首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nicotiana glauca, a wild relative of Nicotiana tabacum, is an attractive potential source of black root rot (Thielaviopsis basicola)‐resistant germplasm. Moreover, it shows a resistance or tolerance to PVY, TEV, anthracnose and powdery mildew. In this study its potential as a source of resistance to black root rot caused by Th. basicola was investigated. Nicotiana glauca GG (2n = 2x = 24) was crossed as male with two N. tabacum TT (2n = 4x = 48) flue‐cured cultivars: ‘BY103’ and ‘K 326’, both of which are susceptible to black root rot. Amphihaploid F1 TG (2n = 3x = 36), amphidiploid TTGG (2n = 6x = 72) and sesquidiploid TTG (2n = 5x = 60) hybrids were obtained. The resultant sesquidiploid hybrids were used as maternal components in backcrossing to N. tabacum and a segregating post‐sesquidiploid TTg (2n = 5x = 52–54) offspring was obtained. Amphihaploids exhibited a level of resistance to black root rot characteristic of N. glauca. The expression of resistance varied in the sesquidiploid generation, possibly reflecting cytological instabilities in that progeny. A wide variation in response to black root rot was found for post‐sesquidiploids a clear reflection of extensive chromosome segregation in that hybrid generation.  相似文献   

2.
3.
Black rot is the most devastating disease of cauliflower worldwide causing severe damage to crop. The identification of markers linked to loci that control resistance can facilitate selection of plants for breeding programmes. In the present investigation, F2 population derived from a cross between ‘Pusa Himjyoti’, a susceptible genotype, and ‘BR‐161’, a resistant genotype, was phenotyped by artificial inoculation using Xcc race 1. Segregation analysis of F2 progeny indicated that a single dominant locus governed resistance to Xcc race 1 in ‘BR‐161’. Bulk segregant analysis in resistant and susceptible bulks of F2 progeny revealed seven differentiating polymorphic markers (three RAPD, two ISSR and two SSR) of 102 markers screened. Subsequently, these markers were used to genotype the entire F2 population, and a genetic linkage map covering 74.7 cM distance was developed. The major locus Xca1bo was mapped in 1.6‐cM interval flanked by the markers RAPD 04833 and ISSR 11635. The Xca1bo locus was located on chromosome 3. The linked markers will be useful for marker‐assisted resistance breeding in cauliflower.  相似文献   

4.
大豆疫霉根腐病作为影响大豆生产的毁灭性病害之一,对大豆生产威胁很大。种植抗疫霉根腐病的大豆品种是控制该病害最有效的途径。河南省位于我国黄淮夏大豆产区的腹地,具有大豆疫霉根腐病发生的潜在威胁。本研究的目的是对河南省新育成的大豆品系进行抗性鉴定和抗病基因分子标记检测,以明确大豆新品系对大豆疫霉根腐病的抗性水平和抗病基因。采用下胚轴创伤接种法对64个河南省培育的大豆新品系进行接种,鉴定其对2个具有不同毒力的大豆疫霉分离物PsJS2和Ps41-1的抗性。结果显示,对分离物Ps41-1和PsJS2抗病的分别有35个和16个品系,对Ps41-1和PsJS2为中间反应型的分别有16个和10个品系,其中对2个分离物均抗病的有16个品系,占鉴定品系的25%。使用抗疫霉病基因RpsZheng共分离标记WZInDel11进行新品系的基因型鉴定发现,对2个大豆疫霉分离物均抗病的16个品系中有13个含有标记WZInDel11,对1个或2个大豆疫霉分离物表现为中间反应型的5个大豆品系,分子检测结果表明,其为杂合基因型,这些品系中的纯合抗病单株可直接选育成纯合抗病品系用于抗病育种。综合系谱分析结果推测,有2个品系可能含抗疫霉根腐病基因RpsZheng,2个品系可能含RpsYD29,14个品系可能含有RpsZheng或其等位基因。表明河南省培育的大豆新品系中含有优异的大豆疫霉根腐病抗源,该研究结果将为病害防控和抗病品种的选育提供参考。  相似文献   

