首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Facing a steadily increasing world energy demand, jatropha, among other energy crops, has been reported to potentially contribute to biofuel production. A basic characterisation of plant responses to abiotic environmental factors is important for assessing the model‐assisted potential of this plant in view of the many agro‐ecological zones in which jatropha is presently cultivated. Two pot experiments and two field studies were used to record gas exchange parameters in response to light, nitrogen supply, atmospheric vapour pressure deficit (VPD), leaf age and time of measurements. Variation of N supply from 0 to 16 mm resulted in lower rates of photosynthesis (A) and stomatal conductance (gs) of treatment 0 mm N compared with other N levels, whereas the light compensation point (IC), quantum yield (QY) and dark respiration rates (Rd) were similar in all treatments. In the field, diurnal effects were evident with higher light‐saturated photosynthetic rate (Amax) and QY and lower IC and Rd in the morning than in the afternoon. Considering leaf age effects, fully expanded leaves had a lower Amax compared with expanding leaves and this variation in leaf gas exchange was not related to changes in the chlorophyll index value (SPAD) which steadily increased with leaf age. QY of field and greenhouse plants varied from 0.023 to 0.037 and was substantially lower than in C3 plants. A was positively correlated with gs in a hyperbolic function. A varied from 0.64 to 21.13 μmol m?2 s?1 and gs varied from 12 to 469 mmol m?2 s?1. With increasing VPD, gs decreased, but this response differed between the field experiments and the two pot experiments which contrasted each other distinctively. Applying the inverse logistic function of Webb (Ecological Modeling, 56 (1991), 81), the maximal stomatal conductance of jatropha was in the range of 382 mmol m?2 s?1 and gs is predicted to be close to zero at 5 kPa. These data altogether indicate that light absorption characteristics of single leaves and carbohydrate status parameters should be investigated further to explain the low QY and the pronounced diurnal variation.  相似文献   

2.
Quinoa is a native Andean crop for domestic consumption and market sale, widely investigated due to its nutritional composition and gluten‐free seeds. Leaf water potential (Ψleaf) and its components and stomatal conductance (gs) of quinoa, cultivar Titicaca, were investigated in Southern Italy, in field trials (2009 and 2010). This alternative crop was subjected to irrigation treatments, with the restitution of 100 %, 50 % and 25 % of the water necessary to replenish field capacity, with well water (100 W, 50 W, 25 W) and saline water (100 WS, 50 WS, 25 WS) with an electrical conductivity (ECw) of 22 dS m?1. As water and salt stress developed and Ψleaf decreased, the leaf osmotic potential (Ψπ) declined (below ?2.05 MPa) to maintain turgor. Stomatal conductance decreased with the reduction in Ψleaf (with a steep drop at Ψleaf between ?0.8 and 1.2 MPa) and Ψπ (with a steep drop at Ψπ between ?1.2 and ?1.4 MPa). Salt and drought stress, in both years, did not affect markedly the relationship between water potential components, RWC and gs. Leaf water potentials and gs were inversely related to water limitation and soil salinity experimentally imposed, showing exponential (Ψleaf and turgor pressure, Ψp, vs. gs) or linear (Ψleaf and Ψp vs. SWC) functions. At the end of the experiment, salt‐irrigated plants showed a severe drop in Ψleaf (below ?2 MPa), resulting in stomatal closure through interactive effects of soil water availability and salt excess to control the loss of turgor in leaves. The effects of salinity and drought resulted in strict dependencies between RWC and water potential components, showing that regulating cellular water deficit and volume is a powerful mechanism for conserving cellular hydration under stress, resulting in osmotic adjustment at turgor loss. The extent of osmotic adjustment associated with drought was not reflected in Ψπ at full turgor. As soil was drying, the association between Ψleaf and SWC reflected the ability of quinoa to explore soil volume to continue extracting available water from the soil. However, leaf ABA content did not vary under concomitant salinity and drought stress conditions in 2009, while differing between 100 W and 100 WS in 2010. Quinoa showed good resistance to water and salt stress through stomatal responses and osmotic adjustments that played a role in the maintenance of a leaf turgor favourable to plant growth and preserved crop yield in cropping systems similar to those of Southern Italy.  相似文献   

