首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fagus sylvatica saplings were infected with Phytophthora citricola, Phytophthora cambivora, Phytophthora pseudosyringae and Phytophthora undulata to study the influence of these root pathogens on total belowground and aboveground biomass, on the nutrient distribution within plants, on the concentration of plastid pigments, including tocopherol and on components of the xanthophyll cycle. Phytophthora citricola and P. cambivora infection significantly reduced total biomass of beech when compared with control plants and finally most of these plants died at the end of the experiment. However, beech invaded by the other two Phytophthora spp. did not differ from control plants and none of them was killed. Fine root length as well as the number of root tips of all infected beeches were reduced between 30 and 50%. The excellent growth of beech infected with P. pseudosyringae and P. undulata when compared with control plants was correlated with a strong increase of important root efficiency parameters. Phytophthora citricola and P. cambivora caused a significant reduction in nitrogen concentration of leaves in comparison with control and other infected plants, whereas this nutrient was slightly increased in fine and coarse roots. Furthermore, the phosphorus and potassium concentrations in leaves were impaired after infection with P. citricola. However, foliar concentrations of Ca and Mg were not affected by the different Phytophthora spp., whereas fine and coarse roots were significantly enriched with Ca in beech infected with P. citricola or P. cambivora. The concentrations of α‐tocopherol and xanthophyll cycle pigments were increased in plants infected by P. citricola and P. cambivora, indicating that several reactive oxygen species might be formed in leaves during infection.  相似文献   

2.
Investigations on root and crown status of spruce and beech were carried out on selected trees in the ‘Werdenfelser Land’ area (Bavarian Alps, Southern Germany). In addition, the association of fine root pathogens of the genera Phytophthora and Pythium with the trees’ rhizosphere was studied. In a variety of stands representing various site conditions, soil and root samples were taken from 12 spruce (Picea abies) pairs and eight beech (Fagus sylvatica) pairs. Each pair consisted of a healthy and a declining tree as indicated by crown transparency. The root status was characterized using a set of parameters, and correlations between crown and fine root status were observed. In spruce, most parameters decreased significantly with increasing crown transparency, whereas in beech, correlations were less pronounced. The total number of lateral roots per cm small root (diameter 2–5 mm) was significantly lower in both species for declining trees compared to healthy trees. Pythium spp. were isolated from 15 of 24 soil samples taken from under spruce, and from eight of 16 samples from under beech. Phytophthora citricola was found in two beech stands only. Among the isolated species, Pythium anandrum, Pythium inflatum and Pythium acrogynum were identified according to morphological features. After polymerase chain reaction‐restriction fragment length polymorphism analysis, residual Pythium isolates were assigned to four different groups. No crown transparency‐dependent differences in isolation frequency were found. In soil infestation tests, all species tested caused root damage on both young spruce and beech plants, with P. citricola being the most aggressive pathogen. Additionally, Pythium‐infected beeches showed severe leaf chloroses and necroses. Due to their low isolation frequency, Phytophthora spp. are not considered to play a major role in the decline of spruce and beech in the investigated area. Pythium spp., however, were isolated frequently, showed pathogenicity towards the fine roots of spruce and beech, and are therefore considered to be at least contributing factors in the decline of Bavarian mountain forests.  相似文献   

3.
Pseudodidymella fagi, described from infected leaves of Fagus crenata in Japan, has recently been spreading in Europe, where it causes leaf blotch of European beech Fagus sylvatica. In the years 2008–2016, an outbreak of P. fagi was observed on European beech in Switzerland, Germany and Austria, and it is reported here for the first time from Slovakia where it was detected in 2017. The identification of the pathogen is supported by the morphological analyses of material observed in vivo and in vitro and molecular analyses based on ITS sequences. Detailed morphological characterization of cultures based on European material, on F. sylvatica, is provided here for the first time.  相似文献   

