首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Urban development occupies over 375,000 ha (6%) of California's Central Valley, and expansion continues to displace natural and agricultural landscapes. The value of urban areas as habitat for native wildlife and the characteristics that determine its value, however, remain little studied. Many Neotropical migrant passerine bird species are declining due to changes in breeding, migratory, and wintering habitats and climatic conditions. During 2010–2013, we evaluated the importance of native valley oak (Quercus lobata) as stopover foraging habitat used by Neotropical migrant birds in urban areas of the Sacramento region in California, USA. Over 3 years, we surveyed spring and late summer-early fall migrant songbirds and measured tree canopy cover within 31 c.0.91 ha transects in Curtis Park, an older residential neighborhood. We detected 607 individuals from 20 migrant species, but four wood warblers comprised the bulk of observations: black-throated gray (Setophaga nigrescens), Wilson's (Cardellina pusilla), orange-crowned (Oreothlypis celata), and yellow warblers (Setophaga petechia). Migrant abundance was closely correlated with valley oak canopy abundance and increased linearly with oak canopy especially during fall migration. Migrants were nearly absent from areas lacking oak canopy. Migrant bird species as a group also foraged in valley oak substantially more often (74%) than would be expected based on its 15% relative canopy cover (χ21d.f. = 924, p < 0.0001), as did all species whose selectivity could be tested. These results are important in demonstrating previously undocumented migrant use of urban areas with remnant valley oak canopy and suggest that protecting existing valley oaks and increasing their use in future urban forestry and landscape plantings in the Central Valley could provide substantial habitat benefits for native migratory birds.  相似文献   

2.
Birds are ecosystem service providers and excellent urban ecosystem indicators because they are sensitive to habitat structure. Light detection and ranging (LiDAR) technology is a promising tool in bird habitat characterization because it can directly acquire fine-scale 3-D information over large areas; however, most of past avian ecological studies using LiDAR were conducted in North America and Europe, and there have been no studies in Asia. The robustness of LiDAR data across different habitat types remain problematic. In this study, we set 13 plots having different canopy area percentages in a large-scale urban park in Japan, and examined the usefulness of airborne LiDAR data in modeling richness and diversity of forest bird species and the abundance of Paridae species that play an important role in the urban food web. Bird surveys were conducted eight times at each plot during the birds’ breeding season, and the results were estimated using generalized linear models. In consequence, all of the response variables were explained by one or a few LiDAR variables, and the 1 × 1 × 1-m voxel-based variables were especially robust estimators. When targeting only densely-forested plots having more than 60% canopy area, the LiDAR data efficiency declined in estimation of the richness and diversity of whole forest bird species, whereas a laser penetration rate was efficient for estimating the Paridae species abundance. These results implied that the LiDAR data are useful in habitat characterization of forest birds, and even when targeting only dense forests, some LiDAR variables are effective for habitat estimation of birds preferring specific forest structures. In the future, application of LiDAR across a variety of ecosystems will greatly serve to develop adaptive conservation and management planning for urban forests.  相似文献   

3.
We surveyed birds in patches of native eucalypt forest and in surrounding exotic matrix (Radiata pine forests) in south-eastern Australia. Our objectives were: (1) to examine the influence of the width of native forest patches and the age of surrounding pine forests on bird occurrence in patches of native forest; and (2) to verify the relationship between the use of the surrounding pine matrix and bird species response to variation in width of patches of native forests. A total of 32 study sites (boundaries between eucalypt and pine forests) were surveyed. Birds were counted by the area search method within 0.5-ha quadrats. Data were analysed using generalised linear models. Wide patches of eucalypt forest supported higher species richness and greater numbers of birds, such as foliage searchers and nectarivores, than narrow patches. Matrix age also influenced the occurrence of some species in native patches. The abundance of species in wide and narrow patches of native forest was related to their use of the matrix. This was true for native forests surrounded by old but not by young pine forests. We suggest that management in wood production landscapes take into account both characteristics of native patches and the surrounding matrix. Negative impacts of fragmentation in managed landscapes might be reduced by promoting matrix types that are suitable for bird species.  相似文献   

