首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Temporal and seasonal water deficit is one of the major factors limiting crop yield on the Canadian prairie. Selection for low carbon isotope discrimination (Δ13C) or high water‐use efficiency (WUE) can lead to improved yield in some environments. To understand better the physiology and WUE of barley under drought conditions on the Canadian prairie, 12 barley (Hordeum vulgare L.) genotypes with contrasting levels of leaf Δ13C were investigated for performance stability across locations and years in Alberta, Canada. Four of those genotypes (‘CDC Cowboy’, ‘Niobe’, ‘170011’ and ‘Kasota’) were also grown in the greenhouse under well‐watered and water‐deficit conditions to examine genotypic variations in leaf Δ13C, WUE, gas exchange parameters and specific leaf area (SLA). The water‐deficit treatment was imposed at the jointing stage for 10 days followed by re‐watering to pre‐deficit level. Genotypic ranking in leaf Δ13C was highly consistent, with ‘170011’, ‘CDC Cowboy’ and ‘W89001002003’ being the lowest and ‘Kasota’‘160049’ and ‘H93174006’ being the highest leaf Δ13C. Under field and greenhouse (well‐watered) conditions, leaf Δ13C was significantly correlated with stomatal conductance (gs). Water deficit significantly increased WUE, with ‘CDC Cowboy’– a low leaf Δ13C genotype with significantly higher WUE and lower percentage decline in assimilation rate (A) and gs than the other three genotypes (‘Niobe’, ‘170011’ and ‘Kasota’). We conclude that leaf Δ13C is a stable trait in the genotypes evaluated. Low leaf Δ13C of ‘CDC Cowboy’ was achieved by maintaining a high A and a low gs, with comparable biomass and grain yield to genotypes showing a high gs under field conditions; hence, selection for a low leaf Δ13C genotype such as ‘CDC Cowboy’ maybe important for maintaining productivity and yield stability under water‐limited conditions on the Canadian prairie.  相似文献   

2.
This study aimed to evaluate the ability of Piriformospora indica to colonize the root of Chenopodium quinoa and to verify whether this endosymbiont can improve the growth, performance and drought resistance of this species. The study delivered, for the first time, evidence for successful colonization of P. indica in quinoa. Hence, pot experiment was conducted in the greenhouse, where inoculated and non‐inoculated plants were subjected to ample (40%–50% WHC) and deficit (15%–20%WHC) irrigation treatments. Drought adversely influenced the plant growth, leading to decline the total plant biomass by 74%. This was linked to an impaired photosynthetic activity (caused by lower gs and Ci/Ca ratio; stomatal limitation of photosynthesis) and a higher risk of ROS production (enhanced ETR/Agross ratio). P. indica colonization improved quinoa plant growth, with total biomass increased by 8% (controls) and 76% (drought‐stressed plants), confirming the growth‐promoting activity of P. indica. Fungal colonization seems to diminish drought‐induced growth hindrance, likely, through an improved water balance, reflected by the higher leaf ψw and gs. Additionally, stomatal limitation of photosynthesis was alleviated (indicated by enhanced Ci/Ca ratio and Anet), so that the threat of oxidative stress was minimized (decreased ETR/Agross). These results infer that symbiosis with P. indica could negate some of the detrimental effects of drought on quinoa growth, a highly desired feature, in particular at low water availability.  相似文献   