5.
Phytophthora root rot is one of the destructive diseases affecting soybean production, which is a great threat to soybean production. Planting resistant soybean cultivars is the most effective way to control this disease. Henan province was located in the hinterland area of the summer-sowing soybean production region of Huang-Huai in China, which had the potential threat region of phytophthora root rot. The objective of this study was to screen effective resistance cultivars for disease control and resistance breeding by phenotypic identification and molecular detection of resistance gene. Sixty-four new soybean lines bred in Henan were evaluated for their resistance responses to two Phytophthora sojae isolates PsJS2 and Ps41-1 using the hypocotyls inoculation technique. The result showed that 35 lines and 16 lines were resistance to Ps41-1 and PsJS2, respectively. Sixteen lines and 10 lines were intermediate to Ps41-1 and PsJS2, respectively. And there were 16 lines resistance to both Ps41-1and PsJS2, accounting for 25% of tested lines. Sixty-four lines was detected for Phytophthora resistance gene by using molecular marker WZInDel11 co-segregating with a resistance gene RpsZheng. The results showed that, 13 of 16 lines resistant to both PsJS2 and Ps41-1 contain target band of WZInDel11, while 5 lines resistant to one of two P. sojae isolates show segregating to P. sojae produced heterozygous bands. The homozygous resistant plants of these lines segregating for resistance could be accurately detected by marker WZInDel11, and further were directly developed into homozygous resistant lines. Combining the results of pedigree analysis, it was speculated that two lines might contain the resistance gene RpsZheng, two lines might contain RpsYD29, and 14 lines might contain RpsZheng or its allele. In conclusion, the results indicated that the new soybean lines cultivated in Henan Province had excellent resistance sources to P. sojae. This study provides important information for disease control and resistance breeding.  相似文献   

6.
7.
High-density marker-based QTL mapping can serve as an effective strategy to identify novel genomic information to facilitate crop improvement. In this study, we genotyped an F2 population (KB12-1 × PP12-1) using a RAD-seq approach and constructed a high-density linkage map for radish. After a series of filtering procedures were performed, 17,124 SNPs and 3,336 indels with aa × bb genotyping were retained to obtain bin markers. Then, a linkage map comprising a total of 1,221 bin markers in nine linkage groups spanning 1,467.3 cM with an average marker interval of 1.2 cM was constructed. We evaluated the resistance of the F2 mapping population to black rot using F3 progeny, and two major QTLs related to black rot resistance were identified based on this map. Among these QTLs, qBRR2 on Chr.2 explained 26.97% of the phenotypic variation with a LOD score of 11.93, and qBRR7 on Chr.7 accounted for 27.06% of the phenotypic variation with a LOD score of 11.83. The additive effect of qBRR2 was positive (14.97); however, qBRR7 had the opposite effect (−11.99). The high-density linkage map and the major QTLs qBRR2 and qBRR7 provide new important information for disease resistance gene discovery and utilization in genetic improvement.  相似文献   

8.
In tomato ( Lycopersicon esculentum Mill.) a single dominant gene ( Frl) on chromosome 9 confers resistance to fusarium crown and root rot (crown rot) incited by Fusarium oxysporum f. sp. radicis-lycopersici. To identify randomly amplified polymorphic DNA (RAPD) markers linked to Frl, crown rot susceptible and resistant tomato lines were screened for polymorphisms using 1000 random 10-mer primers and three reliable RAPD markers were found linked to Frl (UBC #'s 116, 194, and 655). A codominant polymorphic PCR marker of TG101, a restriction fragment length polymorphic (RFLP) marker linked to Frl, was developed to facilitate the linkage studies. Using TG101 and the four RAPD markers, on a Frl segregating backcross population of 950 plants indicated that all belong to the same linkage group. The polymorphic allele order was found to be TG101 – 655 – 116 – 194 – Frl. UBC 194 was found to be 5.1 cM from Frl in this population. Furthermore, it was the only marker found in the resistant genotypes ‘Mocis’ and Fla 7226, whereas resistant genotypes ‘Momor’, Ohio 89-1, and Fla 7464 all had UBC 194 and UBC #'s 116, 194, and 655. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Resistance to brown spot (BS) and Pleiochaeta root rot (PRR) in narrow-leafed lupin (Lupinus angustifolius L.) was assessed on a broad range of breeding lines and cultivars in field trials in Western Australia in 1985 and 1986. Both diseases are caused by Pleiochaeta setosa (Kirchn.) Hughes. Lines were grown in 5m × 1m plots in randomized complete block experiments with various disease pressures associated with cropping history — first, second and third successive lupin crops after cereals at one site in 1985, and first and second lupin crops at two sites in 1986. Best linear unbiased predictors (BLUPs) of defoliation caused by BS across experiments ranged from 64% to 123% of ‘Gungurru’, and BLUPs for PRR lesion severity ranged from 82% to 118% of ‘Gungurru’. For both diseases, genotypic variance was several times greater than genotype × environment variance, but error variance was relatively low for BS and high for PRR. Consequently, broad sense heritability (h2) for BS resistance was high in the seven experiments (range 0.89–0.94) but low for PRR resistance (range 0.00–0.53). There was a moderate correlation between BLUPs for resistance to BS and PRR across experiments (r = 0.36, P < 0.05). Genotypic correlations between resistance to BS and PRR were estimated at 0.57 ± 0.20 and 0.75 ± 0.31 in two experiments in 1985. Breeding progress is likely to be high for BS resistance and there may be slight improvements in PRR resistance associated with BS resistance. However, this field technique is not suitable for rapid breeding progress for PRR resistance.  相似文献   