4.
Although it is recognized that anthropogenic forest fragmentation affects habitat use by organisms across multiple spatial scales, there is uncertainty about these effects. We used a hierarchical sampling design spanning three spatial scales of habitat variability (landscape > patch > within-patch) and generalized mixed-effect models to assess the scale-dependent responses of bird species to fragmentation in temperate forests of southern Chile. The abundances of nine of 20 bird species were affected by interactions across spatial scales. These interactions resulted in a limited effect of within-patch habitat structure on the abundance of birds in landscapes with low forest cover, suggesting that suitable local habitats, such as sites with dense understory cover or large trees, are underutilized or remain unused in highly fragmented landscapes. Habitat specialists and cavity-nesters, such as tree-trunk foragers and tapaculos, were most likely to exhibit interactions across spatial scales. Because providing additional sites with dense understory vegetation or large habitat trees does not compensate the negative effect of the loss of forest area on bird species, conservation strategies should ensure the retention of native forest patches in the mixed-use landscapes.  相似文献   

5.
Studies dealing with community similarity are necessary to understand large scale ecological processes causing biodiversity loss and to improve landscape and regional planning. Here, we study landscape variables influencing patterns of community similarity in fragmented and continuous forest landscapes in the Atlantic forest of South America, isolating the effects of forest loss, fragmentation and patterns of land use. Using a grid design, we surveyed birds in 41 square cells of 100 km2 using the point count method. We used multivariate, regression analyses and lagged predictor autoregressive models to examine the relative influence of landscape variables on community similarity. Forest cover was the primary variable explaining patterns of bird community similarity. Similarity showed a sudden decline between 20 and 40% of forest cover. Patterns of land use had a second order effect; native bird communities were less affected by forest loss in landscapes dominated by tree plantations (the most suitable habitat for native species) than in landscapes dominated by annual crops or cattle pastures. The effects of fragmentation were inconclusive. The trade-off between local extinctions and the invasion of extra-regional species using recently created habitats is probably the mechanism generating the observed patterns of community similarity. Limiting forest loss to 30–40% of the landscape cover and improving the suitability of human-modified habitats will contribute to maintain the structure and composition of the native forest bird community in the Atlantic forest.  相似文献   

6.
We used field surveys and Geographic Information System data to identify landscape-scale habitat associations of American martens (Martes americana) and to develop a model to predict their occurrence in northeastern California. Systematic surveys using primarily enclosed track plates, with 10-km spacing, were conducted across a 27,700 km2 area of largely forested, mountain terrain. Martens were detected at 20/184 (10.8%) of the sample units, aggregated in three distinct regions. We investigated habitat selection at multiple scales using circular assessment areas of 3, 20, and 80 km2. The model for the largest assessment area best fit the data and included the following predictors: amount of reproductive habitat, number of habitat patches and land ownership category. These results support the hypothesis that martens select habitat based upon broad scale landscape conditions and that these conditions vary with ownership. We tested the model using an independent set of data, collected primarily during the winter. Poor fit of the test data in some locations raised concerns that our model, which was developed using data collected during the snow-free season, may not predict winter distribution well. We are investigating possible causes for the seasonal variation and until they can be incorporated our model represents a conservative view of marten habitat suitability based on summer occupancy. During the summer months, which is the reproductive season, martens are predicted to occur largely in relatively undisturbed landscapes where high-elevation, late-successional forests are common. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Forests within and adjacent to cities are important habitats for native species and provide vital ecosystem services to cities and their residents. Herbaceous plants represent over 80% of all plant species in these forests, yet little is known about the long-term effects of management and landscape context on the understory of suburban forests. In this study, we used a 30-year dataset to fill this knowledge gap and evaluate the effect of prescribed burns on native forest herbs in suburban forest preserves of DuPage County, Illinois, USA. We also evaluated how the amount and configuration of forest habitat at multiple spatial scales affects native herb richness, gains, and losses in these forests over 30 years. We found that forests managed with prescribed burns increased in native herb richness over time, while unburned forests did not. Managed forests now have more native herb species than unburned forests. We also found that habitat amount in the surrounding landscape, but not the configuration of that habitat, had a positive effect on native herb richness and species gains over 30 years. Overall, we conclude that prescribed burns are effective in maintaining native forest herb richness in suburban forests. However, additional management actions such as seed augmentation may be required in areas with little surrounding forest herb habitat, as both overall richness and species gains over time are reduced in isolated forests.  相似文献   

