首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil compaction occurs due to heavy wheeling or repetitive tillage in the field. Soil compaction changes the soil physical parameters and water infiltration that cause reduction in the crop yield. Proper subsoiling alleviates the negative effect of soil compaction. The objectives of the research was to examine the effects of subsoiling on the resistance of the soil and to find out deep tillage effects on the cotton yield and the convenient time for applying subsoil treatment for reducing the soil compaction. One-pass (B) and two-passes (C) subsoil treatments were applied in the fields where wheat, silage maize (Zea mays L.) and cotton (Gossypium hirsutum L.) crops were grown by 2 years rotation. The experiment was started in 1998 and carried out for 4 years. Soil penetrations were measured during the experiments years at thaw conditions of silty-clay soil (43% clay, 50% silt, 7% sand) before seedbed preparation in autumn seasons. According to the results, the subsoiling treatments created statistically significant effects on the soil resistance (P<0.05) comparing the control plots (A). The initial disruption in subsoiled plots has almost disappeared after 2 and 4 years in B and C plots, respectively. The soil resistance in C plots was lower than in B plot. The percentage of decrease in the soil resistance from A to B and A to C plots was calculated as 13.3 and 26.2%, respectively, in the first year. In the effective subsoiling area from 0.20 to 0.50 m depth, the ratio of penetration decrease in both plots was about 7–8% per year. The difference of penetration decrease between B and C plots was found to be about 15.8% level. Cotton yields at each subsoiled plots increased slightly comparing with control plots (A) where subsoiling was not applied. However, these increments were found to be statistically insignificant. It may be concluded that the subsoiling treatments does not affect the crop yield in intensive and fully irrigated field conditions.  相似文献   

2.
In Belgium, growing silage maize in a monoculture often results in increased soil compaction. The aim of our research was to quantify the effects of this soil compaction on the dry matter (DM) yields and the nitrogen use of silage maize (Zea mays L.). On a sandy loam soil of the experimental site of Ghent University (Belgium), silage maize was grown on plots with traditional soil tillage (T), on artificially compacted plots (C) and on subsoiled plots (S). The artificial compaction, induced by multiple wheel-to-wheel passages with a tractor, increased the soil penetration resistance up to more than 1.5 MPa in the zone of 0–35 cm of soil depth. Subsoiling broke an existing plough pan (at 35–45 cm of soil depth). During the growing season, the release of soil mineral nitrogen by mineralisation was substantially lower on the C plots than on the T and S plots. Silage maize plants on the compacted soil were smaller and flowering was delayed. The induced soil compaction caused a DM yield loss of 2.37 Mg ha−1 (−13.2%) and decreased N uptake by 46.2 kg ha−1 (−23.2%) compared to the T plots. Maize plants on compacted soil had a lower, suboptimal nitrogen content. Compared with the traditional soil tillage that avoided heavy compaction, subsoiling offered no significant benefits for the silage maize crop. It was concluded that avoiding heavy soil compaction in silage maize is a major strategy for maintaining crop yields and for enhancing N use efficiency.  相似文献   

3.
A high proportion of the soils in the central zone of Santa Cruz, eastern Bolivia, are chemically and physically degraded, with low organic matter and N contents, compacted subsoil layers and a propensity to crusting, hardsetting and wind erosion. The aim of the experiment discussed in this paper was to identify suitable cover crops to be used in combination with subsoiling for the rehabilitation of degraded soils and the improvement of crop yields in eastern Bolivia. Fertilizers were not used because of their high cost. An experiment with a split complete block design, with subsoiling and no-subsoiling as the main treatments, 14 cover crops and a continuously cultivated soybean/wheat control as the subtreatments, and four replications, was established on a degraded site comprising a mosaic of two compacted siliceous isohyperthermic soils (a coarse loamy Typic Ustropept and a fine loamy Typic Haplustalf). After a two-year fallow period, the cover crops were incorporated and test crops were sown for five seasons to evaluate the effects of the treatments on subsequent crop yields. Soil samples were taken to measure changes in chemical fertility. The only significant cover crop effect on soil nutrients was an increase in exchangeable K from 0.47 to 0.56 cmolc kg−1 by Lablab; subsoiling had no effect on chemical fertility. For all treatments there was an average 24 per cent increase in soil organic matter from 13.1 g kg−1 at 3 months after cover crop incorporation to 16.3 g kg−1 at 19 months after incorporation. No significant differences in total N were found during this period. Test crop yields were not influenced by subsoiling, but were significantly increased by some of the cover crops as compared to the soybean/wheat control during the first three seasons only. Evidence from foliar analysis suggests that the effects of the cover crops on soybean yields were not nutritional and so presumably were physical in nature, whereas the benefits on wheat yields were possibly related to increased N availability. Panicum maximum var. Centenario and P. maximum var. Tobiatá gave the highest total yield increases over the first three cropping seasons (101 and 85 per cent, respectively), but these yield increases would not compensate the farmer for the loss of four crop harvests whilst the land was in fallow. These results highlight the difficulties of rehabilitating soil fertility and increasing crop yields through the use of subsoiling and cover crop fallows on compacted, low organic matter soils in eastern Bolivia.  相似文献   

