗木各器官与土壤化学计量间无明显的相关关系,而随时间延长,呈显著相关关系。【结论】综合来看,氮、磷配施改变了苗木及土壤的氮、磷、钾化学计量比,表现为降低了苗木及土壤的N∶P、K∶P,提高了苗木及土壤的N∶K。随着时间变化,N∶P、K∶P总体上呈现出降低的趋势,N∶K呈现出逐渐增加的趋势,表明氮限制有加剧趋势。  相似文献   

18.
【目的】探讨Cd胁迫对巨桉幼树生长和营养元素吸收的影响及巨桉对Cd的富集特征。【方法】2018年5-9月,以1年生巨桉幼树为试验材料,采用盆栽试验,设置5个Cd含量处理,即0 mg/kg(CK)、12.5 mg/kg(T1)、25 mg/kg(T2)、50 mg/kg(T3)、100 mg/kg(T4),10月测定各处理植株的株高、地径并收获全株,测定各器官(吸收根、运输根、主干、枝条、叶)的生物量以及氮、磷、钾、Cd含量,计算各器官的Cd富集系数以及不同处理Cd转运系数。【结果】(1)随着Cd含量的增加,巨桉幼树株高、地径净生长量均呈下降趋势,且T2~T4处理与CK差异达到显著水平;各处理总生物量与CK之间均无显著差异。(2)随着Cd含量的增加,巨桉幼树各组织器官内N、P、K元素含量总体呈降低趋势。(3)随着Cd含量的增加,植株各器官中Cd含量总体均呈增加趋势,且在同一Cd处理水平下,各器官Cd含量由大到小的顺序为吸收根>运输根>主干>枝条>叶。(4)随着Cd含量的增加,吸收根的Cd富集系数总体呈增加趋势,运输根的Cd富集系数呈先增加后降低的趋势,主干、枝条和叶的Cd富集系数无明显变化规律。随着Cd含量的增加,Cd转运系数呈下降趋势。【结论】巨桉幼树对Cd的转运能力有限,但其生长迅速,即使在高含量Cd胁迫下生长并未受到明显抑制,说明巨桉幼树对Cd有较强的适应性,因此可以初步确定巨桉为重金属Cd污染地区土壤修复树种。  相似文献   

19.
为了解 N、P 配施对常绿阔叶树生长的影响,采用盆栽试验,研究不同氮磷施量对青冈、苦槠幼苗叶片养分含量及幼苗根、茎、叶生物量的影响。结果表明:施氮、施磷均能增加两树种幼苗叶片的氮含量;施磷能增加幼苗叶片磷含量,而高浓度施氮会降低叶片磷含量;低浓度施氮及施磷均可减缓青冈生长过程中叶片磷含量的下降;施氮、磷对青冈幼苗叶片碳含量表现出促进作用,而对苦槠幼苗叶片碳含量没有显著影响。施氮后青冈幼苗生物量分配表现为根>叶>枝,施磷后则为根>枝>叶;而施氮、磷后苦槠幼苗生物量分配格局均为根>枝>叶。青冈和苦槠幼苗期对氮、磷肥的供应较为敏感,适当施加氮、磷肥有利于其幼苗的生长。  相似文献   

20.
以宁夏云雾山国家级自然保护区斯泰普草原为研究对象,测定了不同施肥梯度植物叶片和根系的全N、全P含量,阐明了不同施肥梯度植物N、P生态化学计量特征,可为天然草原的保护和适应性管理提供理论依据。结果表明:(1)随着氮素添加浓度的增加,叶氮含量和氮磷比表现为先增加后降低的趋势,叶磷含量相对稳定;(2)不同优势种和功能群叶氮磷化学计量特征在不同氮素添加浓度中变化趋势差异明显,莎草和禾草叶片氮磷含量较低,豆科植物氮磷含量较高,且磷含量对氮素添加的响应比氮含量弱;(3)各土层(0~30 cm)根氮含量表现为随着氮素浓度的升高而逐步增加,根磷含量表现为先增加后降低的趋势。因此,低浓度氮素添加缓解了氮素限制,高浓度氮素添加加剧了磷元素的限制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号