8.
The declines of many specialist bird species in the agricultural landscapes of Central Europe have resulted in small and isolated populations. In the case of the black grouse, a ground-nesting bird species with large spatial requirements, empiric evidence about underlying landscape changes is scarce. In this study, we examined land cover and land cover changes in a farmland-forest mosaic in eastern Lower Saxony, Germany and how they affect occurrence and persistence of black grouse. Spatial information came from historic topographic maps from 1958 to 1975. The results show profound conversions of habitat to forest and farmland but also an increase in settlement area. Habitat conversions and suburbanization were negative correlates of black grouse persistence. Habitat models from before and after a decline period differed in some of the predictors and suggest black grouse habitat to be more diverse before the land cover changes. Our study confirms that land use factors at a landscape scale extent contribute to explain black grouse occurrence and thus can complement important small scale factors like the quality and size of individual habitat patches. Results also show that landscape factors affect black grouse distribution predominantly from an area much greater than an individual black grouse home range. Our models may be further evaluated on present-day landscapes and might be used to evaluate large-scale habitat availability for black grouse.  相似文献   

9.
To evaluate the importance of urban woodlands to serve as potential sites for biodiversity conservation, we analysed bird, carabid beetle and small mammal community responses to urbanisation at different spatial scales. We analysed the relationships between the variations of the structure (species richness S, diversity H′ and dominance D) of animal communities of woodlands distributed along a rural–urban gradient, and the variations along this same gradient of (1) the vegetation within woodlands, (2) the landscape at 100 m and (3) 600 m around the woodlands. We identified the spatial scales whose variations along the gradient most affected each animal community structure, and characterised community responses to these variations. Our results showed that urbanisation affected taxa differently according to their dispersal ability. Carabid beetles, less mobile, seem to be sensitive to increasing fragmentation and built surfaces from periurban to town centre which could make their movement within the urban landscape difficult. Birds, mobile species, seem to be more sensitive to variations of the vegetation structure within woodlands from periurban to town centre that could affect their capacity to maintain in habitat patches. Although our study did not allow relating the small mammal community structure to urbanisation, it suggests that this taxa is sensitive to urban local disturbances. A relevant management scale of woodlands can be specified for each taxa conservation. Urban woodlands accommodate over 50% of the species present in periurban woodlands, and effective management could enhance this number. Woodlands seem to be a good choice for promoting biodiversity conservation in towns.  相似文献   

10.
Trees can be powerful symbols that contribute to the production and consumption of places. Disaster events, such as hurricanes, alter the physical landscape, causing tree damage and loss. In places with strong tree cultures, the reforestation of damaged landscapes becomes an implicit element of recovery plans; however, less is known about the implications of tree loss to community recovery. In 2017, Hurricane Harvey made landfall near the coastal communities of Rockport and Fulton, Texas. Rockport-Fulton, known for its beach tourism, is home to a remnant live oak (Quercus virginiana) forest shaped by coastal onshore winds. Many of Rockport-Fulton’s windswept oaks were damaged or lost along with native and non-native palm trees. Rockport-Fulton’s history is imbued with stories situated around its oak forest. Drawing from multiple sources and participant observations from repeated site visits, we analyzed references to Rockport-Fulton’s trees in news media, organizational communications, and public exhibits before and after Harvey to understand the area’s tree culture and its associated discourses. We also interviewed tourists, business owners, and community members nine months after Harvey to understand their perceptions of recovery efforts. Our findings show that tree narratives pre- and post-Harvey amplify social-ecological systems definitions of resilience and that tree loss was a dominant theme in the recovery process for all participants. Yet we also found that tourists discussed the damage to palm trees, whereas community members focused on the loss of live oaks. Despite these preferences, trees available through replanting efforts contained few live oak and palm species; furthermore, recovery plans did not amplify trees in recovery strategies. Overall, our findings highlight the importance of replanting trees during the disaster recovery process in a way that not only enhances local biodiversity but also reaffirms place characteristics to meet community members’ and visitors’ expectations.  相似文献   

11.
Context

Although the edge effect is known to be an important factor influencing the recruitment of trees in temperate forests, little is known of its synergistic relationships with landscape and fragment attributes.

Objectives

We investigated how the edge effect on regeneration of oaks (Quercus spp.) varies with respect to fragment geometry, connectivity and landscape composition.

Methods

We recorded oak sapling density along edge-interior gradients in 29 forest fragments at the periphery of Mexico City and examined the data with Generalized Additive Models.

Results

A nonlinear and landscape-mediated edge effect was supported by data, including the interactions of the edge distance with patch connectivity, shape and size. Saplings were more abundant at a distance of ca. 50 m from the edge of small, large and connected patches, but large patches also exhibited reduced recruitment towards the interior of the patch. Conversely, sapling density in simple-shaped or connected patches was lower at the edge, exhibiting linear and concave-down increase trends towards the interior of patches, respectively.

