首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pinewood nematode (PWN) Bursaphelenchus xylophilus is an invasive pathogen that was introduced from North America to Asian countries and Portugal and is devastating native pine forests. Some native European and Asian Bursaphelenchus nematodes also have weak to moderate pathogenicity to native pine species. To evaluate the potential risk of native Bursaphelenchus species, we inoculated ten Japanese Bursaphelenchus species into native pine species (the dominant forest species) in Japan, and evaluated their pathogenicity using mortality and tracheal tissue damage as indices. Inoculation was conducted on August 3, 2007, and the symptoms were observed every 2 weeks until February 1, 2008. None of the inoculated trees, excluding the pathogenic PWN inoculated control, showed external disease symptoms; however, four species [a less pathogenic PWN isolate, B. luxuriosae, Bursaphelenchus sp. NK215 (undescribed), and NK224 (undescribed)] caused tracheal tissue damage in inoculated seedlings and showed weak pathogenicity. Therefore, we conclude that there are some potentially pathogenic native species of nematodes distributed in Japan. Interestingly, two of these weakly pathogenic species, B. luxuriosae and NK215, are not associated with Pinaceae trees, suggesting that nematode pathogenicity may be a pre-adaptive character. More experimental studies under different conditions are necessary to accurately evaluate the potential risk of these pathogens.  相似文献   

2.
H. Zhao  C. Chen  S. Liu  P. Liu  Q. Liu  H. Jian 《Forest Pathology》2013,43(6):444-454
To assess the role of bacteria in pine wilt disease (PWD), aseptic M form (with a mucronated tail) and R form (with a round tail) of Bursaphelenchus xylophilus and B. mucronatus were obtained and compared, in terms of reproduction and pathogenicity, with non‐aseptic nematode. In addition, bacteria isolated from non‐aseptic nematodes and pine trees inoculated with non‐aseptic nematodes were identified. The results indicated that the bacteria associated with nematodes significantly lowered the reproduction of R form of B. xylophilus and B. mucronatus. Both the non‐aseptic and aseptic R forms of B. xylophilus induced death in all infected 7‐ to 8‐year‐old pine trees, while the non‐aseptic and aseptic M forms of B. xylophilus and B. mucronatus caused almost no plant mortality. High numbers of the non‐aseptic and aseptic R forms of B. xylophilus were distributed throughout the inoculated trees, while B. mucronatus and M form of B. xylophilus nematodes were lower in number and their distribution in stems limited within the inoculation site. Bacteria isolated from non‐aseptic nematodes were not recovered from the pine trees inoculated with these same kinds of nematodes. Two species of bacteria were both isolated from non‐aseptic B. mucronatus and from R form of B. xylophilus. Microbacterium trichotecenolyticum was common to both the control and inoculated pine trees. These results suggest that R form of B. xylophilus is the causal agent of PWD and that bacteria cannot increase the virulence of B. xylophilus and B. mucronatus.  相似文献   

3.
A study was performed to clarify the population structure of the pinewood nematode, Bursaphelenchus xylophilus, within single Pinus thunbergii trees after double infection of nematode populations using the polymerase chain reaction‐restriction fragment length polymorphism (PCR‐RFLP) method. Two nematode isolates, which had different levels or the same level of virulence, were inoculated into 6‐year‐old trees at the same or different times and then the propagated nematodes were collected from the trees after 1, 6 and 9 months. When a virulent and an avirulent isolate were inoculated into a single tree, an overwhelming propagation of the virulent isolate was observed there irrespective of the inoculation order of isolates or collection time of nematodes. However, when two virulent isolates were inoculated, propagation through the interbreeding between the two isolates was observed. In the case of the staggered inoculations with two virulent isolates, the frequency of nematodes with a PCR‐RFLP pattern of the primarily inoculated isolate increased with the time after nematode inoculations. This suggested that the population structure of B. xylophilus within a single tree varied by the virulence level of nematode populations transmitted and their transmission order.  相似文献   