3.
Abstract The objective was to study soil water conservation and physiological growth of wheat (Triticum aestivum L.) using composted cattle manure applied either as mulch or incorporated with soil at 20 Mg ha?1. Haruhikari, a relatively drought‐sensitive and Hongmangmai, a relatively drought‐tolerant wheat, were the cultivars studied under both adequate and deficit irrigation. Fourteen weeks after sowing (WAS), the number of tillers and leaves was significantly reduced by 19 % and 30 % respectively under deficit irrigation and Hongmangmai produced slightly (10 %) more tillers than Haruhikari. Unlike mulching, the incorporation of manure had favourable effects on plants in terms of shoot dry mass (SDM) by 36 % and number of tillers and leaves by 40 %. Haruhikari produced substantially (29 %) greater root mass under adequate irrigation but Hongmangmai produced slightly (2.7 %) more roots and responded much better to manure use whether under adequate or deficit irrigation. As a result, Hongmangmai suffered less severe reductions in tillers and biomass under water stress. In comparison, the mulched manure treatment saved 15 % and 64 % respectively more water than the control and the treatment incorporating manure, but this advantage in water‐saving did not translate to superior plant growth. Leaf water potential (ψl) under adequate irrigation significantly exceeded that under deficit irrigation by 27 % and the ψl of Haruhikari exceeded that of Hongmangmai by 15 %. However, Hongmangmai may be considered more tolerant of dehydration since it maintained much higher net photosynthetic rates (PN) even with a lower leaf water potential. The reduction in the PN and intracellular carbon dioxide concentration (Ci) of the cultivars under deficit irrigation was on account of decreasing stomatal conductance (gs) and transpiration rate but on average, the gs of Hongmangmai significantly exceeded that of Haruhikari by as much as 0.53 under adequate irrigation and 0.22 under deficit irrigation. In conclusion, we suggest that the drought tolerance of Hongmangmai was related to its superior root growth and greater ability than Haruhikari, to efficiently utilize incorporated manure for growth under water stress.  相似文献   

4.
Temporal and seasonal water deficit is one of the major factors limiting crop yield on the Canadian prairie. Selection for low carbon isotope discrimination (Δ13C) or high water‐use efficiency (WUE) can lead to improved yield in some environments. To understand better the physiology and WUE of barley under drought conditions on the Canadian prairie, 12 barley (Hordeum vulgare L.) genotypes with contrasting levels of leaf Δ13C were investigated for performance stability across locations and years in Alberta, Canada. Four of those genotypes (‘CDC Cowboy’, ‘Niobe’, ‘170011’ and ‘Kasota’) were also grown in the greenhouse under well‐watered and water‐deficit conditions to examine genotypic variations in leaf Δ13C, WUE, gas exchange parameters and specific leaf area (SLA). The water‐deficit treatment was imposed at the jointing stage for 10 days followed by re‐watering to pre‐deficit level. Genotypic ranking in leaf Δ13C was highly consistent, with ‘170011’, ‘CDC Cowboy’ and ‘W89001002003’ being the lowest and ‘Kasota’‘160049’ and ‘H93174006’ being the highest leaf Δ13C. Under field and greenhouse (well‐watered) conditions, leaf Δ13C was significantly correlated with stomatal conductance (gs). Water deficit significantly increased WUE, with ‘CDC Cowboy’– a low leaf Δ13C genotype with significantly higher WUE and lower percentage decline in assimilation rate (A) and gs than the other three genotypes (‘Niobe’, ‘170011’ and ‘Kasota’). We conclude that leaf Δ13C is a stable trait in the genotypes evaluated. Low leaf Δ13C of ‘CDC Cowboy’ was achieved by maintaining a high A and a low gs, with comparable biomass and grain yield to genotypes showing a high gs under field conditions; hence, selection for a low leaf Δ13C genotype such as ‘CDC Cowboy’ maybe important for maintaining productivity and yield stability under water‐limited conditions on the Canadian prairie.  相似文献   