4.
Southeastern USA production is limited in Acrisols (Paleudults and Kandiudults) because they have high strengths and low water holding capacities. Production systems with crop rotations or deep tillage before planting were compared with less intensive management. Production systems included double-crop wheat (Triticum aestivum L.) and soybean (Glycine max L. Merr.) that were drilled in 0.19 m-row widths and grown in 15 m wide, 150 m long plots with soils of varying hardpan depths. Treatments included surface tillage (disked or none), deep tillage (paratilled or none), deep tillage with winter fallow and maize (Zea mays L.) in rotation, and disked/deep tillage with an in-row subsoiler where soybean was planted in conventional 0.76 m-wide rows. Cone indices were measured near the ends of each plot (120 m apart) to assess soil strength differences among soil types and among treatments. Cone indices were 1.50 MPa higher for non-deep tilled treatments than for deep tilled treatments and 0.44 MPa higher in wheel-track mid rows than in non-wheel-track mid rows. Cone indices were also 0.28 MPa higher for soils with shallower Bt horizons. Cone indices were not significantly different for subsoiled treatments and paratilled treatments. Rainfall was erratic throughout the 5-year experiment with dry periods lasting more than 2 weeks at a time and with annual totals ranging from 520 to 1110 mm. Wheat yields were 0.67 Mg ha−1 greater for deep-tilled soils (subsoiled and paratilled) than for non-deep-tilled soils. Soybean yields were 0.36 Mg ha−1 greater for paratilled than for subsoiled or non-deep-tilled treatments partly as a result of the more complete disruption of the paratill and partly because paratilled treatments were managed with narrow rows. Yields did not vary significantly among the soil types despite the fact that they had different cone indices. Tillage was a more dominant factor than soil type. For wheat, lower cone indices from tillage led to higher yields. For soybean, management of uniform loosening from deep tillage and narrow rows led to higher yields.  相似文献   

5.
研究深松深度对砂姜黑土耕层特性、作物产量和水分利用效率的影响,可为构建砂姜黑土合理耕层的耕作深度指标提供依据。本研究基于多年定位大田试验,采用大区对比设计,设置4个深松深度(30 cm、40 cm、50 cm、60 cm)处理,以旋耕(RT,平均耕作深度为15 cm)作为对照,研究不同深松深度对土壤紧实度、土壤三相比(R)值、作物根系形态、作物产量和水分利用效率的影响。研究结果表明,深松深度增加能显著降低土壤紧实度,使土壤的三相比(R)更加合理,进而促进作物根系生长。不同深松深度中,深松60 cm处理的土壤紧实度和三相比(R)值与对照相比降幅最大,深松40 cm处理的冬小麦根系生物量最大,深松50 cm处理的夏玉米根系生物量最大。深松不仅增加作物产量,还提高作物水分利用效率。深松30 cm处理的周年作物产量最高,比对照增产12.2%,但与深松40 cm处理差异不显著。深松50 cm处理的周年水分利用效率最高,但与深松30 cm和深松40 cm处理差异不显著。深松30 cm、40 cm和50 cm的周年水分利用效率比对照分别增加9.1%、8.8%和12.7%。因此,砂姜黑土适宜的深松深度为30~40 cm。  相似文献   