4.
During the past decade, and in particular after the wet year 2002 and the dry year 2003, an increasing number of trees and stands of European beech (Fagus sylvatica L.) in Bavaria were showing symptoms typical for Phytophthora diseases: increased transparency and crown dieback, small‐sized and often yellowish foliage, root and collar rot and aerial bleeding cankers up to stem heights of >20 m. Between 2003 and 2007 134 mature beech stands on a broad range of geological substrates were surveyed, and collar rot and aerial bleeding cankers were found in 116 (86.6%) stands. In most stands the majority of beech trees were declining and scattered or clustered mortality occurred. Bark and soil samples were taken from 314 trees in 112 stands, and 11 Phytophthora species were recovered from 253 trees (80.6%) in 104 stands (92.9%). The most frequent species were P. citricola, P. cambivora and P. cactorum. Primary Phytophthora lesions were soon infected by a series of secondary bark pathogens, including Nectria coccinea, and wood decay fungi. In addition, infected trees were often attacked by several bark and wood boring insects leading to rapid mortality. Bark necroses were examined for their probable age in order to determine whether the onset of the current Phytophthora epidemic was correlated to rainfall rates recorded at 22 Bavarian forest ecosystem monitoring stations. A small‐scale survey in nine Bavarian nurseries demonstrated regular infestations of all beech fields with the same range of Phytophthora species. The results indicate that (1) Phytophthora species are regularly associated with beech decline and may also be involved in the complex of ‘Beech Bark Disease’, (2) excessive rainfalls and droughts are triggering the disease, and (3) widespread Phytophthora infestations of nursery stock might endanger current and future silvicultural projects aiming on the replacement of non‐natural conifer stands by beech dominated mixed stands.  相似文献   

5.
Flooding of soil for 55 days altered the rate of growth and stem anatomy of 9‐month‐old Cryptomeria japonica seedlings. Although flooding did not affect height growth it reduced the rate of dry weight increment of seedlings while increasing stem diameter. The reduction in dry weight increment of seedlings resulted largely from decay of roots and, to a lesser extent, from inhibition of growth of roots and needles. The increased diameter growth of flooded seedlings resulted largely from an increase in bark thickness associated with increased phloem production and greater amount of intercellular space. Flooding reduced xylem increment in submerged stems but increased it above the water level because of larger tracheids rather than more tracheids per radial file. Flooding also increased lumen diameters of tracheids, decreased tracheid wall thickness (as a proportion of tracheid diameter), and stimulated formation of axial parenchyma cells in the xylem. Cryptomeria japonica seedlings adapted to flooding by forming adventitious roots, primarily on the original root system and submerged portion of the stem. Such new roots originated in the xylem ray parenchyma. Flooding stimulated ACC synthesis in roots and ethylene production in stems. The role of ethylene in alteration of stem anatomy is discussed.  相似文献   

6.
Heterobasidion annosum sensu stricto is the most important damaging agent in Scots pine stands planted on the former agricultural lands in Poland. The routine action in pine stands which have lost stability because of H. annosum root rot is to change stand management, including species conversion. In many cases, the Fagus sylvatica is used for this purpose. This study was the first assessment of widespread infection by H. annosum in young F. sylvatica plantations. Disease symptoms included atrophy and yellowing of leaves, wilting and the presence of pathogen sporocarps around the root collars of young trees. Heterobasidion annosum s. s. was observed on both 4‐ and 17‐year‐old beech. Based on annual increments, the disease could be present for 3–4 years before tree death. A high incidence of H. annosum in pine stumps of previous stands (80–100%) and dry periods in recent years may be the main reasons for such common infection of F. sylvatica. This work also showed that mice and frost were not the main killing factors F. sylvatica in plantations.  相似文献   

7.
Rhizoctonia solani was frequently isolated in the Italian Alps from nursery-grown European beech (Fagus sylvatica) seedlings displaying symptoms of cotyledon rot. Koch's postulates were verified and mode of infection of the associated isolates was investigated with light and scanning electron microscopy. Population structure of the pathogen was investigated by scoring the anastomosis reaction type in pairings between different isolates from the same seedbed. One pathogen genotype showed a large distribution area within the seedbed, this implying that the inoculum had been building up in the seedbed over a longer time period. Hyphal anastomosis tests and sequence analysis of the internal transcribed spacer (ITS) region of ribosomal DNA indicated that the pathogen belongs to AG 2-1 of R. solani. ITS sequence analysis indicates that the isolates from beech are closely related to R. solani isolates causing a disease on tulip. The striking similarities between the two diseases are discussed.  相似文献   