3.
Two old (Huangsedadou and Longxixiaohuangpi (LX)) and two new (Jindou 19 (JD) and Zhonghuang 30 (ZH)) soya bean (Glycine max (L.) Merr.) cultivars were used to investigate the influence of soil drying on the abscisic acid (ABA) accumulation in leaves, stomatal conductance (gs), leaf water relations, osmotic adjustment (OA), leaf desiccation tolerance, yield and yield components. The greater ABA accumulation was induced by soil drying, which also inducing gs decreased at higher soil water contents (SWC) and leaf relative water content (RWC) significantly decreased at lower SWC in the new soya bean cultivars than in the old soya bean cultivars. The soil water threshold between the value at which stomata began to close and the RWC began to decrease was significantly broader in the new cultivars than in the old cultivars. The new cultivars had significantly higher OA and lower lethal leaf water potential than old cultivars when the soil dried. The old cultivars had greater biomass, but lower grain yield than the new cultivars in well‐watered, moderate stress and severe stress conditions. Thus with soil drying, the new soya bean cultivars demonstrated greater adaptation to drought by inducing greater ABA accumulation, stomatal closure at higher SWC, enhanced OA and better water relations, associated with increased leaf desiccation tolerance, greater water use efficiency and higher yield.  相似文献   

4.
Potatoes (Solanum tuberosum L.) are drought‐sensitive and more efficient water use, while maintaining high yields is required. Here, water‐use efficiency (WUE) of a mapping population comprising 144 clones from a cross between 90‐HAF‐01 (Solanum tuberosum1) and 90‐HAG‐15 (S. tuberosum2 × S. sparsipilum) was measured on well‐watered plants under controlled‐environment conditions combining three levels of each of the factors: [CO2], temperature, light, and relative humidity in growth chambers. The clones were grouped according to their photosynthetic WUE (pWUE) and whole‐plant WUE (wpWUE) during experiments in 2010. Two offspring groups according to pWUE and wpWUE were identified on the basis of experiments conducted in 2010, which in experiments in 2011 again showed significant differences in pWUE (46 %, P < 0.001) and wpWUE (34 %, P < 0.001). The high‐WUE group had a higher net photosynthesis rate (34 %) and dry matter accumulation (55 %, P < 0.001) rather than leaf‐level transpiration rate (?4 %, no significant difference) or whole‐plant water use (16 %). The pWUE correlated negatively to the ratio between leaf‐internal and leaf‐external [CO2] (R2 = ?0.86 in 2010 and R2 = ?0.83 in 2011, P < 0.001). The leaf chlorophyll content was lower in the high‐WUE group indicating that the higher net photosynthesis rate was not due to higher leaf‐N status. Less negative value of carbon isotope discrimination (δ13C) in the high‐WUE group was only found in 2011. A modified Ball‐Berry model was fitted to measured stomatal conductance (gs) under the systematically varied environmental conditions to identify parameter differences between the two groups, which could explain their contrasting WUE. Compared to the low‐WUE group, the high‐WUE group showed consistently lower values of the parameter m, which is inversely related to WUE. Differences related specifically to the dependence of gs on humidity and net photosynthesis rate were only found in 2010. The lower ratio between leaf‐internal and leaf‐external [CO2] and higher WUE of the high‐WUE group was consistent over a wide range of air vapour pressure deficits from 0.5 to 3.5 kPa. The mapping population was normally distributed with respect to WUE suggesting a multigenic nature of this trait. The WUE groups identified can be further employed for quantitative trait loci (QTL) analysis by use of gene expression studies or genome resequencing. The differences in population WUE indicate a genetic potential for improvement of this trait.  相似文献   

5.
Drought stress and zinc (Zn) deficiency are serious abiotic stress factors limiting crop production in Turkey, especially in Central Anatolia. In this study, the effects of Zn deficiency and drought stress on grain yield of 20 wheat cultivars (16 bread wheat, Triticum aestivum; four durum wheat, Triticum durum cultivars) were investigated over 2 years under rainfed and irrigated conditions in Central Anatolia where drought and Zn deficiency cause substantial yield reductions. Plants were treated with (+Zn: 23 kg Zn ha−1, as ZnSO4·7H2O) and without (−Zn) Zn under rainfed and irrigated conditions. Both Zn deficiency and rainfed treatments resulted in substantial decreases in grain yield. Significant differences were determined between both bread wheat and durum wheat cultivars in terms of drought stress tolerance. Considering drought sensitivity indices over 2 years, the bread wheat cultivars Yayla‐305, Gerek‐79, Dagdas‐94 and Bolal‐2973 were found to be more drought‐tolerant than the other cultivars under both −Zn and +Zn treatments. Especially the durum wheat cultivars Cakmak 79 and Selcuklu 97 showed much greater drought susceptibility under Zn deficiency, and irrigation alone was not sufficient to obtain satisfying grain yield without Zn application. The results indicate that sensitivity to Zn deficiency stress became more pronounced when plants were drought‐stressed. The effect of irrigation on grain yield was maximized when Zn was adequately supplied, leading to the suggestion that efficient water use in Central Anatolia seems to be highly dependent on the Zn nutritional status of plants.  相似文献   