10.
A set of 520 chickpea germplasm lines was screened under laboratory conditions using blotter paper technique for reaction to dry root rot caused by Rhizoctonia bataticola (Taub.) Butler. The lines PG06102, BG2094 and IC552137 were identified as resistant for dry root rot. Phenotyping the mapping population consisting of 129 F2:3 progeny derived from the cross L550 × PG06102 during 2013 winter indicated monogenic inheritance of dry root rot resistance. Fifty‐two of 381 simple sequence repeat (SSR) primers polymorphic between the two parents were used to genotype F2 resistant and susceptible bulks prepared on the basis of reaction of F2:3 progeny. Four markers differentiated the resistant and susceptible bulks. All the four polymorphic markers were then assayed on the entire F2 population. Linkage analysis using 129 F2 plants revealed that two markers ICCM0299 and ICCM0120b were co‐segregating with resistance to dry root rot. These two markers appeared to have additive effects on resistance and could be potentially utilized in dry root resistance breeding programme.  相似文献   

11.
Black root rot (BRR) caused by Thielaviopsis basicola as well as Tomato spotted wilt virus (TSWV) are the most serious problems in tobacco growing regions. We crossed the breeding line WGL 3 carrying BRR resistance derived from N.glauca with the line PW-834 the resistance of which to TSWV was transferred from cultivar Polalta. Anthers obtained from F1 hybrid plants were cultured to induce haploids combining resistance to Th. basicola and TSWV. Flow cytometry analysis revealed 242 haploids and 2 spontaneous doubled haploids among regenerants. All haploids were cloned and then evaluated for BRR as well as TSWV resistance. The presence of pathogens was detected by microscopic evaluation of roots or using DAS-ELISA test. Microscopic assessment showed that, 132 haploids had no symptoms of Th. basicola which, together with the absence of symptoms in the F1 hybrids, indicated a dominant monogenic mode of inheritance. At the same time only 30 haploids demonstrated resistance to TSWV. SCAR markers associated with TSWV resistance gene detection was applied. The results indicate that small proportion of TSWV-resistant haploids is probably due to the influence of deleterious genes flanking the resistance factor that reduced vitality of gametophytes. Altogether, 24 haploids showed multiple resistance to Th. basicola and TSWV.  相似文献   

12.
Summary Methods are described for producing large numbers of haploid plantlets from anthers of a flue-cured tobacco hybrid with monogenic resistance to tobacco mosaic virus, (TMV), potato virus Y (PVY) and root knot (RK), respectively. Additional details are given on colchicine treatment for converting haploids to doubled haploids (DH's) and on the frequency of spontaneous DH's among untreated plantlets. Disparate genetic ratios of TMV-resistant to TMV-susceptible plants were obtained among colchicine-treated haploid plantlets, induced DH's and untreated haploids when compared with F2 and BC1 progenies. Haploids (gametes) with the gene for TMV resistance occurred more frequently than expected and plantlets with the gene for RK resistance occurred less frequenctly than expected. Transmission of the gene for PVY resistance differed only slightly from Mendelian expectations. These unexpected ratios, in addition to the frequent occurrence of plastid chimeras among anther-derived plantlets, strengthened our conviction that haploidy is somehow associated with mutation.Joint contribution from the Departments of Genetics, Crop Science and Plant Pathology, North Carolina State University, and the Tobacco Research Laboratory, Agricultural Research, Science and Education Administration, U.S. Department of Agriculture, Oxford, North Carolina. Paper No. 5576 of the Journal Series of the North Carolina Agricultural Experiment Station, Raleigh, North Carolina.  相似文献   