8.
Axial water transport in trees is mainly determined by the gradient of negative water pressure and the structure of conductive xylem elements (i.e. conduits) connecting the fine roots with the foliage. There is still an essential lack of knowledge concerning the relationship between wood structure and hydraulic properties, especially of coarse roots. To this end, the study aimed (1) to work out a novel approach, based on the combination of computer tomography (CT) and light microscopy (LM), for determining the cumulative cross-sectional lumen area of conduits involved in the water transport of coarse roots in European beech (Fagus sylvatica) and Norway spruce (Picea abies) and (2) to demonstrate its adequacy in quantifying the functional relationship between sapwood anatomy and ascending water mass flow in the xylem. The cross-sectional sapwood area of coarse roots was assessed through CT. The cumulative cross-sectional lumen area of conduits in the sapwood (i.e. the lumen area of conductive conduits) was measured by LM in combination with interactive image analysis. The new approach was developed with coarse roots of both the tree species growing in a 60-year-old mixed forest in Bavaria, Germany. The combination of the two methods unveiled spruce to possess a distinct sapwood/heartwood boundary in small-diameter roots, whereas such roots of beech reflected a gradual transition zone; only large-diameter roots displayed a distinct boundary in beech. Additionally, the cumulative lumen area of conductive conduits was found to be approximately 12% of the total coarse root cross-sectional area in both the tree species. The new approach of measuring the conductive lumen area of coarse-root conduits yielded levels of specific sap flow (i.e. axial conductivity) that substantially differed from those derived from commonly applied methods, which were based on sap flow per unit of total cross-sectional root area or xylem cross-sectional area of individual roots. The combination of CT and LM will facilitate functional comparisons of woody roots differing in diameter and of tree species of different anatomical xylem structure.  相似文献   

9.
The common rhizospheric fungus Cylindrocarpon destructans was investigated in relation to its role in root death of Pinus sylvestris in Nordic nurseries and plantations. Laboratory methods were developed for studying similar root problems as well as the early effects of phytotoxicity and fungal infection. Seedlings grown under standardized optimal conditions were exposed to controlled stress (known to occur in nurseries), with or without C. destructans in the rhizosphere. Low light conditions, anaerobic root environment, and fungicide treatment were each found to predispose pine seedlings to invasion by the pathogen. The pathogen was very sensitive to competition as well as antagonism on the root, and fungicide‐induced inhibition of antagonists such as Trichoderma spp. also increased the severity of attack by the pathogen. To compete successfully, the pathogen would have to invade and dominate weakened roots prior to the arrival of saprophytes. Toxic metabolites produced by the pathogen weakened or killed nearby root tissues, and pathogen metabolites seemed to prevent saprophytes from taking hold in the infected roots. Such heavily infected, dead roots may act as inoculum sources allowing the pathogen to invade adjacent living roots, even healthy ones. Dead roots left in nursery soil after earlier harvests may act as reservoirs of inoculum for long periods and pose a threat to new plants.  相似文献   

10.
Haustorial morphology of the cone-rust pathogen, C. conigenum, was investigated among naturally infected female strobili of three Guatemalan pines, P. maximinoi, P. pseudostrobus, and P. oocarpa. Among the three pine species, haustorial shapes and sizes were more variable in P. maximinoi and P. oocarpa than in P. pseudostrobus. The haustorial shapes and sizes were more variable in parenchyma cells of the cortex, xylem, and pith than in the cells in the phloem, xylem rays, and tracheids. The haustoria were also present in larger numbers in the parenchyma cells of the cortex, xylem, and pith than in phloem parenchyma cells and tracheids. In living cells, the tips of some haustoria were appressed to the host nuclei.  相似文献   