6.
The relationship between grain yield and carbon isotope discrimination (Δ) was analysed in wheat grown under different water regimes in the Ningxia Province (north‐west of China). When the association was significant, the relationships between grain yield, Δ and other drought tolerance related traits, such as leaf ash content (ma), chlorophyll concentration (Chl), relative water content (RWC), stomatal conductance (gS) and the ratio of internal CO2 leaf concentration to ambient CO2 concentration (Ci/Ca), were also examined. Using correlation analysis, the relationships were determined during two consecutive years in a set of 20 spring wheat cultivars (landraces, improved varieties and advanced lines) under rainfed and irrigated conditions, including saline conditions. The relationship between Δ and yield within environments highly depended on the quantity of water stored in the soil at sowing, the quantity and distribution of rainfall during the growth cycle, and the irrigation before anthesis. Δ predicted grain yield under limited irrigation (post‐anthesis water stress) but not under pre‐anthesis water stress (rainfed conditions), fully irrigated and saline conditions. Under limited irrigation, grain Δ correlated significantly to grain yield leaf ma at heading and maturity. It also significantly positively correlated to Chl, RWC, gS and Ci/Ca assessed at anthesis. A precise characterization of the timing and intensity of the abiotic constraints experienced by the crop is consequently needed before implementing the use of Δ in wheat breeding programmes.  相似文献   

7.
Terminal drought is threatening the wheat productivity worldwide, which is consumed as a staple food by millions across the globe. This study was conducted to examine the influence of foliage‐applied stress signalling molecules hydrogen peroxide (H2O2; 50, 100, 150 μm ) and nitric oxide donor sodium nitroprusside (SNP; 50, 100, 150 μm ) on resistance against terminal drought in two bread wheat cultivars Mairaj‐2008 and BARS‐2009. These stress signalling molecules were applied at anthesis stage (BBCH 61); drought was then imposed by maintaining pots at 35% water holding capacity. Terminal drought caused significant reduction in grain yield of both tested bread wheat cultivars; however, foliage application of both stress signalling molecules at either concentration improved the performance of both bread wheat cultivars. Maximum improvement in 100‐grain weight (12.2%), grains per spike (19.7%), water‐use efficiency (WUE; 19.8%), chlorophyll content index (10.7%), total soluble phenolics (21.6%) and free leaf proline (34.3%), and highest reduction in leaf malondialdehyde contents (20.4%) was recorded when H2O2 was foliage‐applied at 100 μm . Foliage application of SNP enhanced the grains per spike, 100‐grain weight and grain yield by 14.9%, 11.3% and 20.1%, respectively, than control. The foliage‐applied stress signalling molecules improved the accumulation of soluble phenolics, proline and glycine betaine with simultaneous reduction in malondialdehyde contents, which enabled wheat plants to sustain the biological membranes under stress resulting in better stay green (high chlorophyll contents) under drought. This helped improving the grain number, grain weight, grain yield, WUE and transpiration efficiency. In crux, foliage‐applied H2O2 and SNP, at pre‐optimized rate, may be opted to lessen the drought‐induced yield losses in bread wheat in climate change conditions.  相似文献   