13.
Summary Black rot disease caused by Xanthomonas campestris pv. campestris is a limiting factor in the commercial production of the cauliflower crop. Crosses were attempted between SN 445, a mid season cultivar resistant to black rot and two highly susceptible commercial cultivars (Pusa Snowball-1 and K-1). Studies of the F1's, F2's and back crosses indicated that SN 445, carries a dominant gene imparting resistance to black rot.  相似文献   

14.
Summary The introgression of wildfire (races 0 and 1) and angular leaf spot (ALS) resistance from N. rustica var. Brasilea into N. tabacum has proved economically useful in Zimbabwe although the mode of inheritance of, and genetic relationships between the resistance are unknown. This study was undertaken to (1) examine the mode of inheritance of the resistance to races 0 and 1 of wildfire, and ALS, (2) determine the genetic relationship between the resistances and (3) establish whether the N. rustica-derived wildfire race 0 resistance is allelic to that obtained from N. longiflora. Inheritance was examined under greenhouse and field conditions by studying disease reactions in the parental, F1, F2 and backcross generations derived from crosses of three susceptible lines to a resistant line Nr-7. Three-point backcrosses to the susceptible parent were examined for linkage and segregating generations from a cross of Nr-7 to Burley 21 which carries the N. longiflora race 0 resistance were used to test for allelism. In general, we observed that all resistances are determined by a single dominant gene although some incosistent ratios were obtained likely due to misclassification of disease reactions and erratic transmission. All resistances showed linkage although pleiotropism cannot be ruled out. Allelism tests demonstrated that the N. rustica race 0 resistance is not allelic to that obtained from N. longiflora. Our findings are examined in relation to the efficacy of indirect selection for resistance.  相似文献   

15.
The plant eukaryotic translation-initiation factors eIF4E and eIF(iso)4E play key roles in infection by plant RNA viruses, especially potyviruses. Mutations in the genes that encode these factors reduce susceptibility to the viruses. In the amphidiploid plant tobacco (Nicotiana tabacum L.), eIF4E1-S deletion mutants resist Potato virus Y (PVY), but resistance-breaking strains (RB-PVY) have appeared. In an earlier study, we demonstrated that the loss-of-function of eIF(iso)4E-T reduces susceptibility to RB-PVY. Here, we show that simultaneous inhibition of eIF4E1-S and eIF(iso)4E-T synergistically confers enhanced resistance to both PVY and RB-PVY without host growth or development defects. PVY symptoms and accumulation in a tobacco line lacking eIF4E1-S were detected at 14 days post-inoculation (dpi) and RB-PVY symptoms in lines without functional eIF(iso)4E-T were observed at 24 dpi. RB-PVY emerged in a PVY-infected tobacco line lacking eIF4E1-S. In contrast, lines without functional eIF4E1-S and eIF(iso)4E-T were nearly immune to PVY and RB-PVY, and little accumulation of either virus was detected even at 56 dpi. Thus, the lines will be promising for PVY-resistance breeding. This study provides a novel strategy to develop tobacco highly resistant to PVY and RB-PVY, and insights into the mechanisms responsible for high-level resistance.  相似文献   

16.
Cassava root rot disease is an increasing problem in Africa where yield losses of about 80% have been recorded. We evaluated 290 African landraces and 306 improved genotypes from the germplasm collections of the International Institute of Tropical Agriculture (IITA), for sources of resistance using root slice laboratory assay. Disease severity was assessed quantitatively by direct percentage estimation (PS) and by use of a rating scale (RS). Both methods of assessment were compared for identification of variability in the germplasm, and genotypes were classified into response groups using an enlarged rank-sum method that combined the PS and RS assessments. The two scoring methods revealed continuous variation (P < 0.001) for resistance in the sets of germplasm. Disease assessments based on PS and RS were highly correlated in both the improved germplasm (r = 0.75) and the landraces (r = 0.72). Based on PS assessment, 50 improved genotypes (16.3%) and 53 landraces (18.3%) showed significantly lower disease scores than the resistant control. The rank-sum method separated each set of collections into highly resistant, resistant, moderately resistant, moderately susceptible, susceptible and highly susceptible groups. Fifty-nine improved genotypes (16.4%) and 61 African landraces (16.9%) were identified as either highly resistant or resistant. Generally, these genotypes exhibited resistance by limiting the growth of the pathogen (reduced amount of invaded surface area). This type of rate-reducing resistance is highly heritable and a quantitative trait which can be harnessed in breeding. Genotypes subsets were identified for further studies into the genetic basis of resistance to root rot disease.  相似文献   