11.
Oligonucleotide primers were developed for the polymerase chain reaction (PCR)-based detection of selected Phytophthora species which are known to cause root-rot diseases in European forest trees. The primer pair CITR1/CITR2, complementing both internal transcribed spacer regions of the ribosomal RNA genes, gave a 711 bp amplicon with Phytophthora citricola. The Phytophthora cambivora specific primer pair CAMB3/CAMB4, producing a 1105bp amplicon, as well as the Phytophthora quercina specific primer pair QUERC1/QUERC2, producing a 842 bp amplicon, were derived from randomly amplified polymorphic DNA (RAPD)-fragments presented in this paper. All three primer pairs revealed no undesirable cross-reaction with a diverse test collection of isolates including other Phytophthora species, Pythium, Xerocomus, Hebeloma, Russula, and Armillaria. Under the PCR conditions described the detection of a well discernable amplicon was possible down to 100 pg (P. cambivora), 4pg (P. quercina), and 2pg (P. citricola) target DNA. This diagnostic PCR system was able to detect P. citricola, P. quercina, and P. cambivora in seedlings of pendunculate oak (Quercus robur) and European beech (Fagus sylvatica) which were artificially infected under controlled conditions.  相似文献   

12.
Bronze leaf disease (BLD) of species and hybrids of aspens, grey and white poplars (Genus Populus, section Populus) is a systemic disease incited by the fungus Apioplagiostoma populi (E.K. Cash & A.M. Waterman) M.E. Barr that results in a characteristic bronze to dark brown pigmentation of infected leaves in late summer and early fall. Branches on affected trees die over a period of several years, disfiguring trees and eventually leading to mortality of susceptible trees planted in landscapes. In this study, we describe the histopathology of the disease and fungus development relative to external symptoms on affected trees. A. populi hyphae were observed in leaf vessels, lateral veins and xylem vessels of stems and roots of affected trees. Hyphae were also observed in veins and vessels of asymptomatic leaves. Xylem vessels of growth rings on dead branches were completely occluded with A. populi near the vascular cambium and together with the ray parenchyma were stained a bronze colour. Evidence of putative toxin damage to mesophyll cells, not colonized by hyphae, was observed and may contribute to the characteristic tissue staining observed. The development of the fungus was consistent with previous reports, but in this study, we report additional details including perithecial development and ascospore release from predominantly abaxial leaf surfaces. We also report for the first time the isolation and growth of the pathogen in pure culture and systemic infection of roots.  相似文献   

13.
Phytophthora megasperma var. megasperma and unidentified isolates of Pbytophthora rescmbling P. cambivora were obtained from dead and dying roots of Horsc chestnut trccs with sparse foliage, small chlorotic leaves and branch dieback. P. citricola was isolatcd from soil around dead roots of similarly affected trccs and from around dcad feeder roots of a tree suffering from the common but unexplained Leaf scorch (marginal leaf necrosis) of Horse chestnut. Both P. cactorum and P. citricola were isolated from oozing acrial stem lesions on Horse chestnut trees. Inoculations with these species reproduced the damage.  相似文献   

14.
Pinus contorta seedlings, together with Pinus resinosa and Pinus banksiana seedlings, were planted adjacent to 25‐year‐old red pine trees infected by the European (EU) race of Gremmeniella abietina. Resistance to this race was assessed over 5 years. All P. resinosa seedlings were dead after that period while 65% of P. contorta and 86% of P. banksiana seedlings appeared resistant to the disease. The tip blight that occurred on P. contorta was slightly longer than that observed on P. banksiana. In microscopy, one, two, or even more suberized boundaries were seen to be initiated near the surface of the shoot at the base of healthy needles where they extended downward in the direction of the vascular cambium. Suberized boundaries occasionally crossed the xylem and joined together in the pith region to form continuous barriers around necrotic tissues. However, in most cases, these suberized barriers were not continuous across the shoot and compartmentalization was then completed by other barriers mainly constituted of parenchyma cells and xylem tracheids that accumulated phenolic compounds. Meristematic‐like cells were observed adjacent to the necrophylactic periderm. Tissue regeneration, restoration of cambial activities and formation of traumatic resin canals also seemed to be associated with the defence system of P. contorta against the EU race of G. abietina.  相似文献   