8.
In a field trial involving four tepary lines (Phaseolus acutifolius A. Gray), NE#8A and NE#19 produced higher grain yield than NE#5 and NE#7 under both well watered and drought conditions. However, NE#8A is considered more resistant than NE#19 in terms of drought sensitivity index. Greenhouse investigations on intact plants indicated no differences among the four lines in leaf and stem dry mass, and leaf area. Root depth did not strictly differentiate lower‐yielding from higher‐yielding lines. In contrast to lower‐yielding lines, however, plants of higher‐yielding ones allocated greater dry matter (DM) in roots in response to imposed water stress. Distinctly, NE#19 had the greatest root : shoot (R : S) while NE#8A characterized by high net photosynthesis. Both NE#8A and NE#19 showed reduced leaf area : root dry mass ratio, stomata conductance and transpiration rate. Consequently, these two lines showed no significant changes in leaf relative water content while photosynthetic water‐use‐efficiency increased in response to water stress. Calli derived from leaf and root tissues of higher‐yielding lines exhibited low initial osmotic potential (ψs). These calli did not show alterations in ψs, DM% and relative growth rate (RGR) when subjected to water stress. Although leaf‐ and root‐derived calli of lower‐yielding lines exhibited osmotic adjustment, they suffered water stress in terms of elevated DM and reduced RGR. Overall, results suggest that dehydration‐avoidance mechanisms conditioned by increased root mass and stomata resistance accompanied with low initial cellular ψs sustained high grain yield of tepary under limited water supply.  相似文献   

9.
Even in the temperate climates of Europe, increasing early season drought and rising air temperature are presenting new challenges to farmers and wheat breeders. Sixteen winter wheat (Triticum aestivum L.) genotypes consisting of three hybrids, six line cultivars and two breeding lines from Germany as well as five line cultivars from France, Austria, Slovakia, Hungary and the Ukraine (referred to as “exotic” lines) have been included in this study. The genetic materials were evaluated over three growing seasons under a range of soil moisture regimes at the three North German sites Braunschweig (irrigated and drought‐stressed), Warmse (rainfed) and Söllingen (rainfed). The average grain yields in the twelve growth environments (water regime × season combinations) ranged from 6.1 to 13.5 t ha?1. The exotic lines showed little evidence of specific phenological adaptation to drought although they are frequently faced with water scarcity in their countries of origin. The hybrids and German lines exhibited higher regression coefficients (bi) to environmental means than the exotic lines, indicating particular adaptation to favourable growing conditions. The phenotypical correlations of grain yield between the various environments were high, ranging for instance from 0.6 to 0.8 for the irrigated and drought‐stressed environments at Braunschweig. It is thus expected that in the foreseeable future continued selection aiming at high yield potential will suffice as a means to counter the expected increase in droughts.  相似文献   

10.
Selection for drought tolerance entails prioritizing plant traits that integrate critical physiological processes occurring during crop growth. Discrimination against 13C (?) in leaflets (?leaflet) and tubers (?tuber) was compared under two water regimes in two potato‐improved varieties selected to maintain yield under drought conditions (Unica and Sarnav) and one drought susceptible European cultivar (Désirée). In the control treatment, soil water content was kept at field capacity over the whole growth cycle, while in the drought treatment water supply was restricted after tuber initiation (50 % of field capacity). Gas exchange and N content per unit leaf area (Narea) as well as ? were assessed at different stages. Sarnav showed the highest tuber yield in both water conditions, suggesting that yield in the water restriction treatment was largely driven by yield potential in this genotype. Higher stomatal conductance (gs) and Narea and lower ?leaflet in well‐watered Sarnav suggested higher photosynthetic capacity. Under water restriction, Sarnav maintained higher gs indicating that carbon diffusion was a key factor for biomass accumulation under water restriction. Our results suggest the use of ? determined after tuber initiation as an indirect selection indicator for tuber yield under both well‐watered and restricted soil water availability conditions.  相似文献   