4.
To determine why pine wilt disease caused by the pinewood nematode (Bursaphelenchus xylophilus) recurs in the same pine stand even after thorough eradication of dead pine trees, the amount of oleoresin exudation from artificial wounds was measured from 72 Pinus koraiensis trees, highly susceptible to this disease, for 4 years. The amount of exuded oleoresin was rated from 0 to 4. All values obtained for each tree were summed at each measurement; thereby a cumulative curve was drawn to monitor the physiological condition of each test tree. Cumulative curves suggest that some pine trees that died had already been infected in the previous year or earlier and then had survived without any visible symptoms. If cessation of oleoresin exudation delays, and overlaps with activity of Monochamus alternatus, the vector beetle of pinewood nematodes, in the following season, such trees can be referred to as latent carriers or asymptomatic carriers. They could play a significant role as attractants for M. alternatus that could then transmit B. xylophilus to neighboring trees. Behavior of M. alternatus caged with several pine seedlings, only one of which acted as an asymptomatic carrier of B. xylophilus, confirmed this idea. The presence of asymptomatic pine trees, which harbored B. xylophilus nematodes or had reduced annual elongation, near stumps of newly dead trees in the study stand also substantiated this hypothesis.  相似文献   

5.
Bursaphelenchus mucronatus is a parasitic nematode of pine that is widely distributed in the natural pine forests of Asia and Europe. It has a very similar morphology and biology to that of Bursaphelenchus xylophilus, the causal agent of pine wilt disease, but has generally been considered to be non‐pathogenic to pine. However, in some provinces of China, B. mucronatus has been isolated from dead pine trees rather than B. xylophilus. Previous studies have shown that B. mucronatus can induce the death of pine seedlings under glasshouse conditions. To investigate the virulence of B. mucronatus, 2‐year‐old seedlings of Pinus massoniana and Pinus elliottii were inoculated with one of six isolates of B. mucronatus under field conditions in April 2014 and their condition was monitored over a year. The virulence of the six B. mucronatus isolates differed on the three host species: P. elliottii seedling mortality ranged from zero to six of the 18 inoculated seedlings, whereas P. massoniana seedling mortality ranged from four to 12 of the 18 inoculated seedlings. Three B. mucronatus isolates that appeared to cause different levels of mortality among the seedlings were used to inoculate 12‐year‐old Pinus thunbergii trees in August 2014. The trees were monitored for a year, during which time between 4 and 12 of the 18 inoculated trees in each treatment wilted and died. The average monthly temperature during the test period appeared to be similar to that of the historical average in the test areas; however, both study sites experienced above‐average rainfall. This study demonstrated that B. mucronatus has potential virulence on pine trees and provided experimental evidence that high temperatures or drought stress is not essential for the virulence of B. mucronatus.  相似文献   

6.
The pinewood nematode, Bursaphelenchus xylophilus (Steiner and Buhrer, J. Agric Res. 48, 1934, 949), Nickle (J. Nematol. 2, 1970, 375), is the causative agent of the pine wilt disease and causes serious damage to pine forests around the world. During a survey for the pinewood nematode, four other Bursaphelenchus species (Bursaphelenchus mucronatus, B. sexdentati, B. anamurius and B. vallesianus) were isolated from wilted pine trees in Turkey. To understand the effects of these Bursaphelenchus species on wilting of pine trees, a study was conducted under greenhouse conditions. Two‐year‐old seedlings of three pine species (Pinus nigra, P. brutia and P. pinea) and one cedar species (Cedrus libani) were used. Fifteen seedlings of each species were inoculated with nematodes and 10 seedlings of each species served as controls. The inoculum densities used for each seedling contained approximately 1000 (±100) nematodes of all life stages in 0.25 ml of distilled water. The first wilting symptoms were observed in the fifth week in all pine species but not in the cedar seedlings. All seeding mortality occurred between the 5th and 13th weeks of the study; no mortality was observed outside of this period. The most pathogenic nematode species was B. mucronatus, closely followed by the other species. The most susceptible seedling species was P. nigra, and C. libani was the most resistant species.  相似文献   

