共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of natural phenolic compounds on the antioxidant activity of lactoferrin in liposomes and oil-in-water emulsions 总被引:2,自引:0,他引:2
Medina I Tombo I Satué-Gracia MT German JB Frankel EN 《Journal of agricultural and food chemistry》2002,50(8):2392-2399
The effect of natural phenolic compounds on the antioxidant and prooxidant activity of lactoferrin was studied in liposomes and oil-in-water emulsions containing iron. The antioxidants tested with lactoferrin were alpha-tocopherol, ferulic acid, coumaric acid, tyrosol, and natural phenolic extracts obtained from three different extra-virgin olive oils and olive mill wastewater. The natural extracts of olive oils and mill wastewaters were composed mainly of polyphenols and simple phenolics, respectively. Lipid oxidation at 30 degrees C was determined by the formation of hydroperoxides and fluorescent compounds resulting from oxidized lipid interactions. All phenolic compounds showed synergistic properties in reinforcing the antioxidant activity of lactoferrin in lipid systems containing iron. The highest synergistic effects were observed for the phenolic extracts rich in polyphenols of extra-virgin olive oils and lactoferrin. This synergistic effect was higher in liposomes than in emulsions. 相似文献
2.
Branco GF Rodrigues MI Gioielli LA Castro IA 《Journal of agricultural and food chemistry》2011,59(22):12183-12192
The objective of this study was to demonstrate how different factors can simultaneously influence the oxidative stability of an oil-in-water emulsion, and how these factors can be used to enlarge the variation range of oxidation markers, expressed as peroxide value (PV) and TBARS. Initially, a Plackett-Burman design was used to screen seven factors (temperature, pH, and iron, copper, ascorbyl palmitate, ascorbic acid, and sodium chloride concentrations). A temperature elevation of 30 to 60 °C reduced PV and TBARS, a pH change from 3.0 to 7.0 increased PV and reduced TBARS, and the presence of ascorbic acid (1 mmol/L) had no significant effect on PV but increased TBARS (p < 0.05). Thus, the temperature was fixed at 30 °C, and an emulsion was formulated with different combinations of ascorbic acid, iron, and pH according to a central composite rotatable design. Regression models were fitted to PV and TBARs responses and optimized to get the higher values of both markers of oxidation. The optimized emulsion contained 1.70 mmol/L AH (ascorbic acid) and 0.885 mmol/L FeSO(4) · 7H(2)O (1.0 mmol/L Fe(2+)) at pH 5.51 and 30 °C. The range of variation observed for oxidation markers in the optimized emulsion model (PV, 0-4.27 mequiv/L; TBARS, 0-13.55 mmol/L) was larger than the variation observed in the nonoptimized model (PV, 0-1.05 mequiv/L; TBARS, 0-1.00 mmol/L). The antioxidant activity of six compounds (Trolox, α-tocopherol, caffeic acid, gallic acid, catechin, and TBHQ) was evaluated using the optimized emulsion conditions. After application of the Tukey HSD post hoc statistical test, the samples that were not different (p < 0.05) in the nonoptimized emulsions showed a significant difference in the optimized emulsions. Considering the importance of the interactions on oxidation studies, our model represents a significant improvement in a direct methodology that can be applied to evaluate natural compounds under different combination of factors. 相似文献
3.
Estévez M Kylli P Puolanne E Kivikari R Heinonen M 《Journal of agricultural and food chemistry》2008,56(22):10933-10940
The effect of selected phenolic compounds, namely, gallic acid, cyanidin-3-glucoside, (+)-epicatechin, chlorogenic acid, genistein and rutin (50 and 200 microM), and alpha-tocopherol (50 microM) against the oxidation of oil-in-water emulsions (37 degrees C/10 days) containing 1% myofibrillar proteins (MPs), was investigated. Emulsions containing 1% bovine serum albumin (BSA) were also prepared for comparative purposes. Protein oxidation was assessed by measuring the loss of natural tryptophan fluorescence and the protein carbonyl gain by using fluorescence spectroscopy. Lipid oxidation was concurrently analyzed by measuring the increase of conjugated dienes (CDs) and hexanal. Proteins inhibited lipid oxidation in oil-in-water emulsions, and MPs showed a more intense antioxidant activity than BSA. MPs were also more resistant to oxidative deterioration than BSA. The different antioxidant capacity of MPs and BSA and their susceptibility to suffer oxidative reactions might be derived from their different amino acid composition and three-dimensional structures. The addition of the phenolic compounds resulted in a variety of effects, including both antioxidant and pro-oxidant effects. Gallic acid, cyanidin-3-glucoside, and genistein were the most efficient inhibitors of lipid and protein oxidation. The chemical structure of the phenolic compounds as well as the nature and conformation of the proteins were greatly influential on the overall effect against oxidative reactions. 相似文献
4.