6.
The concept of degree of compactness (DC), referred to as field bulk density (BD) as a percentage of a reference bulk density (BDref), was developed to characterize compactness of soil frequently disturbed, but for undisturbed soil such as under no-tillage critical degree of compactness values have not been tested. The objective of this study was to compare methods to determine BDref and limits of DC and BD for plant growth under no-tillage in subtropical soils. Data from the literature and other databases were used to establish relationships between BD and clay or clay plus silt content, and between DC and macroporosity and yield of crops under no-tillage in subtropical Brazil. Data of BDref reached by the soil Proctor test on disturbed soil samples, by uniaxial compression with loads of 200 kPa on disturbed and undisturbed soil samples, and 400, 800 and 1600 kPa on undisturbed soil samples, were used. Also, comparisons were made with critical bulk density based on the least limiting water range (BDc LLWR) and on observed root and/or yield restriction in the field (BDc Rest). Using vertical uniaxial compression with a load of 200 kPa on disturbed or undisturbed samples generates low BDref and high DC-values. The standard Proctor test generates higher BDref-values, which are similar to those in a uniaxial test with a load of 1600 kPa for soils with low clay content but lower for soils with high clay content. The BDc LLWR does not necessarily restrict root growth or crop yield under no-tillage, since field investigations led to higher BDc Rest-values. A uniaxial load greater than 800 kPa is promising to determine BDref for no-tillage soils. The BDref is highly correlated to the clay content and thus pedotransfer functions may be established to estimate the former based on the latter. Soil ecological properties are affected before compaction restricts plant growth and yield. The DC is an efficient parameter to identify soil compaction affecting crops. The effect of compaction on ecological properties must also be further considered.  相似文献   

7.
Soil compaction limits soil water availability which adversely affects coconut production in Sri Lanka. Field experiments were conducted in coconut (Cocos nucifera L.) plantations with highly and less compacted soils in the intermediate climatic zone of Sri Lanka. Soil physical properties of sixteen major soil series planted with coconut were evaluated to select the most suitable soil series to investigate the effect of deep ploughing on soil water conservation. Soil compaction and soil water retention with respect to deep ploughing were monitored during the dry and rainy seasons using cone penetrometer and neutron scattering techniques, respectively. Evaluation of soil physical properties showed that the range of mean values of bulk density (BD) and soil penetration resistance (SPR) in the surface soil (0–10 cm depth) of major soil series in coconut lands was from 1.38 ± 0.02 to 1.57 ± 0.07 g/cm3 and 55 ± 10 to 315 ± 16.4 N/cm2 respectively. The total available water fraction increased with clay content of soil as a result of high micropores. However, due to soil compaction, ability of soils to conserve water and to remain aerated was low for those series. Deep ploughing during the rainy and dry periods in highly compacted soils (BD > 1.5 g/cm3 and SPR > 250 N/cm2) greatly increased conserved soil water in the profile, while in less compacted soils (BD < 1.5 g/cm3 and SPR < 250 N/cm2) conserved water content was adversely affected. Soil water retention in bare soils of both highly and less compacted soil series was higher than that of live grass-covered soil. Amount of water conserved in ploughed Andigama series with respect to bare soils and grass-covered treatments during the severe dry period was 10.4 and 16.9 cm/m, while water storage reduction in the same treatments with ploughed Madampe series was 6.55 and 5.45 cm/m respectively. In addition, deep ploughing even in the effective root zone with live grass-covered highly compacted soils around coconut tree was favorable for soil water retention compared to that of live grass-covered less compacted soils.  相似文献   

8.
The objective of this study was to examine tillage effects and energy efficiencies of subsoiling and direct seeding on yield of second crop corn (Zea mays L.) for silage in light soil of Odemis located in the western part of Turkey. In this research, tillage and direct seeding were applied in dry and wet soil conditions after winter wheat (Triticum aestivum L.) harvesting in the years 2002 and 2003. The effects of conventional tillage method, reduced tillage methods that include one and cross pass subsoiling, and direct seeding applications on corn yield were examined. In the experiment, a regular four-row corn planter was used. Tillage speed, slip, fuel consumptions, seedling emergence, plant height, and yield were measured. From the data, total energy requirement and effectiveness of each method were calculated.

