首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diagnostic analgesia of the distal interphalangeal (DIP) joint is theoretically helpful to localize the source of pain in the foot to the joint and/or navicular bursa. However, it has been suggested that potential diffusion of local anesthetic agent to nearby distal limb nerves may anesthetize other areas of the foot. The objective of this study was to compare the results of palmar digital (PD) and abaxial sesamoid (AS) nerve blocks to intra-articular anesthesia of the DIP joint in horses with distal forelimb lameness. Palmar digital nerve block (group 1) or PD and AS nerve blocks (group 2) were used to abolish digital pain in 22 horses. The following day lameness was again evaluated in all horses before and 2, 5, and 10 minutes after DIP joint anesthesia. All lameness evaluations were performed objectively with a body-mounted inertial sensor system (Lameness locator; Equinosis LLC, Columbia, MO). In group 1 horses, overall improvement in group lameness was the same after DIP joint block, but only six showed positive response after DIP joint analgesia, five after 2 minutes, and one after 5 minutes. In group 2 horses, overall improvement in lameness was less after DIP joint block, with seven showing a positive response after DIP joint analgesia, one after 2 minutes, four after 5 minutes, and two after 10 minutes. Intra-articular analgesia of the DIP joint and perineural analgesia of the digit result in overlapping but unequal areas of analgesia. In addition, a time-dependent response was observed after DIP joint block with full effect requiring 5–10 minutes.  相似文献   

2.
Radiographic contrast studies were used in 50 forelimbs from 13 live horses and 12 fresh adult cadavers to determine the frequency of communication between the navicular bursa and the distal interphalangeal joint. Injections of contrast medium were made into the dorsal aspect of the distal interphalangeal joint of one limb and into the navicular bursa of the other forelimb of each horse. In 25 limbs in which contrast medium was injected into the distal interphalangeal joint, no communication was demonstrated between the joint and the navicular bursa. In 20 of the 25 limbs in which injection was made into the navicular bursa, no communication between joint and bursa was seen. In five horses, contrast medium was visible in both the distal interphalangeal joint and the navicular bursa. However, in four of five horses the communication was clearly iatrogenic. In both limbs of one horse, contrast medium was seen to enter the digital flexor tendon sheath after injection into the navicular bursa.
There is probably no naturally occurring communication between the navicular bursa and distal interphalangeal joint in the horse.  相似文献   

3.
OBJECTIVE: To determine history, clinical and radiographic abnormalities, and outcome in horses with signs of navicular area pain unresponsive to corrective shoeing and systemic nonsteroidal anti-inflammatory drug administration that were treated with an injection of corticosteroids, sodium hyaluronate, and amikacin into the navicular bursa. DESIGN: Retrospective study. ANIMALS: 25 horses. PROCEDURE: Data collected from the medical records included signalment, history, horse use, severity and duration of lameness, shoeing regimen, results of diagnostic anesthesia, radiographic abnormalities, and outcome. RESULTS: 17 horses had bilateral forelimb lameness, 7 had unilateral forelimb lameness, and 1 had unilateral hind limb lameness. Mean duration of lameness was 9.2 months. All horses had been treated with corrective shoeing and nonsteroidal anti-inflammatory drugs for at least 6 months; 18 had previously been treated by injection of corticosteroids and sodium hyaluronate into the distal interphalangeal joint. Fourteen horses had mismatched front feet, and 21 horses had signs of pain in response to application of pressure over the central aspect of the frog. Palmar digital nerve anesthesia resulted in substantial improvement in or resolution of the lameness in all horses. Twenty horses (80%) were sound and returned to intended activities 2 weeks after navicular bursa treatment; mean duration of soundness was 4.6 months. Two horses that received numerous navicular bursa injections had a rupture of the deep digital flexor tendon at the level of the pastern region. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that navicular bursa treatment may provide temporary improvement in horses with signs of chronic navicular area pain that fail to respond to other treatments.  相似文献   