Conclusions

Boundary conditions could be interacting with interior forest conditions, making regeneration more frequent at 50 m from the edge. Shady and cooler sites in large patches may be inhibiting oak regeneration. The activity of acorn-dispersing animals and oak predators may increase in unconnected patches, thus increasing the likelihood of edge effects. These results provide insights into the restoration of temperate forest patches in heterogeneous fragmented landscapes.

  相似文献   

12.
Urban forests are important for the health of cities. These forests face high anthropogenic pressure, including demands on their multi-functional role. Therefore, the impact of pests-induced disturbances may be greater for urban forests than forests outside of cities. Monitoring of pests in their native environment is an important tool for the management of urban forests. To better understand how pest population density is affected by the forest environment, we used the Oak bark beetle, Scolytus intricatus, as a model organism. The study was carried out in 2014–2015 in the urban forests of Pardubice City, Czech Republic. Pest population density was studied at three levels: branch, tree and patch. The increasing branch diameter was identified as an important variable with a threshold of 70 mm for entrance holes and 45 mm for emergence holes. Increasing host tree diameter at breast height with a threshold of 46.8 cm was statistically significant at the tree level in terms of the number of entrance holes. Increasing spring canopy openness was identified as an important variable at the patch level with a threshold of 50.78% and had a decreasing trend for the number of reared adults and their total body size. Big oak trees with thick branches under closed spring canopy are the most susceptible to attack by S. intricatus. Based on our findings, we propose that the maintenance of mature oaks under open canopies is important for urban forest management. Avoiding mixed plantings of oaks and conifers should promote these open canopies and lead to multiple advantages regarding oak silviculture.  相似文献   

13.
We address effects of large-scale forestry on landscape structure and the structure and composition of boreal bird communities in North Sweden. Specifically, we ask: after controlling for the effect of patch size, forest age and tree species composition, is there any residual effect attributable to the reduction in area of old forest? Pairs of landscape blocks (25 by 25 km) were selected to maximize area difference in human-induced disturbance, clear-cut as opposed to semi-natural old forest. Median distance to natural edge (wetlands, open water) from randomly selected points in forest was 250 and 200 m in high and low impact landscapes, respectively, indicating a high degree of ‘natural’ fragmentation of the pristine boreal landscape in the area. By contrast, median distance to clear-cut in uncut forest was 750 and 100 m, respectively. Clear-cuts in high impact landscapes were disproportionally more common in areas with contiguous forest land than in areas with spatially disjunct forest, implicating that forestry increases natural fragmentation of the landscape by subdividing larger forest tracts. Point counts along forestry roads showed that species richness and relative abundance of forest birds were higher in landscapes with low forestry impact. These differences can partly be explained by differences in age composition of forest and composition of tree species. After controlling for patch size, forest age and tree species composition, a significant effect of forestry impact remained for Sibirian species and the Tree pipitAnthus trivialis. Our results thus imply that this group of species and the Tree pipit may be sensitive to forest fragmentation. In contrast to previous Finnish studies, we found relatively small negative effects on relative abundance of species hypothesized to be negatively affected by large-scale clear-cutting forestry. However, our picture of the present does not contradict results from Finnish long-term population studies. Five factors may account for this: 1) clear-cut areas are not permanently transformed into other land use types, 2) planted forests are not completely inhabitable for species preferring older forest, 3) the majority of species in the regional pool are habitat generalists, 4) the region studied is still extensively covered with semi-natural forest, and 5) our study area is relatively close to contiguous boreal forest in Russia, a potential source area for taiga species.  相似文献   