The highest fuel consumption was measured in conventional method (PLG) whereas the lowest value was found in direct seeding method (DIR) as 60.5 l ha−1 and 7.5 l ha−1 in 2002, respectively. The conventional method required seven times more fuel than the direct seeding method. For field efficiencies, as parallel to the finding in fuel consumption, the highest value was 1.34 ha h−1 in DIR and 0.40 ha h−1 in one pass subsoiling method (SUB I). DIR method had nine times more field efficiencies as compared to the conventional method. The highest yield was found in cross pass subsoiling method (SUB II) as 72.6 Mg ha−1 and 61.6 Mg ha−1 in the first and second year, respectively. Although DIR has minimum fuel consumption and maximum field efficiency, this method gave the lowest yield as 64.7 Mg ha−1 in the first year and 37.2 Mg ha−1 in the second year.  相似文献   


9.
Research was conducted to develop a knowledge-based decision support system to assess the degree of compaction in agricultural soils. The experiments were conducted in a laboratory soil bin at the Asian Institute of Technology in three soils, namely, clay, silty clay loam, and silty loam. The research was likewise aimed to quantify the effect of tire variables (section width, diameter, inflation pressure); soil variables (soil moisture content, initial cone index, initial bulk density); and external variables (travel speed, axle load, number of tire passes) on soil compaction and to develop compaction models for soil compaction assessment. Dimensional analysis technique was used in the development of the compaction models.

The soil compaction models were found to provide good predictions of the bulk density and cone index. Using the compaction models and other secondary data, the decision support system was developed to assess the compaction status of the soil in relation to crop yield. The predictions by the decision support system were validated with actual field data from earlier studies and high correlation was observed. Thus, the output of the decision support system may be able to provide useful recommendations for appropriate soil management practices and solutions to site-specific soil compaction problems.  相似文献   


10.
Soil degradation processes may be of various kinds, including soil compaction. The present study was carried out with the objective of assessing the sensitivity of agricultural or recently abandoned soils in Maputo province of Mozambique to compaction. The assessment is based on the maximum of bulk density attained using the Proctor test (MBD).

In this study the soil texture is expressed by silt plus clay (S + C) or clay (C). The relations between the soil texture and MBD, and between soil texture and critical water content (CWC—soil water at which MBD is attained) were determined. Selected soils range from 10 to 74% of S + C and 9 to 60% of C.

The results suggest there is a relationship between the considered parameters, being that between S + C and MBD or CWC, the best. For MBD the relationship is represented by two quadratic equations with the boundary in between these being a S + C value of 25% and C value of 20%.

Based on the obtained results, one can conclude that the selected parameters may be a useful basis for estimation of the sensitivity to compaction of the Maputo province's soils. It is recommended that similar studies be carried out for soils under forest land and for soil of other provinces to establish the national physical degradation hazard as a function of soil parameters determined routinely and at low cost. The suggested parameters are texture and soil organic matter (SOM).  相似文献   


11.
Site of nitrous oxide production in field soils   总被引:1,自引:0,他引:1  
Summary Nitrous oxide (N2O) fluxes at the soil surface and concentrations at 0.1, 0.2, and 0.3 m were determined in a 40-year-old planted tallgrass (XXX) prairie, a 40-year-old white pine (Pinus strobus) plantation, and field plots treated annually for 18 years either with 33 metric tons of manure ha–1 (330 kg N ha–1) and NH4NO3 (80 kg N ha–1) or with only NH4NO3 (control). Nitrous oxide fluxes from the prairie, forest, manure-amended, and control sites from 13 May to 10 November 1980 ranged from 0.2 to 1.3, 3.5 to 19.5, 3.7 to 79.0, and 1.7 to 24.8 ng N2O-N m–2s–1, respectively. We observed periods when there was no apparent relationship between the N2O flux from the surface and N2O concentrations in the soil profile. This was generally the case in the prairie and in the field sites following the application of N fertilizer. The N2O concentrations in the soil profile increased markedly and coincided with increased soil water content following periods of heavy rainfall for all sites except the prairie. Nitrous oxide concentration gradients indicate that following heavy rainfalls the site of N2O production was moved from the surface deeper into the soil profile. We suggest that the source of N2O production near the surface is nitrification and that N2O is produced by denitrification of NO3 leached into the soil following heavy rainfall.  相似文献   