4.
This paper describes the clinical and radiographic features, and response to treatment, of 45 horses which showed lameness that was improved by intra-articular anaesthesia of the distal interphalangeal (DIP) joint. Although many horses had poor conformation of the foot of the lame limb, the majority showed no localising clinical signs suggestive of involvement of the DIP joint. Lameness was usually unilateral. No horse with bilateral lameness responded to treatment. Palmar digital nerve blocks frequently improved or alleviated lameness, although in some horses palmar (abaxial sesamoid) nerve blocks were required to eliminate lameness. This difference in response did not affect response to treatment. Intra-articular anaesthesia of the DIP joint usually resulted in resolution of lameness within 5 mins; a partial improvement in lameness or a slow response were poor prognostic indicators. None of the horses had radiographic abnormalities compatible with navicular disease. Radiographic changes of the distal interphalangeal joint per se were generally detectable only in lateromedial views and were identified in less than one third of the horses. Success rates were low following treatment of cases with radiographic abnormalities. In those with no radiographic abnormalities the response to corrective trimming and shoeing and intra-articular administration of sodium hyaluronate, once or repeatedly, was variable and no parameters could be used to predict the likely outcome. Treatment was successful in approximately 30 per cent of cases. Subsequent treatment of horses which remained lame, by intra-articular administration of polysulphated glycosaminoglycans, was not helpful; only a small proportion became sound following prolonged (nine months) rest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
REASONS FOR PERFORMING STUDY: Analgesia of the palmar digital (PD) nerves has been demonstrated to cause analgesia of the distal interphalangeal (DIP) joint as well as the sole. Because the PD nerves lie in close proximity to the navicular bursa, we suspected that that analgesia of the navicular bursa would anaesthetise the PD nerves, which would result in analgesia of the DIP joint. OBJECTIVES: To determine the response of horses with pain in the DIP joint to instillation of local anaesthetic solution into the navicular bursa. METHODS: Lameness was induced in 6 horses by creating painful synovitis in the DIP joint of one forefoot by administering endotoxin into the joint. Horses were videorecorded while trotting, before and after induction of lameness, at three 10 min intervals after instilling 3.5 ml local anaesthetic solution into the navicular bursa and, finally, after instilling 6 ml solution into the DIP joint. Lameness scores were assigned by grading the videorecorded gaits subjectively. RESULTS: At the 10 and -20 min observations, median lameness scores were not significantly different from those before administration of local anaesthetic solution into the navicular bursa (P > or = 0.05), although lameness scores of 3 of 6 horses improved during this period, and the 20 min observation scores tended toward significance (P = 0.07). At the 30 min observation, and after analgesia of the DIP joint, median lameness scores were significantly improved (P < or = 0.05). CONCLUSIONS: These results indicate that pain arising from the DIP joint can probably be excluded as a cause of lameness, when lameness is attenuated within 10 mins by analgesia of the navicular bursa. POTENTIAL RELEVANCE: Pain arising from the DIP joint cannot be excluded as a cause of lameness when lameness is attenuated after 20 mins after analgesia of the navicular bursa.  相似文献   

6.
A 6-month-old 300-kg Quarter Horse filly was treated for septic arthritis of the distal interphalangeal joint and septic navicular bursitis that developed as a result of a deep puncture to the foot. Initial treatment consisted of establishing ventral drainage for the navicular bursa, lavage of the distal interphalangeal joint, and administration of broad-spectrum antimicrobial drugs and non-steroidal anti-inflammatory drugs. Because of continuing sepsis in the distal interphalangeal joint, subsequent treatment included packing the defect in the bottom of the foot with cancellous bone in an attempt to prevent ascending contamination of the joint, placing the limb in a short limb cast, and inserting a Penrose drain into the joint for passive drainage of septic exudate. The goal of treatment was to encourage ankylosis of the distal interphalangeal joint. Because of the filly's persistent lameness and laxity of the lateral collateral ligament in the contralateral carpus, the palmar nerves of the affected foot were injected with a long-acting local anesthetic at the level of the proximal sesamoid bones to encourage weight-bearing. Ankylosis of the distal interphalangeal joint was complete 9 months after the puncture, but a grade-2 lameness remained and the horse had a varus deformity resulting from ligamentous laxity of the lateral collateral ligament in the contralateral carpus.  相似文献   