11.
Salt (NaCl)‐induced regulation of some key physio‐biochemical characteristics in two okra (Abelmoschus esculentus L.) cultivars (Nirali and Posa Sawni) was examined under greenhouse conditions. Plants of both cultivars were subjected for 30 days to sand culture salinized with four salt levels [0 (control), 50, 100 and 150 mm NaCl] in Hoagland’s nutrient solution. Salt stress significantly reduced the shoot and root fresh weights, transpiration rate, chlorophyll b content, net CO2 assimilation (A), transpiration rate (E), while enhanced leaf and root Na+ and Cl concentrations in both cultivars. In contrast, chlorophyll a content, stomatal conductance (gs), leaf internal CO2 (Ci), Ci/Ca ratio, water‐use efficiency (A/E) and fluorescence characteristics such as photochemical quenching (qP), non‐photochemical quenching (NPQ), efficiency of PS‐II (Fv/Fm), proline contents, and leaf and root K+, Ca2 + and N contents remained almost unaffected in both lines due to salt stress. The efficiency of PSII (Fv/Fm), A, chlorophyll b, root fresh weight and root N were higher in relatively salt tolerant cv. Nirali, whereas leaf Na+ and root Cl were higher in cv. Posa Sawni. The relatively more reduction in growth in the cv. Posa Sawni was found to be associated with higher accumulation of Na+ in its leaves and Cl in roots.  相似文献   

12.
Leaf carbon isotope discrimination (CID) has been suggested as an indirect tool for breeding for water‐use efficiency (WUE) in various crops. This work focused on assessing phenotypic correlations between WUE and leaf CID and analysing genotypic variability in four sunflower genotypes grown in a greenhouse in pots with five different stable levels of soil water content (SWC). We measured WUE at whole plant and leaf (intrinsic) level. At whole plant level, WUE was derived from the ratio of total dry aerial biomass (BM) to cumulative water transpired (CWT). At leaf level, intrinsic WUE was calculated as the ratio of light‐saturated CO2 assimilation to stomatal conductance (A/gs) in younger expanded leaves. Significant differences among the four genotypes and the five SWCs were observed for whole plant and leaf WUE and CID. Strong negative correlations were observed between whole plant WUE and CID as well as between intrinsic WUE and CID with decreasing water availability. No relationships appeared between BM production and WUE or CID. Our results can help agronomists and breeders to evaluate sunflower lines with high WUE for adaptation to drought conditions and for reducing water consumption and crop water needs. Leaf CID appears to be a pertinent and valuable trait to select sunflower genotypes with high WUE.  相似文献   

13.
Facing a steadily increasing world energy demand, jatropha, among other energy crops, has been reported to potentially contribute to biofuel production. A basic characterisation of plant responses to abiotic environmental factors is important for assessing the model‐assisted potential of this plant in view of the many agro‐ecological zones in which jatropha is presently cultivated. Two pot experiments and two field studies were used to record gas exchange parameters in response to light, nitrogen supply, atmospheric vapour pressure deficit (VPD), leaf age and time of measurements. Variation of N supply from 0 to 16 mm resulted in lower rates of photosynthesis (A) and stomatal conductance (gs) of treatment 0 mm N compared with other N levels, whereas the light compensation point (IC), quantum yield (QY) and dark respiration rates (Rd) were similar in all treatments. In the field, diurnal effects were evident with higher light‐saturated photosynthetic rate (Amax) and QY and lower IC and Rd in the morning than in the afternoon. Considering leaf age effects, fully expanded leaves had a lower Amax compared with expanding leaves and this variation in leaf gas exchange was not related to changes in the chlorophyll index value (SPAD) which steadily increased with leaf age. QY of field and greenhouse plants varied from 0.023 to 0.037 and was substantially lower than in C3 plants. A was positively correlated with gs in a hyperbolic function. A varied from 0.64 to 21.13 μmol m?2 s?1 and gs varied from 12 to 469 mmol m?2 s?1. With increasing VPD, gs decreased, but this response differed between the field experiments and the two pot experiments which contrasted each other distinctively. Applying the inverse logistic function of Webb (Ecological Modeling, 56 (1991), 81), the maximal stomatal conductance of jatropha was in the range of 382 mmol m?2 s?1 and gs is predicted to be close to zero at 5 kPa. These data altogether indicate that light absorption characteristics of single leaves and carbohydrate status parameters should be investigated further to explain the low QY and the pronounced diurnal variation.  相似文献   