12.
松嫩平原盐渍化水田土壤表观电导率空间变异研究   总被引:2,自引:0,他引:2  
运用电磁感应仪EM38结合GPS定位,以盐渍化水田为研究对象,通过经典统计学和地统计学相结合的方法研究了盐渍土区新开水田表观电导率的空间变异特征,分析了土壤表观电导率与土壤盐碱指标关系。结果表明,经典统计分析土壤水平方向表观电导率(ECh)与垂直方向表观电导率(ECv)均为中度空间变异强度,且符合正态分布。地统计分析表明,ECh和ECv均具有强空间相关性,其变异特征主要是由结构性因素引起的,半方差拟合最优模型为指数模型。且ECh和ECv空间分布在一定范围内存在相似性,均表现为不同表观电导率的土壤呈斑块和条带状镶嵌分布。Pearson分析显示,土壤表观电导率与盐碱化指标土壤电导率(EC1︰5)和碱化度(ESP)呈正相关关系(P0.05),相关系数大于0.8。回归分析表明,土壤表观电导率与EC1︰5和ESP均为指数函数关系,决定系数大于0.76。ECh与土壤盐碱化指标相关系数和决定系数均大于ECv,因此可以用水平方向土壤表观电导率ECh来反映土壤的盐碱化程度。该研究可以为土壤盐分空间变异理论与盐碱地改良实践相结合的研究思路提供理论基础,为盐碱地实施定位、定区清除或消减土壤盐碱的均质化改良技术提供数据支持。  相似文献   

13.
Methane–climate interactions are reasonably well understood; the biogeochemical controls on net methane fluxes are less so. Within anoxic soils, alternative electron acceptors such as iron and humic substances influence microbial metabolic function, and thus affect the amount of carbon lost as methane (CH4). We present three years of data from wet sedge tundra landscapes near Barrow, Alaska that show an inverse relationship between dissolved iron and CH4 concentrations. We found increasing organic layer thickness related to increases in active layer organic matter content, and decreases in both bulk density and extractable iron. Organic layer depth was also a good proxy for carbon dioxide (CO2) and CH4 dynamics, with increasing organic layer depths relating to lower dissolved iron, higher amounts of dissolved CH4, and lower CO2:CH4 ratios in the upper active layer. Net CH4 fluxes were also significantly suppressed following the experimental addition of iron and humic acids. Iron and humic acid treatment effects were indistinguishable for CH4 net flux; in contrast, post-treatment CH4 fluxes were an average of 0.74-fold the control treatment flux rates. These results suggest that in-situ CH4 production is tied to alternative electron acceptor availability, and that organic layer thickness is a good predictor of biogeochemical controls on CH4 fluxes in wet-sedge Arctic Alaskan tundra.  相似文献   

14.
河北滨海平原土壤盐分空间异质性与淋排均质化作用研究   总被引:3,自引:0,他引:3  
于淑会  白璐  刘慧涛  刘金铜 《土壤》2014,46(6):1135-1141
本文运用经典统计学和地统计学方法,结合GIS技术,研究了滨海盐土土壤盐分的空间异质性和采用降雨淋盐与暗管排盐措施后土壤盐分变化及淋排均质化作用的分析,主要结果如下:1雨淋管排可促进土壤盐分均质化。淋排后,变异系数CV由48.13%降至28.14%,空间相关程度(C0/(C0+C))由72.86%变化至59.42%;2雨淋管排后土壤盐分存在"高盐异质性–低盐均质性"转化趋势。7 g/kg的土壤含盐量经雨季淋排可降至1.5~2 g/kg,且在7 g/kg土壤含盐量范围内,脱盐率与初始土壤含盐量呈正相关,反之,为负相关;3对"高盐异质性–低盐均质性"转化过程的定量分析结果显示,淋排后,实验区土壤类型由中重度盐渍化土降为轻度盐渍化土,雨季土壤脱盐量为67.78 t,其中重度盐渍化土对脱盐量的贡献最大,可达91%,轻度盐渍化土反而因淋排作用有所增加,其脱盐量的贡献为负值(–35%)。  相似文献   