7.
Analgesia usually occurs within 5 min after administration of local anaesthetic solution into joints or around nerves in the distal portion of the limb. Gait should be assessed within 10 min after diagnostic regional analgesia of the distal portion of the limb because rapid diffusion of anaesthetic solution can result in anaesthesia of other nerve branches, thus confusing results of the examination. A palmar digital nerve block (PDNB) anaesthetises most of the foot, including the distal interphalangeal (DIP) joint (coffin joint), rather than just the palmar half of the foot, as was once commonly believed. To avoid partially anaesthetising the proximal interphalangeal joint (pastern joint), the palmar digital nerves should be anaesthetised near or distal to the proximal margin of the collateral cartilages. Clinicians should be aware that an abaxial sesamoid nerve block (ASNB) may ameliorate or abolish pain within the metacarpo/metatarso‐phalangeal joint (fetlock joint). Mepivacaine administered into the DIP joint desensitises the DIP joint and probably the palmar digital nerves to also cause anaesthesia of the navicular bursa, the navicular bone, the toe region of the sole, the digital portion of the deep digital flexor tendon (DDFT) and the distal portions of the collateral ligaments of the DIP joint. When a large volume of mepivacaine HCl (e.g. 10 ml) is administered, the heel region of the sole may also be desensitised. Only a small percentage of horses with disease of the collateral ligament(s) of the DIP joint show a significant improvement in lameness after intra‐articular analgesia of the DIP joint, and no horse is likely to improve after intrabursal analgesia of the navicular bursa. A PDNB, however, improves lameness substantially in most horses that are lame because of disease of the collateral ligament(s) of the DIP joint, and all affected horses are likely to become sound after an abaxial sesamoid nerve block. The degree of improvement in lameness associated with injury to one or both collateral ligaments of the DIP joint after PDNB is determined by the extent of the injury and the level at which the palmar digital nerves are anaesthetised. The further proximal the level of the injury within the collateral ligament, the less likely that lameness is ameliorated by analgesia of the DIP joint or a PDNB. Verschooten's technique appears to be the most accurate technique for centesis of the navicular bursa. Even though analgesia of the DIP joint results in analgesia of the navicular bursa, analgesia of the navicular bursa does not result in analgesia of the DIP joint. Pain arising from the DIP joint can probably be excluded as a cause of lameness when lameness is attenuated by analgesia of the navicular bursa. Analgesia of the digital flexor tendon sheath (DFTS) is likely to desensitise only structures that are contained within or border on the sheath itself (i.e. the superficial and deep digital flexor tendons, the straight and oblique distal sesamoidean ligaments, the annular ligaments of the fetlock and pastern, and the portion of the DDFT that lies within the foot). Because lameness caused by disease of the DDFT within the foot may fail to improve appreciably after analgesia of the palmar digital nerves, the DIP joint, or the navicular bursa, a portion of the DDFT within the foot and distal to the DFTS probably receives its sensory supply from more proximal deep branches of the medial and lateral palmar digital nerves that enter the DFTS. Performing intrathecal analgesia of the DFTS on horses with lameness that is unchanged after anaesthesia of the palmar digital nerves but resolves after an ASNB, may be useful in localising lameness to that portion of the DDFT that lies within the foot. Resolution of lameness after intrathecal analgesia of the DFTS justifies suspicion of a lesion within the digital portion of the DDFT or within structures contained within the DFTS. The belief that concurrent or sequential intra‐articular administration of medication substantially increases the risk of joint infection or that inflammation caused by the local anaesthetic solution may dampen the therapeutic response to intra‐articular medication appears to be unfounded.  相似文献   