14.
A greenhouse experiment was carried out to examine the differential morpho‐physiological responses of five cultivars of turnip (Brassica rapa L.) to salt stress. Five diverse cultivars of turnip (shaljum desi surakh, shaljum purple top, shaljum golden bal, neela shaljum, and peela shaljum) were subjected for 6 weeks to varying levels of NaCl, i.e. 0, 80 and 160 mm in Hoagland’s nutrient solution in sand culture. Imposition of varying levels of salt substantially decreased shoot and root fresh and dry weights, chlorophyll contents, leaf osmotic potential, relative water contents, different gas exchange attributes, total phenolics, malondialdehyde, activities of superoxide dismutase, peroxidase catalase, and leaf and root K+ levels while enhanced the proline contents, membrane permeability, level of H2O2, leaf and root Na+ and Cl? and leaf Ca2+ in all turnip cultivars under study. Of all cultivars, peela shaljum and neela shaljum were consistently higher in their growth than the other turnip cultivars at all salt concentrations of the growth medium. Photosynthetic capacity (A) and stomatal conductance (gs) were higher in high biomass‐producing cultivars, i.e. peela shaljum and neela shaljum, which provide to be potential selection criteria of salt tolerance in turnip. However, the regulation of antioxidant system was cultivar‐specific under saline conditions.  相似文献   

15.
Abstract The objective was to study soil water conservation and physiological growth of wheat (Triticum aestivum L.) using composted cattle manure applied either as mulch or incorporated with soil at 20 Mg ha?1. Haruhikari, a relatively drought‐sensitive and Hongmangmai, a relatively drought‐tolerant wheat, were the cultivars studied under both adequate and deficit irrigation. Fourteen weeks after sowing (WAS), the number of tillers and leaves was significantly reduced by 19 % and 30 % respectively under deficit irrigation and Hongmangmai produced slightly (10 %) more tillers than Haruhikari. Unlike mulching, the incorporation of manure had favourable effects on plants in terms of shoot dry mass (SDM) by 36 % and number of tillers and leaves by 40 %. Haruhikari produced substantially (29 %) greater root mass under adequate irrigation but Hongmangmai produced slightly (2.7 %) more roots and responded much better to manure use whether under adequate or deficit irrigation. As a result, Hongmangmai suffered less severe reductions in tillers and biomass under water stress. In comparison, the mulched manure treatment saved 15 % and 64 % respectively more water than the control and the treatment incorporating manure, but this advantage in water‐saving did not translate to superior plant growth. Leaf water potential (ψl) under adequate irrigation significantly exceeded that under deficit irrigation by 27 % and the ψl of Haruhikari exceeded that of Hongmangmai by 15 %. However, Hongmangmai may be considered more tolerant of dehydration since it maintained much higher net photosynthetic rates (PN) even with a lower leaf water potential. The reduction in the PN and intracellular carbon dioxide concentration (Ci) of the cultivars under deficit irrigation was on account of decreasing stomatal conductance (gs) and transpiration rate but on average, the gs of Hongmangmai significantly exceeded that of Haruhikari by as much as 0.53 under adequate irrigation and 0.22 under deficit irrigation. In conclusion, we suggest that the drought tolerance of Hongmangmai was related to its superior root growth and greater ability than Haruhikari, to efficiently utilize incorporated manure for growth under water stress.  相似文献   