14.
Conservationists, managers, and land planners are faced with the difficult task of balancing many issues regarding humans impacts on natural systems. Many of these potential impacts arise from local-scale and landscape-scale changes, but such changes often covary, which makes it difficult to isolate and compare independent effects arising from humans. We partition multi-scale impacts on riparian forest bird distribution in 105 patches along approximately 500 km of the Madison and Missouri Rivers, Montana, USA. To do so, we coupled environmental information from local (within-patch), patch, and landscape scales reflecting potential human impacts from grazing, invasive plant species, habitat loss and fragmentation, and human development with the distribution of 28 terrestrial breeding bird species in 2004 and 2005. Variation partitioning of the influence of different spatial scales suggested that local-scale vegetation gradients explained more unique variation in bird distribution than did information from patch and landscape scales. Partitioning potential human impacts revealed, however, that riparian habitat loss and fragmentation at the patch and landscape scales explained more unique variation than did local disturbances or landscape-scale development (i.e., building density in the surrounding landscape). When distribution was correlated with human disturbance, local-scale disturbance had more consistent impacts than other scales, with species showing consistent negative correlations with grazing but positive correlations with invasives. We conclude that while local vegetation structure best explains bird distribution, managers concerned with ongoing human influences in this system need to focus more on mitigating the effects of large-scale disturbances than on more local land use issues. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Landscape metrics are widely applied in landscape ecology to quantify landscape structure. However, many are poorly tested and require rigorous validation if they are to serve as reliable indicators of habitat loss and frag-mentation, such as Montreal Process Indicator 1.1e. We apply a landscape ecology theory, supported by explor-atory and confirmatory statistical techniques, to empirically test landscape metrics for reporting Montreal Process Indicator 1.1e in continuous dry eucalypt forests of sub-tropical Queensland, Australia. Target biota examined included: the Yellow-bellied Glider (Petaurus australis); the diversity of nectar and sap feeding glider species including P. australis, the Sugar Glider P. breviceps, the Squirrel Glider P. norfolcensis, and the Feathertail GliderAcrobates pygmaeus; six diurnal forest birds species; total diurnal bird species diversity; and the density of nec-tar-feeding diurnal bird species. Two scales of influence were considered: the stand-scale (2 ha), and a series of radial landscape extents (500 m –2 km;78–1250 ha) surrounding each fauna transect. For all biota, stand-scale structural and compositional attributes were found to be more influential than landscape metrics. For the Yellow-belliedGlider, the proportion of trace habitats with a residual element of old spotted-gum/ironbark eucalypt trees was a significant landscape metric at the 2 km landscape extent. This is a measure of habitat loss rather than habitat fragmentation. For the diversity of nectar and sap feeding glider species, the proportion of trace habitats with a high coefficient of variation in patch size at the 750 m extent was a significant landscape metric. None of the landscape metrics tested was important for diurnal forest birds. We conclude that no single landscape metricadequately captures the response of the regions forest biota per se. This poses a major challenge to regional reporting of Montreal Process Indicator 1.1e, fragmentation of forest types.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

16.

Context

Habitat loss and habitat fragmentation negatively affect amphibian populations. Roads impact amphibian species through barrier effects and traffic mortality. The landscape variable ‘accessible habitat’ considers the combined effects of habitat loss and roads on populations.

Objectives

The aim was to test whether accessible habitat was a better predictor of amphibian species richness than separate measures of road effects and habitat loss. I assessed how accessible habitat and local habitat variables determine species richness and community composition.

Methods

Frog and tadpole surveys were conducted at 52 wetlands in a peri-urban area of eastern Australia. Accessible habitat was delineated using a highway. Regressions were used to examine relationships between species richness and eleven landscape and local habitat variables. Redundancy analysis was used to examine relationships between community composition and accessible habitat and local habitat variables.

Results

Best-ranked models of species richness included both landscape and local habitat variables. There were positive relationships between species richness and accessible habitat and distance to the highway, and uncertain relationships with proportion cover of native vegetation and road density. There were negative relationships between species richness and concreted wetlands and wetland electrical conductivity. Four species were positively associated with accessible habitat, whereas all species were negatively associated with wetland type.

Conclusions

Barrier effects caused by the highway and habitat loss have negatively affected the amphibian community. Local habitat variables had strong relationships with species richness and community composition, highlighting the importance of both availability and quality of habitat for amphibian conservation near major roads.
  相似文献   

17.
Huston’s Dynamic Equilibrium Hypothesis predicts that the response of biodiversity to disturbance varies with productivity. Because disturbance is thought to break competitive advantage of dominant species in productive ecosystems, species richness is predicted to increase with disturbance frequency in productive systems. Recovery of plant biomass following disturbance is also predicted to be faster in productive systems. Here we provide the first test of Huston’s hypothesis in the context of setting harvest rates in managed forests for achieving biodiversity objectives. We examined predictions relating to vegetation and bird response to disturbance and succession in productive and less productive forests in western Oregon and Washington, USA. We found that measurements of understory cover and shrub diversity were higher in young, productive stands than less productive stands of similar age. Later-seral forests in productive environments (mean age = 67 years) had less variable and more complete canopy closure than similar-age forests in less favorable settings. At the stand scale, bird abundance and richness decreased with canopy closure in highly productive forests whereas bird abundance and richness increased with canopy closure in less productive forests. At the landscape scale, bird abundance and richness within stands increased with increasing levels of disturbance in the surrounding landscape within highly productive forests, whereas bird abundance and richness decreased with increasing disturbance in the surrounding landscape within less productive forests. Our results indicate that bird response to disturbance varies across levels of productivity and suggest that bird species abundance and associated species richness will be maximized through relatively more frequent disturbance in highly productive systems.  相似文献   