15.
After awaking from winter hibernation, the Edible dormouse begins to feed by stripping the bark and the outer part of the xylem from the branches of both broadleaves and conifers. Natural or artificial wounds are essential for the penetration and colonisation of the tissues by the fungal pathogen Neonectria ditissima. This pathogen creates open cankers on beech branches and other broadleaves, which are frequently later infected by wood‐decaying fungi. Because of the high frequencies of both dormouse injuries and branch cankers in a large monospecific beech forest in northern Italy, field and laboratory investigations were conducted to verify whether rodent‐inflicted injuries on beech were a preferred infection point for the pathogen. These studies also examined the susceptibility to infection of the dormouse‐inflicted wounds over time, and the relationships between dormouse damage, Neonectria infection, and wood decay. The results showed a significant direct correlation between the percentage of infections and their proximity to the wounds, indicating that the parasite localises to sites where there are receptive dormouse injuries. In addition, the susceptibility of the wound was found to diminish with increasing age, disappearing in 120–150 days. The association between dormouse injuries, Neonectria cankers and wood decay was also found to cause approximately half of the frequent beech branch breakages during intense weather events.  相似文献   

16.
Aboveground and belowground biomass of 15-year-old under-planted European beech seedlings (Fagus sylvatica L.) in Norway spruce stand were studied along a light gradient in three plots, in the northern part of Slovenia. Differences in soil water content, aboveground and fine root biomass distribution were confirmed between studied plots. Light had significant effect on the total biomass, root-shoot ratio (0.388 ± 0.076 under canopy, 0.549 ± 0.042 in the edge, 0.656 ± 0.047 in the open), specific root length (SRL) of fine beech roots (561.9 ± 42.2 under canopy, 664.3 ± 51.2 in the edge, 618.2 ± 72.8 in the open) and specific leaf area in beech, indicating morphological adjustment to shade. However, SRL of beech fine roots indicated no change between plots. The correlation between total aboveground and root biomass and light below the mature stand canopy was higher in the case of diffuse light intensity. Most fine roots of spruce were concentrated in the top (0–20 cm) soil layer. Beech fine roots under canopy and edge conditions were also concentrated in top (0–20 cm) soil layer and exhibited shift downwards to deeper soil horizons in open plot. Root proportion between beech and spruce changed with light toward beech with increasing light intensity for both fine and coarse roots.  相似文献   

17.
Due to the expected increases of number and intensity of summer droughts in Central Europe the identification of drought tolerant ecotypes becomes more important in future forestry. A common garden experiment with seedlings of Fagus sylvatica provenances from the center (Germany) and eastern margin (Poland) of the species’ distribution range was conducted. Responses of morphological, physiological, chemical and growth parameters to three drought treatments were analyzed. Relative growth rates of the marginal provenance were lower as compared to the central provenance. The marginal seedlings showed a tendency to higher total biomasses because of higher seed masses. In both provenances drought decreased biomass production and root/shoot ratio which was lower in the central provenance. A lower specific root area of the marginal provenance indicated a better adaptation to low xylem water potentials. Under moderate drought, lower leaf δ13C signatures may indicate lower stomatal limitation (or a reduced rate of CO2 assimilation) in the marginal provenance. We conclude that marginal beech provenances may exhibit a better drought adaptation.  相似文献   

18.
19.
20.
This study was initiated to investigate the possible role of Phytophthora species in white oak decline (Quercus alba) in southern Ohio at Scioto Trail State Forest. Surveys demonstrated the presence of four species of Phytophthora including one novel species. By far, the most common species was P. cinnamomi; P. citricola and P. cambivora were isolated infrequently. In few instances, P. cinnamomi was isolated from fine roots and necroses on larger roots. No special pattern of incidence was found, but P. cinnamomi was more commonly isolated from greater Integrated Moisture Index values suggesting moist lower bottomlands favour this Phytophthora species. When tree crown condition was examined relative to the presence of Phytophthora, no significant association was found. However, roots of declining P. cinnamomi‐infested trees had 2.5 times less fine roots than non‐infested and healthy trees, which was significantly different. The population densities of P. cinnamomi from declining trees were significantly greater than from healthy trees, suggesting increased pathogen activity that has the potential to cause dieback and decline and possibly the cause of a reduced fine root amount found on declining trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号