5.
Plant responses to soil drying and the metabolic basis of drought-induced limitations in stomatal opening are still being discussed. In this study, we investigate the roles of root-born chemical and hydraulic signals on stomatal regulation in wheat genotypes as affected by soil drought and vapour pressure deficit. Twelve consecutive pot experiments were carried out in a glasshouse. Two bread wheat cultivars (Gönen and Basribey) were subjected to drought under high and low vapour pressure deficit (VPD) in a growth chamber. Total dry matter, specific leaf area, xylem ABA content, xylem osmotic potential, xylem pH, root water potential (RWP), stomatal conductance, leaf ABA content and photosynthetic activity were determined daily during 6 days after the onset of treatments (DAT). In the first phase of drought stress, soil drying induced an increase in the xylem ABA with a peak 3 DAT while RWP drastically decreased during the same period. Then the osmotic potential of leaves decreased and leaf ABA content increased 4 DAT. A similar peak was observed for stomatal conductance during the early stress phase, and it became stable and significantly higher than in well-watered conditions especially in high vapour deficit conditions (H-VPD). Furthermore, xylem pH and xylem osmotic potential appeared to be mostly associated with atmospheric moisture content than soil water availability. The results are discussed regarding possible drought adaptation of wheat under different atmospheric humidity.  相似文献   

6.
Two old (Huangsedadou and Longxixiaohuangpi (LX)) and two new (Jindou 19 (JD) and Zhonghuang 30 (ZH)) soya bean (Glycine max (L.) Merr.) cultivars were used to investigate the influence of soil drying on the abscisic acid (ABA) accumulation in leaves, stomatal conductance (gs), leaf water relations, osmotic adjustment (OA), leaf desiccation tolerance, yield and yield components. The greater ABA accumulation was induced by soil drying, which also inducing gs decreased at higher soil water contents (SWC) and leaf relative water content (RWC) significantly decreased at lower SWC in the new soya bean cultivars than in the old soya bean cultivars. The soil water threshold between the value at which stomata began to close and the RWC began to decrease was significantly broader in the new cultivars than in the old cultivars. The new cultivars had significantly higher OA and lower lethal leaf water potential than old cultivars when the soil dried. The old cultivars had greater biomass, but lower grain yield than the new cultivars in well‐watered, moderate stress and severe stress conditions. Thus with soil drying, the new soya bean cultivars demonstrated greater adaptation to drought by inducing greater ABA accumulation, stomatal closure at higher SWC, enhanced OA and better water relations, associated with increased leaf desiccation tolerance, greater water use efficiency and higher yield.  相似文献   

7.
Chemical regulation using plant growth regulators has proved to be potentially beneficial in water‐saving agriculture. This experiment was conducted with winter wheat (Triticum aestivum L. cv. ‘Jingdong 6’) to study the effect of chemical regulation on alleviation of water deficit stress during the grain filling stage. Uniconazole, a plant growth regulator, was foliar sprayed at 85 % (adequate irrigation) and 60 % (deficit irrigation) field capacity. Results showed that the distribution of 3H‐H2O in roots and flag leaf, characteristics of vascular bundle in primary roots and internode below spike, roots activity, transpiration rate and stomatal conductance of flag leaf were negatively affected by deficit irrigation after flowering. Foliar spraying at the early jointing stage with 13.5 gha?1 uniconazole was able to relieve and compensate for the harmful effects of deficit irrigation. Both the area of vascular bundle in primary roots and internode below the ear were increased by uniconazole, while root viability and their ability to absorb and transport water were increased. In the flag leaf, stomatal conductance was reduced to maintain the transpiration rate and water use efficiency (WUE) measured for a single wheat plant was higher. Uniconazole increased WUE by 25.0 % under adequate and 22 % under deficit irrigations. Under adequate irrigations, the 14C‐assimilates export rate from flag leaf in 12 h (E12h) was increased by 65 % and 36 % in early and late filling stages, while under deficit irrigations, the E12h of uniconazole‐treated plants exceeded that of control plants by 5 % and 34 % respectively. Physiological damages caused by water deficiency during the grain filling stage of wheat was alleviated by foliar spraying with uniconazole.  相似文献   