15.
Technological advances in precision agriculture in the last two decades have made yield monitoring and mapping an economically feasible option or practice for farmers. Differentially corrected Global Positioning System (GPS)-equipped yield monitoring system on a combine allows collection of georeferenced yield data which when coupled with a geographic information system (GIS) can generate yield maps via several interpolation techniques. Scientists and practitioners have reported to use multiple different types of interpolation techniques to process yield data. However, one of the aspects that still need to be elucidated is the influence of the different interpolation methods on the quality of the resulting thematic yield maps. The objective of this study was to investigate the influence of three interpolation methods (i.e., inverse of distance, inverse of square distance, and ordinary kriging) commonly used in developing yield maps. An index for the comparison of errors (ICE) was proposed to provide an objective criterion for selecting an experimental variogram model to use with the kriging. Results indicate that inverse distance squared performed slightly better in predicting yields than either inverse distance or ordinary kriging. With a mean absolute difference varying from 0.04 to 0.32 t ha?1 corresponding to a relative deviation from 1.20 to 7.53%, the management decisions can differ in some cases based on the type of interpolation implemented.  相似文献   

16.
Stand establishment in crusting soils is one of the most critical stages in the production of crops with delicate seedlings. This becomes more difficult in hard‐setting soils of arid lands where dispersion of aggregates due to irrigation results in the formation of a hard layer as the soil dries from the surface downwards and impedes seedling emergence. However, seeds planted near to natural cracks manage to emerge through them. The aim of this study was to improve seedling emergence of irrigated crops in arid and semi‐arid conditions by devising methods to create longitudinal cracks in the vicinity of the seed rows during the subsequent drying phase. Laboratory experiments were conducted in soil boxes containing air‐dried clay soils to investigate the influence of different mechanical effects on the cracking pattern after flooding. Promising results were achieved by compacting a 7–15‐mm wide strip along the seed row. Monitoring the effect of compaction on water release characteristics and tensile strength of soil revealed that the greater water loss of the surrounding non‐compacted soil caused a suction gradient towards the points of lower water content resulting in movement of water and particles towards the drier zones. The compacted soil with a greater tensile strength did not permit the flow of water and particles to the loose soil and a discontinuity occurred. A field experiment in central Iran proved the feasibility of the technique in a semi‐arid area. This was achieved by lightly compacting a narrow strip of soil by applying 17–35 kg on a 22‐mm wide, 558‐mm diameter wheel covered by a layer of flexible rubber which ran over the pre‐compacted soil.  相似文献   

17.
Viticulture and fruit culture in Mediterranean areas demand frequent tractor traffic in vineyards and orchards for tillage and for the application of herbicides and pesticides, resulting in soil compaction. The aim of this study was to investigate the extent of soil compaction and its effect on infiltration in vineyards and orchards in an area in southern France, known for its wine and fruit production (Vaucluse). Compaction of both the topsoil and the subsoil was demonstrated with measurements of bulk density, penetration resistance and water retention characteristics. Subsoil compaction was attributed to wheel load, not to tillage, and was alleviated within 5 years after termination of tillage operations in vineyards. No effects of topsoil compaction on infiltration were expected on account of the slight differences in the values of infiltration parameters between wheel tracks and inter-rill areas. Effects of subsoil compaction on infiltration were examined with rainfall simulation tests. Under wet initial conditions and high rain intensities, no effect of soil compaction on infiltration was observed. This implies that the frequent tractor traffic associated with viticulture and fruit culture does not enhance run-off on loamy soils in Mediterranean areas.  相似文献   