8.
OBJECTIVE: To assess the use of magnetic resonance (MR) imaging for identifying subchondral bone damage in the distal limbs of horses. DESIGN: Retrospective study. ANIMALS: 11 horses. PROCEDURE: Medical records of horses with lameness and subsequent evidence of subchondral bone damage as determined by MR imaging were reviewed. Severity and duration of lameness, results of diagnostic local anesthesia and diagnostic testing, surgical and necropsy findings, and treatment were recorded. Outcome was determined by follow-up information obtained from the owner or referring veterinarian. RESULTS: Lameness was localized by physical examination and diagnostic local anesthesia. Lameness was localized to the metacarpophalangeal or metatarsophalangeal joint in 4 horses, distal interphalangeal joint in 5 horses, and tarsocrural joint in 2 horses. The duration of lameness ranged from 2 weeks to 20 months. Magnetic resonance imaging of the affected joints revealed abnormal fluid accumulation within the subchondral bone. None of the abnormalities observed by MR imaging were detected by radiography. Subchondral bone damage was diagnosed in all horses. Arthroscopy of the affected joint was performed in 4 horses. Communication with the articular surface of the affected bone was suspected on the basis of results of MR imaging in 4 horses and was confirmed by arthroscopy in 1 horse and by necropsy in 1 horse. CONCLUSIONS AND CLINICAL RELEVANCE: Magnetic resonance imaging was useful for providing a diagnosis when other imaging techniques did not definitively identify the cause of lameness. Subchondral bone damage was clearly identified by MR imaging and should be considered as a cause of lameness in horses in which radiographic findings are unremarkable.  相似文献   

9.
Navicular syndrome is a multifactorial disease process in horses with multiple structures in the foot contributing to lameness. Surgical debridement is a treatment option for lesions of the navicular bursa and deep digital flexor tendon. This retrospective case series describes the magnetic resonance imaging (MRI) appearance of the navicular bursa following bursoscopy. Seven horses (three being bilaterally affected) with forelimb lameness isolated to the foot, and pre- and post-operative MRI were included. All limbs had concurrent lesions associated with the deep digital flexor tendon, navicular bone, impar ligament, collateral sesamoidean ligament and/or distal interphalangeal joint. All bursae developed or had progression of proliferative bursal tissue following surgery. At recheck MRI, following rehabilitation protocols, almost all horses had improved to resolved lameness with relatively unchanged concurrent lesions despite the navicular bursa appearance worsening. Outcomes for return to work were poor with only two horses going back to the previous level of work.  相似文献   

10.
A cadaver limb from an eight-year-old horse with right forelimb lameness that was relieved with an intra-articular distal interphalangeal joint block was imaged with radiographs, spiral computed tomography (CT) and magnetic resonance imaging (MRI). Spiral CT demonstrated several lucencies within the deep digital flexor tendon immediately proximal to the navicular bone. On MRI these areas had increased signal and there was enlargement of the tendon at this site. Effusion in the proximal interphalangeal joint and navicular bursa and thinning of the fibrocartilage of the navicular bone were also observed on MRI images. These changes were not detected on radiographs. Histopathology confirmed that there were focal areas of collagen necrosis within the deep digital flexor tendon with thinning and degenerative changes in the fibrocartilage of the navicular bone.  相似文献   