8.
Despite exhaustive literature describing drought stress effects on photosynthesis in Gossypium hirsutum, the sensitivity of photosynthetic electron flow to water deficit is heavily debated. To address this, G. hirsutum plants were grown at a field site near Camilla, GA under contrasting irrigation regimes, and pre‐dawn water potential (ΨPD), stomatal conductance (gs), net photosynthesis (PN), actual quantum yield of photosystem II (ΦPSII) and electron transport rate (ETR) were measured at multiple times during the 2012 growing season. ΨPD values ranged from ?0.3 to ?1.1 MPa. Stomatal conductance exhibited a strong (r2 = 0.697), sigmoidal response to ΨPD, where gs was ≤0.1 mol m?2 s?1 at ΨPD values ≤ ?0.86 MPa. Neither ΦPSII (r2 = 0.015) nor ETR (r2 = 0.010) was affected by ΨPD, despite exceptionally low ΨPD values (?1.1 MPa) causing a 71.7 % decline in PN relative to values predicted for well‐watered G. hirsutum leaves at ΨPD = ?0.3 MPa. Further, PN was strongly influenced by gs, whereas ETR and ΦPSII were not. We conclude that photosynthetic electron flow through photosystem II is insensitive to water deficit in field‐grown G. hirsutum.  相似文献   

9.
Leaf carbon isotope discrimination (CID) has been suggested as an indirect tool for breeding for water‐use efficiency (WUE) in various crops. This work focused on assessing phenotypic correlations between WUE and leaf CID and analysing genotypic variability in four sunflower genotypes grown in a greenhouse in pots with five different stable levels of soil water content (SWC). We measured WUE at whole plant and leaf (intrinsic) level. At whole plant level, WUE was derived from the ratio of total dry aerial biomass (BM) to cumulative water transpired (CWT). At leaf level, intrinsic WUE was calculated as the ratio of light‐saturated CO2 assimilation to stomatal conductance (A/gs) in younger expanded leaves. Significant differences among the four genotypes and the five SWCs were observed for whole plant and leaf WUE and CID. Strong negative correlations were observed between whole plant WUE and CID as well as between intrinsic WUE and CID with decreasing water availability. No relationships appeared between BM production and WUE or CID. Our results can help agronomists and breeders to evaluate sunflower lines with high WUE for adaptation to drought conditions and for reducing water consumption and crop water needs. Leaf CID appears to be a pertinent and valuable trait to select sunflower genotypes with high WUE.  相似文献   

10.
Selection for drought tolerance entails prioritizing plant traits that integrate critical physiological processes occurring during crop growth. Discrimination against 13C (?) in leaflets (?leaflet) and tubers (?tuber) was compared under two water regimes in two potato‐improved varieties selected to maintain yield under drought conditions (Unica and Sarnav) and one drought susceptible European cultivar (Désirée). In the control treatment, soil water content was kept at field capacity over the whole growth cycle, while in the drought treatment water supply was restricted after tuber initiation (50 % of field capacity). Gas exchange and N content per unit leaf area (Narea) as well as ? were assessed at different stages. Sarnav showed the highest tuber yield in both water conditions, suggesting that yield in the water restriction treatment was largely driven by yield potential in this genotype. Higher stomatal conductance (gs) and Narea and lower ?leaflet in well‐watered Sarnav suggested higher photosynthetic capacity. Under water restriction, Sarnav maintained higher gs indicating that carbon diffusion was a key factor for biomass accumulation under water restriction. Our results suggest the use of ? determined after tuber initiation as an indirect selection indicator for tuber yield under both well‐watered and restricted soil water availability conditions.  相似文献   

11.
利用可精准控制CO2浓度([CO2])的大型人工气候室, 研究了水分亏缺和[CO2]升高对冬小麦气孔特征、气体交换参数及生物量的影响。结果表明, 水分亏缺导致冬小麦气孔开度减小和气孔空间分布的规则程度降低, 提高[CO2]能够减缓水分亏缺时气孔开度和气孔分布规则程度的下降幅度。与充分灌溉相比, 不同水分亏缺条件下冬小麦的净光合速率、气孔导度和蒸腾速率均显著降低(P<0.05), [CO2]仅可缓解轻度亏水对气体交换过程的影响, 该缓解能力随水分亏缺程度的加剧而降低。水分亏缺降低冬小麦生物量, 但[CO2]升高对水分亏缺时生物量产生的影响不显著(P>0.05)。水分亏缺条件下, 冬小麦通过调整气孔开度和气孔空间分布格局改变叶片的气体交换效率, [CO2]升高对冬小麦产生的“施肥效应”受土壤水分条件的限制。  相似文献   