18.
The physically defined concept “precompression stress (Pc)” is presented at farm scale, including two operation methods in order to define precaution and critical values for the legislation and executive level according to the German Soil Protection Law. The first step is the prevention of subsoil compaction in general by the definition of the mechanical strength of soils, which is defined by the Pc. This Pc value is used as the precaution value, to ensure site-adjusted land use. The second step is to predict the change of soil functions after exceeding the Pc and furthermore to assess if critical values (test and action values) caused by subsoil compaction are reached or already exceeded. Criteria for the definition of critical values by subsoil compaction concerning crop production are discussed in order to also establish such values in the European Soil Framework Directive. The “Pc” concept, which includes predicted and regionalized “Pc”-maps, was verified on a research farm in the weichselian moraine landscape in Northern Germany for areas resistant or susceptible to soil deformation at the given water content throughout the year. Furthermore, the stress-dependent changes of the air capacity after exceeding the Pc was predicted by pedotransfer functions and linked with the farm soil map. As an additional proof for the validity of the Pc concept, a field experiment on a Stagnic Luvisol was also conducted in order to measure the stress distribution up to 60 cm depth using the Stress State Transducer (SST) system at two different wheel loads (3.3 and 6.5 Mg) using a tractor-pulled mono-wheeler. According to the effective soil strength, the wheel load should not exceed 3.3 Mg at field capacity to avoid subsoil compaction.  相似文献   

19.
松嫩平原玉米带农田土壤有机碳时空格局   总被引:8,自引:2,他引:8  
该文基于吉林省第二次全国土壤普查省数据、县级土壤剖面资料和2003-2006年实测数据,估算了不同土壤类型农田表层土壤有机碳密度和储量,并对近25年来土壤有机碳时空变化特征及其原因进行分析。结果表明,总体上松嫩平原玉米带农田土壤有机碳密度和储量呈增加趋势。其中,碱土、暗棕壤、黑土和草甸土的土壤有机碳密度增幅分别达33%(4.16 kg/m2),23.05%(3.79 kg/m2)、16.51%(3.74 kg/m2)和12.20%(3.77 kg/m2);相反,黑钙土有机碳密度下降幅度达30.79%(2.18 kg/m2)。两时期土壤有机碳密度的空间分布格局基本一致,呈中部高、边缘低的趋势,但25年间土壤有机碳含量变化与1980年初始含量呈显著负相关(r=-0.615**,P<0.01),且4.04 kg/m2是土壤有机碳上升或下降的临界值。根据West等提出的土壤碳汇潜力估算方法,如果保持1980年土地利用方式和传统的栽培耕作措施不变的情况下,松嫩平原玉米带农田土壤有机碳的碳汇潜力为0.33 Tg/a。  相似文献   

20.
Green potato (Solanum tuberosum L.) tubers are rejected by the processing industry. Therefore their amount should be reduced to minimum. The objective of this study was to assess the reduction of greening of new French fry varieties in experiments conducted from 1998 to 2001 on ridge qualities like geometry and the compression and crumbling degree of the loose soil in the ridge.The experiments were mainly carried out on the experimental husbandry farm Westmaas on a Calcaric Fluvisol having a clay content of ca. 200 g kg−1. French fry potato varieties used were Agria and Fambo, whereas Bintje was used as a reference. Row spacings were 0.75 m (30 in.) and 0.90 m (36 in.). Net ridge size was determined by the internal height (distance between the plate and the top of the ridge) and by the width of the top of the ridge combined with planting near the surface of the plate.For the traditional French fry variety Bintje a reduction in greening was achieved by ridges having a gross size of 0.06–0.07 m2. New French fry potato varieties like Agria and Fambo, however, are characterized by higher yields, larger cluster widths and longer tubers than Bintje. These properties favor the greening of tubers and require adjustment of the ridge geometry.Increase of the internal height and of the top width were found to be crucial to reduce greening of tubers to minimum. An increase of the top width of standard 0.75 m ridges from 0.15–0.18 to 0.25 m combined with an internal height of 0.18–0.20 m was realized by the so-called plateau ridges. This ridge type required ca. 0.04 m deeper seedbed than the depth of the seedbed for standard 0.75 m ridges. Without deeper loosening of the seedbed such larger ridges could also be realized by an increase of row spacing to 0.90 m. Net yields of new French fry varieties of plateau and 0.90 m ridges were generally similar or higher than the yields of standard 0.75 m ridges with the same internal height. With 0.90 m ridges over-sizing occurred sometimes.Greening of new varieties of French fry potatoes was reduced to minimum by the new knowledge on ridge geometry: an increase of the internal ridge height to 0.18–0.20 m, a top width to 0.25 m and reduction of cracking by relatively coarse, non-compressed ridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号