11.
REASONS FOR PERFORMING STUDY: Causes of palmar foot pain and the aetiopathogenesis of navicular disease remain poorly understood, despite the high incidence of foot-related lameness. HYPOTHESES: Abnormalities of the collateral sesamoidean ligaments (CSLs), distal sesamoidean impar ligament (DSIL), deep digital flexor tendon (DDFT), navicular bone, navicular bursa, distal interphalangeal (DIP) joint or collateral ligaments (CLs) of the DIP joint may contribute to palmar foot pain. METHODS: Feet were selected from horses with a history of unilateral or bilateral forelimb lameness of at least 2 months' duration that was improved by perineural analgesia of the palmar digital nerves, immediately proximal to the cartilages of the foot (Group 1, n = 32); or from age-matched control horses (Group 2, n = 19) that were humanely destroyed for other reasons and had no history of forelimb foot pain. Eight units of tissue were collected for histology: the palmar half of the articular surface of the distal phalanx, including the insertions of the DDFT and DSIL; navicular bone and insertion of the CSLs; DDFT from the level of the proximal interphalangeal (PIP) joint to 5 mm proximal to its insertion; synovial membrane from the palmar pouch of the DIP joint and the navicular bursa; CLs of the DIP joint and DSIL. The severity of histological lesions for each site were graded. Results were compared between Groups 1 and 2. RESULTS: There was no relationship between age and grade of histological abnormality. There were significant histological differences between groups for lesions of the flexor aspect, proximal and distal borders, and medulla of the navicular bone; the DSIL and its insertion and the navicular bursa; but not for lesions of the CSLs, the dorsal aspect of the navicular bone, distal phalanx and articular cartilage, synovium or CLs of the DIP joint. CONCLUSIONS: Pathological abnormalities in lame horses often involved not only the navicular bone, but also the DSIL and navicular bursa. Abnormalities of the navicular bone medulla were generally only seen dorsal to lesions of the FFC. POTENTIAL RELEVANCE: Adaptive and reactive change may be occurring in the navicular apparatus in all horses to variable degrees and determination of the pathogenesis of lesions that lead to pain and biomechanical dysfunction should assist specific preventative or treatment protocols.  相似文献   

12.
The medical records of 38 horses with puncture wounds of the navicular bursa were reviewed. Only 12 horses had a satisfactory outcome (breeding or riding). Of the remaining 26 horses, 19 were euthanized, five were sold due to persistent severe lameness, one died, and one was lost to long-term follow-up. Different combinations of conservative management prior to surgical debridement and drainage of the navicular bursa were unsuccessful in resolving the condition. Horses that were treated surgically within 1 week of the injury and had a hind leg affected had the best chance of a satisfactory outcome. Additional wound debridement was necessary in 15 horses after initial surgical treatment. The most common complications encountered were navicular bone osteomyelitis and sepsis of the deep digital flexor tendon. Thirteen of 14 horses that had rupture of the deep digital flexor tendon and subluxation of the distal interphalangeal joint had an unsatisfactory outcome. One mare subsequently developed ankylosis of the distal interphalangeal joint and was a useful brood mare. Two horses that had biaxial palmar digital neurectomy because of persistent lameness were later euthanized because of navicular bone fracture and rupture of the deep digital flexor tendon. Results from limited numbers of bacterial cultures and antibiotic sensitivities suggest that penicillin and an aminoglycoside antibiotic should be used as initial antibiotic therapy. Immediate surgical debridement and appropriate antibiotic treatment are recommended as the minimum therapy for penetrating wounds of the navicular bursa in horses.  相似文献   

13.
We hypothesised that analgesia of the navicular bursa is not selective for the navicular apparatus; and that solar pain in some horses can be temporarily abolished or attenuated by analgesia of the navicular bursa. To test this hypothesis, we caused lameness in horses by inducing pain in the dorsal margin or the angles of the sole and then evaluated the ability of a local analgesic solution administered into the navicular bursa to attenuate lameness. The response of horses with solar pain in the dorsal or palmar aspect of the foot to 3.5 ml local analgesic solution administered into the navicular bursa was examined. Lameness was induced in 6 horses by creating solar pain in the dorsal aspect of one forefoot and, at another time, the palmar aspect of the other forefoot, with set-screws inserted into a custom-made shoe. Horses were videotaped trotting before and after application of set-screws and after administering 3.5 ml local analgesic solution into the navicular bursa. Lameness scores were assigned by examining videotaped gaits. Scores were significantly lower (P<0.05) for all horses with set-screws applied to the dorsal margin of the sole after administration of local analgesic solution into the navicular bursa. In conclusion, analgesia of the navicular bursa was less effective in desensitising the angles of the sole than in desensitising the dorsal margin of the sole. Pain arising from the sole should not be excluded as a cause of lameness when lameness is attenuated by analgesia of the navicular bursa.  相似文献   