12.
The study was conducted to determine the feasibility of canopy temperature based crop water stress index (CWSI) for scheduling irrigation of Indian mustard (Brassica juncea). Field crop experiments were conducted in Hamirpur, Himachal Pradesh (India) during three consecutive cropping seasons (2015, 2016 and 2017). The experimental field was divided into five plots with different levels of irrigation treatments based on depletion of total available soil water (TASW) in the crop root zone. The maximum soil moisture depletion (SMD) of TASW at 10%, 30% and 50%, full irrigated (non-stressed) and extremely dry (full stressed) conditions were maintained in respective plots. Relationships were developed between canopy-air temperature differential (TC-TA) and vapour pressure deficit (VPD) for non-stressed and fully stressed conditions to generate non-water-stressed baseline (NWSB) and maximum water-stressed baseline (MWSB) baselines for Indian mustard crop. The CWSI was computed for different SMD of TASW by using a proven empirical approach based on the baselines. The irrigation treatment corresponding to 30% SMD with a mean CWSI of 0.4 resulted in optimal yield and maximum water use efficiency. Results of the study suggest that established CWSI value can be used to detect stress and schedule irrigations for Indian mustard.  相似文献   

13.
Drought adaptation strategies of two bambara groundnut landraces, Uniswa Red and S19‐3, collected from contrasting environments in Africa, were compared. Our objectives were to investigate the relative significance of effective stomatal control induced by the abscisic acid (ABA) signalling and osmotic adjustment in regulating plant water relations in general for this legume species. The ABA concentration [ABA] in the leaf increased linearly with declining relative leaf water content, and there were significantly higher [ABA] in Uniswa Red compared with S19‐3 at the final harvest in the drought‐stressed plants. Estimated by a linear‐plateau model, S19‐3 initiated the reduction in transpiration at a significantly lower soil water threshold (FTSW = 0.50 ± 0.024) than Uniswa Red (FTSW = 0.69 ± 0.023) indicating that the latter was more sensitive in reducing plant water use in response to soil drying. A similar trend was found for stomatal closure during soil drying, although the soil water thresholds at which relative stomatal conductance (gs) started to decline were not significantly different between the two landraces. By an early closure of stomata and hence an early reduction in transpiration rate during soil drying, Uniswa Red could be defined as a ‘water‐saver’ such that it maintains leaf water status to a great extent of soil water deficit. This strategy is important for survival during intermittent drought. While S19‐3 could be defined as a ‘water‐spender’ with a late closure of stomata, hence a late declining of transpiration rate during soil drying allowed the landrace to maximize its water use despite giving up its leaf water relations. Such drought response together with a fast phenological development of S19‐3 indicates that the landrace is capable of escaping from terminal drought while maximizing its water use and productivity when soil water is available.  相似文献   

14.
占东霞  张超  张亚黎  罗宏海  勾玲  张旺锋 《作物学报》2015,41(12):1880-1887
选用北疆棉区主栽品种新陆早33号和新陆早45号,设置常规滴灌量(CI)、轻度水分亏缺滴灌量(SDI)、中度水分亏缺滴灌量(MDI)3种处理,在田间条件下研究了不同滴灌量对棉花叶片和非叶绿色器官叶绿素(Chl)含量、净光合速率(Pn)、气孔导度(gs)和光合物质累积的影响,明确了水分亏缺下棉株非叶绿色器官光合作用对产量的贡献。结果表明,各滴灌量条件下棉花非叶绿色器官单位面积的Pn、Chl含量下降幅度较叶片小,且随棉花生育进程的变化较小。在棉铃生长发育后期,随滴灌量减少,棉花非叶绿色器官光合物质生产能力对产量起着更为重要的作用。中度水分亏缺条件下,棉铃(铃壳和苞叶)和茎秆光合作用对铃重的相对贡献率分别增加至16.8%~34.9%和7.6%~17.5%。因此,采用膜下滴灌植棉技术时适当控制滴水量,在保证叶片具有较高光合速率的同时,发挥棉花非叶绿色器官的光合抗逆能力,对挖掘滴灌棉花节水增产潜力具有重要意义。  相似文献   