18.
Matrix quality affects probability of persistence in habitat patches in landscape simulation models while empirical studies show that both urban and agricultural land uses affect forest birds. However, due to the fact that forest bird abundance and species richness can be strongly influenced by local habitat factors, it is difficult to analyze matrix effects without confounding effects from such factors. Given this, our objectives were to (1) relate human-dominated land uses to forest bird abundance and species richness without confounding effects from other factors; (2) determine the scale at which forest birds respond to the matrix; and (3) identify whether certain bird migratory strategies or habitat associations vary in richness or abundance as a function of urban and agriculture land uses. Birds were surveyed at a single point count site 100 m from the edge of 23 deciduous forest patches near Ottawa, Ontario. Land uses surrounding each patch were measured within increasingly large circles from 200 to 5000 m radius around the bird survey site. Regression results suggest that effects of urban and agricultural land uses on forest birds (1) are not uniformly positive or negative, (2) can occur at different spatial scales, and (3) differentially affect certain groups of species. In general, agriculture appeared to affect species at a broad spatial scale (within 5 km), while urban land use had an impact at both a narrower spatial scale (within 1.8 km) and at the broad scale. Neotropical and short distance migrant birds seemed to be the most sensitive to land use intensification within the matrix. Limiting urban land use within approximately 200–1800 m of forest patches would be beneficial for Neotropical migrant birds, which are species of growing conservation concern in temperate North America.  相似文献   

19.
There is debate among ecologists about whether total habitat area or patch arrangement contributes most to population and/or community responses to fragmented or patchy landscapes. We tested the relative effects of patch area and isolation for predicting bird occurrence in a naturally patchy landscape in the Bear River Mountains of Northern Utah, USA. We selected focal patches (mountain meadows) ranging in elevation from 1,920 to 2,860 m and in size from 0.6 to 182 ha. Breeding birds were sampled in each focal meadow during the summers of 2003 and 2004 using variable-distance point transects. Logistic regression and likelihood-based model selection were used to determine the relationship between likelihood of occurrence of three bird species (Brewer’s sparrow, vesper sparrow, and white-crowned sparrow) and area, isolation, and proximity metrics. We used model weights and model-averaged confidence intervals to assess the importance of each predictor variable. Plots of area versus isolation were used to evaluate complex relationships between the variables. We found that meadow area was the most important variable for explaining occurrence for two species, and that isolation was the most important for the other. We also found that the absolute distance was more appropriate for evaluating isolation responses than was the species-specific proximity metric. Our findings add clarity to the debate between ecologists regarding the relative importance of area and isolation in species responses to patchy landscapes.  相似文献   

20.
The role of habitat heterogeneity as a key factor in determining species pools in habitat mosaics has been acknowledged, but we still know little on the relative importance of the different ecological processes acting within such complex landscapes. We compared species richness and distribution in forest fragments imbedded in shrub-lands to those in continuous forests or in continuous shrublands. We examined the consistency of our data with the predictions of two hypotheses: 1) the Habitat fragmentation hypothesis which states that fragmentation has negative effects on the species from the original continuous habitat; 2) the Habitat supplementation /complementation hypothesis which stipulates that the presence of a matrix habitat around the fragments will mitigate negative effects on the species from the original habitat (supplementation) or allow the presence of species that depend on the presence of both the fragment and matrix habitats (complementation). We show that: 1) species richness in forest fragments did not differ from species richness in segments of continuous forests of equal area; 2) the bird community of forest fragments got impoverished in some forest species but a higher proportion of species common in continuous forests were not affected by fragmentation; 3) fragment communities had a significant proportion of common species that were scarce in, or absent from both continuous forests and shrublands. While, a few forest species supported predictions from the fragmentation hypothesis, occurrence patterns observed in several other species were consistent with either the supplementation or the complementation hypotheses. Our results suggest that there is no single hypothesis that properly captures the consequences of a shift from continuous forests to a mosaic of forest fragments and shrublands and that different ecological mechanisms act in conjunction to determine species pools in habitat mosaics. Habitat heterogeneity at a local scale appears a key factor in maintaining bird diversity in fire driven Mediterranean landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号