14.
Diffusion of drugs injected into the distal interphalangeal joint or the navicular (podotrochlear) bursa can influence diagnosis and treatment of foot pain. Previous anatomical and radiographic studies of the communication between these synovial structures have produced conflicting results and did not identify the location of any communication if present. This anatomic study aimed to assess the presence and site of communication between the distal interphalangeal joint and the navicular bursa in the horse by computed tomography arthrography. Sixty‐six pairs of cadaver forelimbs were injected with contrast medium into the distal interphalangeal joint and imaged by computed tomography arthrography. The presence of a communication, location of the communication and additional structural changes were assessed. Navicular bursa opacification occurred in 7 distal limbs (5.3%) following distal interphalangeal joint injection. One limb showed a communication through the T‐ligament and 6 limbs showed a communication through the distal sesamoidean impar ligament. In 3 cases, the communication through the distal sesamoidean impar ligament was associated with a distal border fragment. Our study showed that communication between the distal interphalangeal joint and navicular bursa is uncommon and inconsistent. Clinically, the presence of a communication could (1) influence the interpretation of diagnostic analgesia of the distal interphalangeal joint or the navicular bursa by facilitating the diffusion of local anaesthetic between these structures; (2) allow the drug and its potential adverse effects to spread from the treated synovial cavity to the non‐targeted synovial cavity; (3) be responsible for the failure of joint drainage in the case of sepsis.  相似文献   

15.
REASONS FOR PERFORMING STUDY: The differential diagnosis of foot pain has long proved difficult and the use of magnetic resonance imaging (MRI) offers the opportunity to further the clinical understanding of the subject. OBJECTIVES: To determine the incidence of deep digital flexor tendon (DDFT) injuries in a series of 75 horses with lameness associated with pain localised to the digit, with no significant detectable radiographic or ultrasonographic abnormalities, using MRI; and to describe a variety of lesion types and relate DDF tendonitis with anamnesis, clinical features, response to local analgesic techniques and nuclear scintigraphic and ultrasonographic findings. METHODS: All horses undergoing MRI of the front feet between January 2001 and October 2002 were reviewed and those with DDFT injuries categorised according to lesion type; horses with primary tendonitis (Group I) and those with concurrent abnormalities of the navicular bone considered to be an important component of the lameness (Group II). The response to perineural analgesia of the palmar digital nerves and palmar (abaxial sesamoid) nerves, intra-articular analgesia of the distal interphalangeal (DIP) joint and analgesia of the navicular bursa were reviewed. The result of ultrasonography of the pastern and foot was recorded. Lateral, dorsal and solar pool and bone phase nuclear scintigraphic images were assessed subjectively and objectively using region of interest (ROI) analysis. RESULTS: Forty-six (61%) of 75 horses examined using MRI had lesions of the DDFT considered to be a major contributor to lameness. Thirty-two horses (43%) had primary DDFT injuries and 14 (19%) a combination of DDF tendonitis and navicular bone pathology. Lesions involved the insertional region of the tendon alone (n = 3), were proximal to the navicular bone (n = 23) or were at a combination of sites (n = 20). Lesion types included core lesions, focal and diffuse dorsal border lesions, sagittal plane splits, insertional injuries and lesions combined with other soft tissue injuries. Many horses had a combination of lesion types. Lameness was abolished by palmar digital analgesia in only 11 of 46 horses (24%). Twenty-one of 31 horses (68%) in Group I showed > 50% improvement in lameness after intra-articular analgesia of the DIP joint, whereas 11 of 12 horses (92%) in Group II had a positive response. Twelve of 18 horses (67%) in Group I had a positive response to analgesia of the navicular bursa. Nineteen horses had lesions of the DDFT extending proximal to the proximal interphalangeal joint seen using MRI, but these were identified ultrasonographically in only 2 horses. Scintigraphic abnormalities suggestive of DDFT injury were seen in 16 of 41 horses (41%), 8 in pool phase images and 8 in bone phase images. CONCLUSIONS AND POTENTIAL RELEVANCE: DDFT injuries are an important cause of lameness associated with pain arising from the digit in horses without detectable radiographic abnormalities. Lameness is not reliably improved by palmar digital analgesia, but may be improved by intra-articular analgesia of the DIP joint in at least 68% of horses. Ultrasonography is not sensitive in detecting lesions of the DDFT in the distal pastern region, but a combination of pool and bone phase scintigraphic images of the digit is helpful in some horses. Further follow-up information is required to determine the prognosis for horses with lesions of the DDFT in the digit and to establish whether this is related to lesion severity and/or location.  相似文献   