15.
This study aimed to evaluate the ability of Piriformospora indica to colonize the root of Chenopodium quinoa and to verify whether this endosymbiont can improve the growth, performance and drought resistance of this species. The study delivered, for the first time, evidence for successful colonization of P. indica in quinoa. Hence, pot experiment was conducted in the greenhouse, where inoculated and non‐inoculated plants were subjected to ample (40%–50% WHC) and deficit (15%–20%WHC) irrigation treatments. Drought adversely influenced the plant growth, leading to decline the total plant biomass by 74%. This was linked to an impaired photosynthetic activity (caused by lower gs and Ci/Ca ratio; stomatal limitation of photosynthesis) and a higher risk of ROS production (enhanced ETR/Agross ratio). P. indica colonization improved quinoa plant growth, with total biomass increased by 8% (controls) and 76% (drought‐stressed plants), confirming the growth‐promoting activity of P. indica. Fungal colonization seems to diminish drought‐induced growth hindrance, likely, through an improved water balance, reflected by the higher leaf ψw and gs. Additionally, stomatal limitation of photosynthesis was alleviated (indicated by enhanced Ci/Ca ratio and Anet), so that the threat of oxidative stress was minimized (decreased ETR/Agross). These results infer that symbiosis with P. indica could negate some of the detrimental effects of drought on quinoa growth, a highly desired feature, in particular at low water availability.  相似文献   

16.
Drought and salinity are the two major factors limiting crop growth and production in arid and semi‐arid regions. The separate and combined effects of salinity and progressive drought in quinoa (Chenopodium quinoa Willd.) were studied in a greenhouse experiment. Stomatal conductance (gs), leaf water potential (Ψl), shoot and root abscisic acid concentration ([ABA]) and transpiration rate were measured in full irrigation (FI; around 95 % of water holding capacity (WHC)) and progressive drought (PD) treatments using the irrigation water with five salinity levels (0, 10, 20, 30 and 40 dS m?1); the treatments are referred to as FI0, FI10, FI20, FI30, FI40; PD0, PD10, PD20, PD30, PD40, respectively. The measurements were carried out over 9 days of continuous drought. The results showed that increasing salinity levels decreased the total soil water potential (ΨT) and consequently decreased gs and Ψl values in both FI and PD. During the drought period, the xylem [ABA] extracted from the shoots increased faster than that extracted from the roots. A reduction in ΨT, caused by salinity and soil drying, reduced transpiration and increased apparent root resistance (R) to water uptake, especially in PD0 and PD40 during the last days of the drought period. The reasons for the increase in apparent root resistance are discussed. At the end of the drought period, the minimum value of relative available soil water (RAW) was reached in PD0. Under non‐saline conditions, Ψl decreased sharply when RAW reached 0.42 or lower, but under the saline conditions of PD10 and PD20, the threshold values of RAW were 0.67 and 0.96, respectively. In conclusion, due to the additive effect of osmotic and matric potential during soil drying on soil water availability, quinoa should be re‐irrigated at higher RAW in salt‐affected soils, i.e. before the soil water content reaches the critical threshold level causing the drop in Ψl resulting in stomatal closure.  相似文献   

17.
Genotypic variations in leaf gas exchange and grain yield were analysed in 10 highland‐adapted quinoa cultivars grown in the field under drought conditions. Trials took place in an arid mountain region of the Northwest of Argentina (Encalilla, Amaicha del Valle, 22°31′S, 65°59′W). Significant changes in leaf gas exchange and grain yield among cultivars were observed. Our data demonstrate that leaf stomatal conductance to water vapour (gs) is a major determinant of net CO2 assimilation (An) because quinoa cultivars with inherently higher gs were capable of keeping higher photosynthesis rate. Aboveground dry mass and grain yield significantly varied among cultivars. Significant variations also occurred in chlorophyll, N and P content, photosynthetic nitrogen‐use efficiency (PNUE), specific leaf area (SLA), intrinsic water‐use efficiency (iWUE) and carboxylation capacity (An/Ci). Many cultivars gave promissory grain yields with values higher than 2000 kg ha?1, reaching for Sayaña cultivar 3855 kg ha?1. Overall, these data indicate that cultivars, which showed higher photosynthesis and conductances, were also generally more productive. Carbon isotope discrimination (Δ) was positively correlated with the grain yield and negatively with iWUE, but δ15N did not show significant correlations. This study provides a reliable measure of specific responses of quinoa cultivars to drought and it may be valuable in breeding programmes.  相似文献   