7.
As a result of the detection of the pinewood nematode Bursaphelenchus xylophilus in Portugal, and its subsequent spread to Spain, intense surveys were conducted to screen for the presence of Bursaphelenchus species in Romania. Herein, we report recent surveys of insects potentially vectoring Bursaphelenchus species collected using trap trees or pheromone‐baited traps placed in the forest. Trap felled spruce trees (Picea abies) and pheromone‐baited traps were installed in six different counties in Romania (Bra?ov, Sibiu, Suceava, Hunedoara, Timi? and Dâmbovi?a). Ten different species of insects distributed among Curculionidae and Cerambycidae were obtained. Nematodes were extracted from insects and observed to validate the presence of Bursaphelenchus specimens. One female identified as Monochamus sutor was the only specimen carrying nematodes in the genus Bursaphelenchus. Nematodes were identified as B. mucronatus based on morphological and molecular features. This is the first detection and report of natural spread of B. mucronatus in Romania. The absence of B. xylophilus was confirmed in the areas of Romania surveyed in this work.  相似文献   

8.
An overview of the genus Bursaphelenchus in the Czech Republic is presented, based on a recent survey for monitoring the presence of the pinewood nematode, Bursaphelenchus xylophilus, as well as on previous reports of this genus in the country. In addition, we provide a morphological and molecular characterization of four Bursaphelenchus species (B. eremus, B. pinophilus, B. vallesianus and B. borealis) found during the monitoring programme for forest pests, conducted during 2006–2010, within the Moravian and Bohemian regions. Nematodes were extracted from over 1917 insects and 1493 wood samples collected from deciduous and coniferous trees exhibiting wilting and declining symptoms. Bursaphelenchus species were found only in 0.73% of insects and 0.47% of the total number of wood samples. Bursaphelenchus borealis and B. pinophilus dauer juveniles were found associated with the insect vectors Dryocetes autographus and Pityogenes bidentatus, respectively. While a total of seven Bursaphelenchus species are now reported from the Czech Republic, the status of B. xylophilus remains as absent.  相似文献   

9.
The pinewood nematode, Bursaphelenchus xylophilus, is the causal agent of pine wilt disease and is transmitted to new host trees by beetles of the genus Monochamus. The increasing interest in imported wood chips from North America for paper production and energy purposes and the corresponding phytosanitary risk of non‐vector transmission of B. xylophilus has been discussed since 1984, the year of the first interception of B. xylophilus in wood chips in the European Union. The long‐term survival of B. xylophilus in wood chips and its non‐vector spread from infested wood chips to non‐infested trees were studied. Pinus sylvestris logs were inoculated with a suspension of B. xylophilus to produce infested wood chips. During the long‐term storage test, B. xylophilus in P. sylvestris wood chips were examined. Four variants, including sealed and openly stored wood chips at both 15°C and 25°C, were studied. For the test of non‐vector spread, B. xylophilus ‐infested wood chips were placed on three‐ to four‐year‐old P. sylvestris saplings under different conditions. Bursaphelenchus xylophilus survived for more than 1 year at both temperatures in the sealed wood chips, which was significantly longer than for the openly stored variant at 25°C. Temperature, tree condition and wood chip location all influenced non‐vector spread through wood chips. Of the 480 trees that were in contact with infested wood chips and showed clear symptoms of pine wilt disease, B. xylophilus were extracted from 42 pines at 25°C and one pine at 15°C. The highest B. xylophilus infestation rates resulting in clear pine wilt disease symptoms (75%) were found in infested wood chips directly attached to stem‐wounded trees at 25°C. However, more variants exhibited B. xylophilus infestation at this temperature; trees with stem or root injuries plus direct contact with infested wood chips to the wounded part were primarily affected. Moreover, non‐vector spread was also detected in stem‐ and root‐injured pines without any direct contact with infested wood chips. Our results confirmed that B. xylophilus can survive for long periods in wood chips and can be transmitted from infested wood chips to damaged trees, but the likelihood of such PWN establishment should be low compared to spread through vectors. These findings must be considered in the pest risk analysis of B. xylophilus, and studies using outdoor trials should be carried out to complete this pest risk analysis.  相似文献   