16.
It has been hypothesized that pain originating from the dorsal margin of the sole of the hoof in horses can be attenuated by analgesia of either the distal interphalangeal (DIP) joint, or of the navicular bursa (NB). To test this hypothesis, an experimental lameness was induced in the toe region of the left forelimb in six adult horses. After this, both synovial structures were blocked and the effects on the lameness were semi-quantitatively scored. Lameness was induced by creating pressure on the dorsal margin of the sole with the help of set-screws that were screwed into a nut, welded to the inside of each branch of the shoe. Gaits were recorded on a videotape before and after application of the screws, and after application of either a local anaesthetic or saline into the DIP joint or NB. The gaits were independently evaluated by two blinded clinicians and scored. Lameness scores were high after application of the screws and remained high after the administration of saline, but decreased significantly (P < 0.05) after administration of the local anaesthetic. Analgesia of the DIP joint as well as the NB appeared to be able to desensitize a portion of the sole. It was concluded that pain arising from the toe region of the sole should not be excluded as a cause of lameness when lameness is attenuated by analgesia of the DIP joint, or of the NB.  相似文献   

17.
OBJECTIVE: To determine if pain of the dorsal margin of the sole in horses can be attenuated by anesthesia of either the distal interphalangeal (DIP) joint or the palmar digital (PD) nerves. STUDY DESIGN: A unilateral forelimb lameness was induced by creating solar pain. Response to administration of local anesthetic or saline solution into the DIP joint and to administration of local anesthetic around the PD nerves was evaluated. Animals: Six horses. METHODS: Lameness was induced by creating pressure on the dorsal margin of the sole by screwing set-screws into a nut welded to the inside of each branch of a shoe. Gaits were evaluated before and after application of set-screws and after a local anesthetic or saline solution was administered into the DIP joint and, in a second trial, after a local anesthetic was injected around the PD nerves. Gaits recorded on videotape were evaluated, and lameness scores were assigned to each gait. RESULTS: Lameness scores were high after application of set-screws and remained high after saline solution was administered into the DIP joint. Scores decreased significantly (P < or = .05) after a local anesthetic was administered into the DIP joint or around the PD nerves. CONCLUSIONS: Analgesia of the DIP joint or the PD nerves desensitizes at least a portion of the sole. CLINICAL RELEVANCE: Pain arising from the sole should not be excluded as a cause of lameness when lameness is attenuated by analgesia of the DIP joint or PD nerves.  相似文献   