Bonoli-Carbognin M Cerretani L Bendini A Almajano MP Gordon MH 《Journal of agricultural and food chemistry》2008,56(16):7076-7081
Virgin olive oil is valued for its flavor, but unacceptable off-flavors may develop on storage in food products containing this oil due to oxidation. The oxidative stability of oil-in-water emulsions containing bovine serum albumin (BSA) and virgin olive oil phenolic compounds was studied. Four oil-in-water emulsions with and without BSA and phenols isolated from virgin olive oil were prepared. These model systems were stored at 60 degrees C to speed up lipid oxidation. Primary and secondary oxidation products were monitored every three days. Peroxide values and conjugated diene contents were determined as measures of the primary oxidation products. p-Anisidine values and volatile compounds were determined as measures of the secondary oxidation products. This latter determination was carried out by headspace solid-phase microextraction coupled with gas chromatography. Although olive oil phenolic compounds and BSA contributed some antioxidant activity when present as individual additives, the combination of BSA with phenols in an emulsion showed 58-127% synergy, depending on which analytical method was used in the calculation. The emulsion containing phenolic compounds and BSA showed a low level of deterioration after 45 days of storage at 60 degrees C. 相似文献
5.
Richards MP Chaiyasit W McClements DJ Decker EA 《Journal of agricultural and food chemistry》2002,50(5):1254-1259
In oil-in-water emulsions, the physical location of antioxidants can be an important determinant in their activity. Surfactants can potentially influence the physical location of antioxidants in oil-in-water emulsions by causing solubilization of lipid-soluble antioxidants into the aqueous phase. Excess Brij micelles in an oil-in-water emulsion were found to increase the partitioning of phenolics into the continuous phase with polar antioxidants (propyl gallate) partitioning more than nonpolar antioxidants (butylated hydroxyltoluene). Solubilization of propyl gallate was rapid coming to equilibrium in less than 5 min. Increasing surfactant micelle concentrations from 0.3 to 2.8% increased the solubilization of propyl gallate by 2.3-fold. Solubilization of phenolic antioxidants into the aqueous phase by Brij micelles did not alter the oxidative stability of salmon oil-in-water emulsions, suggesting that surfactant micelles influenced oxidation rates by mechanisms other than antioxidant solubilization. 相似文献
6.
The effects of surfactant type, pH, and chelators on the oxidation of salmon oil-in-water emulsions. 总被引:7,自引:0,他引:7
J R Mancuso D J McClements E A Decker 《Journal of agricultural and food chemistry》1999,47(10):4112-4116
Lipid oxidation in emulsions is influenced by the ability of transition metals to associate with emulsion droplets. The oxidative stability of 5% salmon oil-in-water emulsion was influenced by surfactant type, with oxidation rates being greatest in emulsions stabilized by anionic sodium dodecyl sulfate (SDS) followed by nonionic Tween 20 and cationic dodecyltrimethylammonium bromide (DTAB). EDTA inhibited lipid oxidation in all the emulsions, and apo-transferrin inhibited oxidation in the Tween 20-stabilized emulsions at pH 7.0, suggesting that continuous-phase iron was an active prooxidant. Iron associated with Tween-20 stabilized hexadecane emulsion droplets could be partitioned into the continuous phase by lowering the pH to =4.0 or by the presence of EDTA, which could help explain why low pH and EDTA decrease lipid oxidation rates. These data suggest that iron is an important lipid oxidation catalyst in salmon oil emulsions, and factors that increase iron-emulsion droplet interactions will increase oxidation rates. 相似文献
7.
The influence of pH and iota-carrageenan concentration on the properties of beta-lactoglobulin (beta-Lg)-stabilized oil-in-water emulsions was investigated by measuring the particle charge, particle size distribution, and creaming stability. Emulsions containing droplets stabilized by beta-Lg were produced by homogenization, and then, iota-carrageenan was added. At pH 3, the droplet charge did not change for iota-carrageenan concentrations 相似文献
8.
The interactions of proteins during the heat treatment of whey-protein-isolate (WPI)-based oil-in-water emulsions with and without added hydroxylated lecithin were studied by examining the changes in droplet size distribution and the quantity and type of adsorbed and unadsorbed proteins. Heat treatment at 90 degrees C of WPI emulsions resulted in an increase in total adsorbed protein; unadsorbed beta-lactoglobulin (beta-lg) was the main protein interacting with the adsorbed proteins during the first 10 min of heating, but after this time, unadsorbed alpha-lactalbumin (alpha-la) also associated with the adsorbed protein. In emulsions containing hydroxylated lecithin, the increase in total adsorbed protein during heat treatment was much lower and the unadsorbed beta-lg did not appear to interact with the adsorbed proteins during heating. However, the behavior of alpha-la during heat treatment of these emulsions was similar to that observed in the emulsions containing no hydroxylated lecithin. In the presence of NaCl, the particle size of the emulsion droplets and the quantities of adsorbed protein increased markedly during heating. Emulsions containing hydroxylated lecithin were less sensitive to the addition of NaCl. These results suggest that the binding of hydroxylated lecithin to unfolded monomers or intermediate products of beta-lg reduces the extent of heat-induced aggregation of beta-lg and consequently decreases the interactions between unadsorbed beta-lg and adsorbed protein. This was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of heated whey protein and hydroxylated lecithin solutions. 相似文献
9.