10.
We examined the effectiveness of a new Bursaphelenchus xylophilus detection kit, based on loop‐mediated isothermal amplification (LAMP), in old discs taken from the stem base of B. xylophilus‐infested dead trees of Pinus armandii var. amamiana (PAAm) occurring in their natural habitats. LAMP products, representing a past B. xylophilus infection, were detected in two consecutive trials from 16 of 20 discs collected from PAAm trees that died between 2003 and 2006. Bursaphelenchus xylophilus were more frequently detected using LAMP in wood samples taken from sapwood than from heartwood. No significant differences in the detection of B. xylophilus using LAMP were observed in relation to the disc collection time (from 3 to 6 years before the analysis). Bursaphelenchus xylophilus were not detected using LAMP in four discs, although a B. xylophilus infection had been confirmed for the original PAAm trees at the time they were found dead. This may have resulted from the small amount of wood chips needed for the LAMP test or the reduced number and uneven distribution of the nematode in the old dead trees. The results indicate that the new B. xylophilus detection kit will be a very efficient tool for conducting retrospective analysis of PAAm mortality factors.  相似文献   

11.
In Greece extensive pine wilting is associated with the presence of nematodes of the genus Bursaphelenchus. In order to check the pathogenicity of Bursaphelenchus sexdentati, Bursaphelenchus leoni and Bursaphelenchus hellenicus, inoculation tests were carried out on 3‐year‐old seedlings of Pinus brutia, Pinus halepensis, Pinus nigra, Pinus pinaster and Pinus sylvestris. For inoculations, 6000 nematodes in 0.5 ml of water were used per seedling. Bursaphelenchus sexdentati proved to be highly virulent causing mortality of up to 100%, followed by B. leoni whereas B. hellenicus was nonpathogenic.  相似文献   

12.
Ichihara  Fukuda  Suzuki 《Forest Pathology》2001,31(3):141-147
In order to study the changes in ectomycorrhizal development during symptom expression of pine wilt disease, root window observations were conducted concurrent with measurements of leaf water potential as well as photosynthetic and transpiration rates of 5‐year‐old Pinus thunbergii trees that were inoculated with the pinewood nematode (PWN) Bursaphelenchus xylophilus. Infected trees were compared with girdled and uninfected control trees. Ectomycorrhizas developed constantly during the experimental period in control trees but did not develop in the girdled trees. Ectomycorrhizal development ceased within 2 weeks in those trees that finally died after PWN infection. In the trees that survived PWN infection, ectomycorrhizal development ceased within 1–4 weeks of inoculation but was resumed thereafter within 3–6 weeks. Ectomycorrhizal development ceased prior to a decrease in both photosynthetic rate and leaf water potential in the inoculated trees.  相似文献   

13.
14.
Adult trees of Pinus armandii var. amamiana (PAAm) and P. thunbergii grown in the field were inoculated with 100000 or 1000 of the nematode Bursaphelenchus xylophilus to evaluate their susceptibility to pine wilt disease. PAAm trees inoculated with 100000 nematodes started to show disease symptoms 2 weeks after inoculation, and all died within 29 weeks. Although the PAAm trees inoculated with 1000 nematodes tended to show delayed disease symptoms compared with those inoculated with 100000 nematodes, all of them died within 33 weeks after inoculation. All P. thunbergii trees inoculated with 1000 nematodes had died 6 weeks after inoculation. In the nematode-inoculated PAAm trees, death of branches distal to the nematode inoculation site was the first visible symptom, followed by the systemic discoloration of needles, whereas the whole tree wilted simultaneously in P. thunbergii trees. In nematode-inoculated PAAm trees, the period from inoculation to death was longer than that in P. thunbergii. These results suggest that adult PAAm trees are susceptible to pine wilt disease, but are less vulnerable than P. thunbergii.  相似文献   