17.
Summary The object of this work was a study of the relationship between the field reactions of different sunflower genotypes to basal stalk rot (in terms of severe (dead plants) and incipient wilting, and lesion length) and some biochemical (phenol concentration), morphological (plant height, and stem and flower-bud diameters) and anatomical (xylem and cortical indexes) characters of the host. Plants from 8 inbred lines at closed flower-bud stage were artificially inoculated with mycelium at the base of the stem. The percentage of dead plants for each inbred line and the lesion length and wilting range for individual plants after 7 days were recorded.A positive and highly significant correlation coefficient between the percentage of dead plants and lesion length was found for the three years of the study (r=0.83; P<0.01). A highly significant association between lesion length and wilting range for individual plants was always found (P=0.00). Postinfectional phenol content exhibited a strong negative correlation with lesion length and the percentage of dead plants in all the experiments (P=0.05). Association between postinfectional phenol content and wilting range for individual plants was significant for all the years studied (P<0.05). No correlation between phenol levels in healthy plants of the different sunflower genotypes and their susceptibility was found. Morphological characters positively correlated with lesion length but only plant height exhibited significant values for the three years. Associations between wilting range and morphological characters for individual plants were significant for one of the two years analyzed (P<0.05). Xylem index showed a negative correlation with lesion length which was significant one of the two years studied.The lesion length measure seems to be a simple and direct method for resistance screening before the flowering period. Although strong relations with postinfectional phenol levels were found, their determinations would be too much time consuming and not completely reliable. The relationships between other characters measured and disease resistance would indicate that physiological mechanisms could be related to resistance.  相似文献   

18.
M. J. Y. Shtaya    J. C. Sillero    K. Flath    R. Pickering    D. Rubiales 《Plant Breeding》2007,126(3):259-267
A set of 23 recombinant lines (RLs) of barley ( Hordeum vulgare L.) derived from H. vulgare  ×  H. bulbosum L. crosses was inoculated with barley leaf rust ( Puccinia hordei ) and powdery mildew ( Blumeria graminis f.sp. hordei ) at the seedling stage to identify their levels and mechanisms of resistance. Eight RLs were studied further in glasshouse and field tests. All three barley parents ('Emir', 'Golden Promise' and 'Vada') were highly susceptible to powdery mildew and leaf rust isolates. Several RLs showed partial resistance expressed as high relative latency periods and low relative infection frequencies against leaf rust. This high level of partial resistance was due to a very high level of early aborting colonies without host cell necrosis. Several RLs showed hypersensitive resistance to some or all isolates. For powdery mildew, one RL was completely resistant to the CC1 isolate and had a hypersensitive resistance to the CO-02 isolate. Three RLs derived from 'Emir' were completely resistant to both powdery mildew isolates, and three more RLs tested in the field had higher levels of partial resistance than their parents. The results indicate that H. bulbosum contains major and minor gene(s) for resistance to leaf rust and powdery mildew that can be transferred to cultivated barley.  相似文献   

19.
Cultivated lentil (Lens culinaris Medik.) is susceptible to aphanomyces root rot (ARR), whereas partial resistance is present in wild lentil including Lens ervoides (Brign.) Grande. Approximately six generations of selfing are required to fix a desired trait in a population, which usually requires 2 years in a breeding programme, so the primary objective was to develop a rapid generation cycling (RGC) technique that achieves this goal in 1 year. Rapid generation cycling was then tested on an F2 population (LR‐59) derived from a L. culinaris × L. ervoides cross in combination with a reliable ARR screening technique, which generates a wide range of disease severities conducive to selection. Phenotyping of an F2 population of more than 1,200 plants resulted in scores ranging from 2.4 to 4.0 on a scale from zero to five. Plants with scores lower than 4.0 were selected for advancement for five generations using a modified single‐seed descent method, optimum growing conditions, 20‐hr photoperiod and harvest of immature seeds. Seeds were germinated in a 100 μM gibberellin solution. Average generation length after phenotyping was 56 days resulting in five generations within approximately 300 days. Using a modified inoculation protocol, ARR phenotyping of the F7 population resulted in scores ranging from 1.4 to 4.0. This inexpensive, nonsterile speed breeding protocol saves 1 year in the development of lentil varieties with improved ARR resistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号