16.
The effect of organic sources of nutrients and inorganic fertilizers, was studied on grain yield of lowland rice and some aspect of soil quality parameters in a field experiment at Agricultural Experimental Farm of Indian Statistical Institute, Giridih, situated at eastern plateau region of India, during consecutive years 1997–2002. Chemical fertilizers and various organic matters were applied to two rice cultivars, Sabita and Subarna. The highest mean grain yield was 3.53 t ha?1 and maximum agronomic efficiency was 60.3 % with the application of inorganic fertilizer followed by cow dung, where 3.47 t ha?1 grain yield was recorded with an agronomic efficiency of 57.5 %. Grain yield of rice recorded under organic sources of nutrients was not significantly different from that of inorganic fertilization though there was improvement in soil quality parameters under organic sources. Soil organic carbon (0.72 %), microbial biomass‐C (279.23 μg g?1 dry soil), urease activity with buffer (33.54 μg urea hydrolyzed g?1 oven‐dry soil) and non‐buffer (21.97 μg urea hydrolyzed g?1 of oven‐dry soil) methods and acid phosphatase activity (2.24 μg para‐nitrophenol released g?1 of oven‐dry soil) analysed following the harvest of the crop were highest under cow dung manure treatment; the most efficient organic source under the experiment. Mean grain yield of rice was significantly higher in Sabita cultivar over Subarna. The regression analyses among the variables have shown that there was linear relationship among soil parameters and grain yield of rice.  相似文献   

17.
With increasingly erratic rainfall patterns particularly in drought‐prone production systems, the capacity of plants to recover productively from drought spells becomes an important feature for yield stability in rainfed agriculture. Consequently, effects of water management at the stem elongation stage on partitioning and remobilization of dry matter, alteration in photosynthesis and water‐use efficiency (WUE), and yield components of wheat plants were studied in a glasshouse pot experiment. The plants were subjected to three soil moisture regimes: well watered during all phenological stages (WW), drought affected during stem elongation and post‐anthesis stages (DD) and drought affected during stem elongation and rewatered at post‐anthesis stage (DW). Total dry weight substantially decreased by both drought treatments. However, DD plants allocated relatively higher assimilates to roots whereas DW plants remobilized them to the grains. Drought applications resulted in a decrease of grain yield and thousand grain weight while reduction was more pronounced in DD treatment. Relative contribution of post‐anthesis photosynthesis to dry matter formation in grain was higher in WW treatment (72.6 %) than DD (68.5 %) and DW (68.2 %) treatments. Photosynthetic rate, gas exchange and transpiration decreased whereas leaf (photosynthetic) and plant level WUE increased with drought applications. However, all these parameters were rapidly and completely reversed by rewatering. Our findings showed that partitioning of dry weight to grain increases with rewatering of wheat plants subjected to drought during stem elongation phase, but the relative contributions of remobilization of stem reserves and post‐anthesis photosynthesis to grain did not change. Moreover, rewatering of plants at booting stage after a drought period lead to full recovery in photosynthesis and WUE, and a significant although partial recovery of yield components, such as grain yield, TGW and harvest index.  相似文献   