15.
E. Asai  K. Futai 《Forest Pathology》2005,35(2):135-144
Six‐month‐old Japanese black pine seedlings (Pinus thunbergii) were exposed to simulated acid rain (SAR) at pH 3 and 2 three times a week. After treatment for 2 months, the seedlings were inoculated with a virulent isolate (S10) of the pinewood nematode (Bursaphelenchusxylophilus), at three inoculum levels (Pi = 50, 160 or 500 nematodes per seedling). In seedlings inoculated with 500 nematodes, both population growth of nematodes and disease development were accelerated by pretreatment with SAR at pH 3 or 2. In seedlings inoculated with 50 nematodes, population growth of the nematodes was suppressed and more time was needed for seedlings to die when pretreated with pH 3 SAR. This suggests that exposure to pH 3 SAR increased not only the progress of mortality, but also simultaneously enhanced the tolerance limit of the seedlings to the pinewood nematode – the critical value of physiological burden (represented as a product of time and initial nematode population) necessary to kill a seedling. Exposure to pH 2 SAR accelerated nematode reproduction in seedlings and increased seedling mortality irrespective of the number of nematodes inoculated.  相似文献   

16.
The pinewood nematode (PWN), Bursaphelenchus xylophilus, is the causal agent of pine wilt disease (PWD), which is a major problem in East Asia and West Europe. Quick identification of PWN is needed to prevent the dispersal of PWD to healthy forests. Various detection methods of PWN have been developed using anatomical characters and molecular markers. These methods are not suitable for rapid diagnosis because it is difficult to distinguish B. xylophilus from the non‐pathogenic species Bursaphelenchus mucronatus based on morphological characters without expertise in nematode taxonomy and most PCR or isothermal amplification detection methods require time‐consuming processes. In this study, we developed an on‐site PWN detection method using a recombinase polymerase amplification (RPA) assay with a novel extraction buffer (DAP buffer). This new PWN detection method is able to extract genomic DNA from PWN in pinewood by simple buffer consisting of sodium hydrate, polyethylene glycol 200 and dimethyl sulfoxide in 10 min without using the experimental devices and able to distinguish between B. xylophilus and other Bursaphelenchus spp. by amplifying the species‐specific 5S rDNA fragment of B. xylophilus in 10 min. Taken together, our protocol can obtain the result for the detection of PWN in pine tree samples within 30 min. This result suggests that RPA/DAP assay is much faster, easier and cheaper than the conventional methods for detecting PWN.  相似文献   

17.
18.
19.
An avirulent isolate (C14‐5) of the pinewood nematode, Bursaphelenchus xylophilus, was inoculated onto 45 seedlings of the susceptible host Japanese black pine (Pinus thunbergii) and its viability was investigated. The nematode survived inside host seedlings for approximately 7 months even when the host seemed to overcome the infection based on lack of foliar wilting and the observation of normal oleoresin flow.  相似文献   

20.
Pinewood nematode, Bursaphelenchus xylophilus, is an inhabitant of native pine species of North America, where its presence in trees is non‐pathogenic. By contrast, the introduction of this nematode to forests overseas has devastated some pine stands and is recognized as a pest of phytosanitary concern by some countries' National Plant Protection Organizations. The ability to detect B. xylophilus in internationally traded wood products is crucial to reduce the spread of this organism. Current molecular techniques for the detection of B. xylophilus rely on the presence of genomic DNA and thus will detect both living and dead nematodes without differentiation. The detection of dead nematodes could lead to unnecessary trade disruption. Therefore, accurate techniques for the detection of and differentiation between live and dead B. xylophilus are critical. We have developed an endpoint RT‐PCR assay and a SYBR Green 1 real‐time RT‐PCR assay, both of which selectively identify living pinewood nematode by detecting the presence of Hsp70 mRNA as a viability marker. Both of these assays may help overcome or resolve disputes involving the detection of pinewood nematode at the port of entry and can also be used to evaluate the efficiency of wood treatment procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号