18.
REASON FOR PERFORMING STUDY: Specific analgesic techniques are required in diagnosis of lameness to isolate the exact origin of pain to the many structures of the foot that may be involved. OBJECTIVE: To determine if analgesia of the digital flexor tendon sheath (DFTS) results in anaesthesia of other portions of the foot, such as the sole, distal interphalangeal joint (DIPJ), or navicular bursa (NB). METHODS: Lameness caused by pain in the dorsal margin or heel region of the sole of the foot was induced in 18 horses by: using set-screws to create solar pressure (Trial 1: n = 5); or administering endotoxin intrasynovially into the DIPJ (Trial 2: n = 6) and NB (Trial 3: n = 7). The gait of each horse was evaluated by examining videotape recorded before and after creation of lameness and after administration of mepivacaine hydrochloride into the DFTS. RESULTS: Median lameness scores in Trial 1 at 10 min post injection of the DFTS were not significantly different from those before administration of local anaesthetic solution into the DFTS (P> or =0.05), but median lameness scores were reduced significantly at 20 min (P< or =0.05). In Trials 2 and 3, median lameness scores were not significantly different at observations made at 10 and 20 min post injection of the DFTS. CONCLUSIONS: Analgesia of the DFTS has little effect on lameness caused by pain originating in the sole, DIPJ or NB. POTENTIAL RELEVANCE: Improvement of lameness in horses after intrasynovial analgesia of the DFTS is probably caused by attenuation of pain within the structures contained in the DFTS.  相似文献   

19.
REASONS FOR PERFORMING STUDY: There have been no previously published case series of horses examined using either scintigraphy or MRI to diagnose collateral ligament injuries not detectable using ultrasonography or radiography, nor have other concurrent soft tissue lesions been described. OBJECTIVES: To describe the clinical features of horses with desmitis of the collateral ligaments of the distal interphalangeal (DIP) joint and to evaluate the results of radiographic, ultrasonographic, scintigraphic and magnetic resonance imaging (MRI) examinations. METHODS: Horses were examined between January 2001 and January 2003 and were selected for inclusion in the study if there was unequivocal evidence of collateral desmitis of the DIP joint based on ultrasonography or MRI. Subject details, case history, results of clinical examination and responses to local analgesic techniques were reviewed. The results of radiographic, ultrasonographic, scintigraphic and MRI examinations were assessed. RESULTS: Eighteen horses were identified with desmitis of a collateral ligament of the DIP joint, 3 horses (Group 1) based on ultrasonography alone, 7 (Group II) with positive ultrasonographic and magnetic resonance images and 8 (Group III) with no lesion detectable using ultrasonography, but lesions identified using MRI. Seventeen horses had forelimb injuries and one a hindlimb injury. The medial collateral ligament was injured most frequently (13 horses). In the majority of horses, no localising clinical signs were seen. Lameness was invariably worse in circles compared with straight lines. Lameness was improved by palmar digital analgesia in 16 horses (87%), but only 6 were nonlame. Intra-articular analgesia of the DIP joint produced improvement in lameness in 6/15 horses (40%). In 16 horses, no radiographic abnormality related to the DIP joint or collateral ligament attachments was identified. Eight of 14 horses (57%) had focal, moderately or intensely increased radiopharmaceutical uptake (IRU) at the site of insertion of the injured collateral ligament on the distal phalanx. Alteration in size and signal in the injured collateral ligament was identified using MRI. In addition, 5 horses had abnormal mineralisation and fluid in the distal phalanx at the insertion of the ligament. Eleven horses had concurrent soft tissue injuries involving the deep digital flexor tendon, distal sesamoidean impar ligament, navicular bursa or collateral ligament of the navicular bone. CONCLUSIONS AND POTENTIAL RELEVANCE: Collateral desmitis of the DIP joint should be considered as a cause of foot lameness. Although some injuries are detectable ultrasonographically, false negative results occur. Focal IRU at the ligament insertion on the distal phalanx may be indicative of injury in some horses. MRI is useful for both characterisation of the injury and identification of any concurrent injuries. Further follow-up information is required to determine factors influencing prognosis.  相似文献   

20.
A prospective study of the diagnostic results on 25 previously untreated, slightly lame Standardbred horses showed that manipulative tests are of some help in diagnosis. The lameness of each horse was diminished or the horse went lame on the opposite limb after being given an injection of anesthetic in the cunean bursa, and lameness improved more when local anesthetic was injected in the distal intertarsal and tarsometatarsal articulations. In four horses, lesions of the distal articulation of the hock were evident on radiography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号