18.
The relationship between grain yield and carbon isotope discrimination (Δ) was analysed in wheat grown under different water regimes in the Ningxia Province (north‐west of China). When the association was significant, the relationships between grain yield, Δ and other drought tolerance related traits, such as leaf ash content (ma), chlorophyll concentration (Chl), relative water content (RWC), stomatal conductance (gS) and the ratio of internal CO2 leaf concentration to ambient CO2 concentration (Ci/Ca), were also examined. Using correlation analysis, the relationships were determined during two consecutive years in a set of 20 spring wheat cultivars (landraces, improved varieties and advanced lines) under rainfed and irrigated conditions, including saline conditions. The relationship between Δ and yield within environments highly depended on the quantity of water stored in the soil at sowing, the quantity and distribution of rainfall during the growth cycle, and the irrigation before anthesis. Δ predicted grain yield under limited irrigation (post‐anthesis water stress) but not under pre‐anthesis water stress (rainfed conditions), fully irrigated and saline conditions. Under limited irrigation, grain Δ correlated significantly to grain yield leaf ma at heading and maturity. It also significantly positively correlated to Chl, RWC, gS and Ci/Ca assessed at anthesis. A precise characterization of the timing and intensity of the abiotic constraints experienced by the crop is consequently needed before implementing the use of Δ in wheat breeding programmes.  相似文献   

19.
Photosynthetic Response of Wheat to Soil Water Deficits in the Tropics   总被引:1,自引:0,他引:1  
The changes in photosynthetic rate and translocation of photosynthates in winter wheat (Triticum Aestivum L.) grown in lysimeters were studied, in response to periodic soil water deficit during late tillering and flowering stages. Soil water deficits were imposed to previously nonstressed plants during late tillering and flowering states. Timing of irrigation was scheduled according to the ratio between irrigation water applied and cumulative pan evaporation (IW/CPE) of 0.75 (low deficit), and 0.5 (moderate deficit), as well as by suspending irrigations after crown root initiation stage (severe deficit). To determine the rate of photosynthesis, a short radioactive pulse of 14CO2 with 300 ppm concentration was given to second leaf from the top at tillering, and to the flag leaf at flowering stages for 20 second exposure time. The translocation of photosynthates was estimated by scanning 14C activity in different plant parts. In late tillering the midday Photosynthetic rate (PR) was significantly 3 mg CO2 dm?2 h?1 lower under low water deficit (WD1) than under zero water deficit (WD0). Under higher stress conditions, soil water acted as a limiting factor to keep the rate from rising above 13.2 during stress at late tillering (WD2), 14.5 flowering (WD4), and 10.0 mg CO2 dm?2 h?1 for stress at both the growth stages (WD5), respectively. The difference in daily accumulated photosynthesis (8 h), between stressed and nonstressed were 15, 40, 42, and 77 mg CO2 dm?2 h?1 respectively at WD1 WD2, WD4, and WD5. The retention of 14C in flag leaf decreased considerably after 24 hours of exposure time when the labelled assimilates were translocated in bulk to the ear head. Under stressed condition a general trend was observed for upward translocation of assimilates towards the ear, even from the stem and root. The percent 14C activity observed in ear after 24 hours was greatest in severely stressed plants. The photosynthetic rate is reasonable predicted by midday LDR and surface moisture.  相似文献   

20.
Great understanding of the genotypic difference in diurnal stomatal conductance (gs) pattern and the key determinants of the pattern is important for saving water by adopting cultivars appropriately. Fifteen wheat genotypes were studied under different soil conditions and various meteorological conditions with pot cultivation in rain shelter for two years. Genotype and air humidity were found to be key determinants of diurnal gs pattern. All genotypes under low relative humidity (LRH) and most genotypes under high relative humidity (HRH) displayed a gradual decline pattern from morning through the afternoon. Under moderate relative humidity (MRH), all genotypes present a single-peak curve pattern, but they differed in peak time, which may lead to unreliable gs comparison between genotypes and get ostensible contrasting materials. The stomatal conductance was significantly different among genotypes under LRH and the increased gs magnitude is also significantly different when it was compared between LRH and HRH. The present results provide new thinking for selecting and adopting appropriate cultivars with specific stomata traits for the area with various meteorological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号