18.
Quinoa is a native Andean crop for domestic consumption and market sale, widely investigated due to its nutritional composition and gluten‐free seeds. Leaf water potential (Ψleaf) and its components and stomatal conductance (gs) of quinoa, cultivar Titicaca, were investigated in Southern Italy, in field trials (2009 and 2010). This alternative crop was subjected to irrigation treatments, with the restitution of 100 %, 50 % and 25 % of the water necessary to replenish field capacity, with well water (100 W, 50 W, 25 W) and saline water (100 WS, 50 WS, 25 WS) with an electrical conductivity (ECw) of 22 dS m?1. As water and salt stress developed and Ψleaf decreased, the leaf osmotic potential (Ψπ) declined (below ?2.05 MPa) to maintain turgor. Stomatal conductance decreased with the reduction in Ψleaf (with a steep drop at Ψleaf between ?0.8 and 1.2 MPa) and Ψπ (with a steep drop at Ψπ between ?1.2 and ?1.4 MPa). Salt and drought stress, in both years, did not affect markedly the relationship between water potential components, RWC and gs. Leaf water potentials and gs were inversely related to water limitation and soil salinity experimentally imposed, showing exponential (Ψleaf and turgor pressure, Ψp, vs. gs) or linear (Ψleaf and Ψp vs. SWC) functions. At the end of the experiment, salt‐irrigated plants showed a severe drop in Ψleaf (below ?2 MPa), resulting in stomatal closure through interactive effects of soil water availability and salt excess to control the loss of turgor in leaves. The effects of salinity and drought resulted in strict dependencies between RWC and water potential components, showing that regulating cellular water deficit and volume is a powerful mechanism for conserving cellular hydration under stress, resulting in osmotic adjustment at turgor loss. The extent of osmotic adjustment associated with drought was not reflected in Ψπ at full turgor. As soil was drying, the association between Ψleaf and SWC reflected the ability of quinoa to explore soil volume to continue extracting available water from the soil. However, leaf ABA content did not vary under concomitant salinity and drought stress conditions in 2009, while differing between 100 W and 100 WS in 2010. Quinoa showed good resistance to water and salt stress through stomatal responses and osmotic adjustments that played a role in the maintenance of a leaf turgor favourable to plant growth and preserved crop yield in cropping systems similar to those of Southern Italy.  相似文献   

19.
Brassinolides (BRs) are naturally occurring substances, which modulate plant growth and development events and have been known to improve the crop tolerance to abiotic stresses. In this study, possible role of exogenously applied brassinolide (BR) in alleviating the detrimental effects of drought in maize was evaluated in a rain‐protected wire‐house. Maize was subjected to drought at the start of tasseling for 6 days by withholding water application followed by foliar spray of BR (0.1 mg l?1) to assess the changes in growth, gas exchange, chlorophyll contents, protein, relative leaf water contents (RLWC), proline, malonialdehyde (MDA) and enzymatic antioxidants. Drought substantially reduced the maize growth in terms of plant height, leaf area and plant biomass. Moreover, substantial decrease in gas exchange attributes (net photosynthetic rate (A), transpiration rate (E), stomatal conductance (gs), water use efficiency (WUE), instantaneous water use efficiency (WUEi) and intercellular CO2 (Ci) was also recorded. However, exogenous application of BR remarkably improved the gas exchange attributes, plant height, leaf area, cobs per plant, seedling dry weight both under drought and well‐watered conditions. BR‐induced promotion in growth and physiological and metabolic activities were mediated through increased protein synthesis enabling maintenance of tissue water potential and activities of antioxidant enzymes lowering the lipid peroxidation under drought.  相似文献   

20.
Quinoa (Chenopodium quinoa Willd.) is a promising crop for food security in dry areas. Studies have been conducted to define nitrogen (N) fertilization levels and to understand the responses of quinoa to drought, but little is known about the response of this crop to N fertilization under drought stress. The aim of this study was to investigate whether N fertilization could improve quinoa yield and physiology under limited water. A greenhouse experiment was carried out with quinoa grown at four N fertilization levels (0, 0.2, 0.4 and 0.6 g N pot?1) and two watering treatments (progressive drought and full irrigation; 10 and 98 % of pot water holding capacity, respectively). Results of this experiment showed that N may confer a certain degree of drought tolerance to quinoa as seed quality and yield of N‐fertilized plants were not affected by drought stress. Responses such as faster stomatal closure, reduced leaf water potential, higher leaf abscisic acid (ABA) concentration and particularly an improved N remobilization in N‐fertilized plants may have played a role in sustaining seed yield in the drought‐stressed treatment. These results under controlled conditions serve as a basis to elucidate drought tolerance mechanisms activated with N fertilization and to define the use of N in management practices under semi‐arid environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号