The influence of compositional and structural properties of oil-in-water emulsions on aroma release was examined under mouth conditions. The lipid (0.40 and 0.65) and emulsifier fractions (0.007, 0.010, and 0.014) were varied, as well as the mean particle diameter of the dispersed phase (0.60, 0.73, 0.85, and 1.10 microm). Aroma compounds were isolated in a model mouth system and quantified by gas chromatography-mass spectrometry. Studies were carried out to separate effects on the thermodynamic and the kinetic components of aroma release using equilibrium headspace analysis to distinguish the thermodynamic component. The lipid phase of the emulsions was composed of sunflower oil and the emulsifier phase was Tween 20. The release of 20 aroma compounds was evaluated; the compounds included alcohols (1-propanol, 1-butanol, 3-methyl-1-butanol, 2-pentanol, 1-hexanol, and 2-nonanol), ketones (diacetyl, 2-butanone, 2-heptanone, 2-octanone, and 2-decanone), esters (ethyl acetate, propyl acetate, butyl acetate, and ethyl butyrate), aldehydes (hexanal, heptanal, and octanal), a terpene (alpha-pinene), and a sulfur compound (dimethyl sulfide). Decrease in lipid fraction and emulsifier fraction, as well as increase in particle diameter, increased aroma release under mouth conditions. Differences between groups of compounds and between compounds of homologous series with varying chain lengths were found. Changes in particle diameter had a considerable effect on the thermodynamic component of aroma release, whereas hardly any influence of the lipid fraction and emulsifier fraction was observed. Lipid fraction, emulsifier fraction, and particle diameter affected the kinetic component of aroma release, which could partially be attributed to changes in viscosity. 相似文献
10.
Antioxidant activity of cysteine, tryptophan, and methionine residues in continuous phase beta-lactoglobulin in oil-in-water emulsions 总被引:1,自引:0,他引:1
Elias RJ McClements DJ Decker EA 《Journal of agricultural and food chemistry》2005,53(26):10248-10253
Proteins dispersed in the continuous phase of oil-in-water emulsions are capable of inhibiting lipid oxidation reactions. The antioxidant activity of these proteins is thought to encompass both free radical scavenging by amino acid residues and chelation of prooxidative transition metals; however, the precise mechanism by which this occurs remains unclear. In this study, the oxidative stability of cysteine, tryptophan, and methionine residues in continuous phase beta-lactoglobulin (beta-Lg) in a Brij-stabilized menhaden oil-in-water emulsion was determined. The presence of low concentrations of continuous phase beta-Lg (250 and 750 microg/mL) significantly inhibited lipid oxidation as determined by lipid hydroperoxides and thiobarbituric acid reactive substances analysis. It was observed that cysteine oxidized before tryptophan in beta-Lg, and both residues oxidized before lipid oxidation could be detected. No oxidation of the methionine residues of beta-Lg was observed despite its reported high oxidative susceptibility. It is conceivable that surface exposure of amino acid residues greatly affects their oxidation kinetics, which may explain why some residues are preferentially oxidized relative to others. Further elucidation of the mechanisms governing free radical scavenging of amino acids could lead to more effective applications of proteins as antioxidants within oil-in-water food emulsions. 相似文献
11.
The nonenzymatic oxidation of polyphenols bearing di- and trihydroxyphenol groups results in the generation of hydrogen peroxide (H?O?), a reactive oxygen species that can potentially compromise the oxidative stability of foods and beverages. An investigation of the factors that promote the oxidation of a model polyphenol, (-)-epigallocatechin-3-gallate (EGCG), was undertaken in a model lipid-based food system. Factors affecting oxidative stability, such as exogenous iron chelators (ethylenediaminetetraacetic acid; EDTA and 2,2-bipyridine; BPY) and pH (3 and 7) were evaluated in hexadecane and flaxseed oil-in-water (o/w) emulsions. At neutral pH, H?O? levels were observed to rise rapidly in hexadecane emulsions except for EDTA-containing treatments. However, EDTA-containing samples showed the highest rate of EGCG oxidation, suggesting that H?O? was rapidly reduced to hydroxyl radicals (HO?). Conversely, at pH 3, H?O? concentrations were lower across all treatments. EDTA conferred the highest degree of EGCG stability, with no loss of the catechin over the course of the study. In order to assess whether or not the H?O? production seen in oxidatively stable hexadecane emulsions translated to pro-oxidant activity in an oxidatively labile food lipid system, the effect of EGCG on the stability of flaxseed o/w emulsions was studied. EGCG displayed antioxidant activity at pH 7 throughout the study; however at pH 3, pro-oxidant activity was seen in EGCG-containing emulsions, with and without BPY. This study attempts to provide a mechanistic understanding of the conditions wherein polyphenols simultaneously exert pro-oxidant and antioxidant behavior in lipid dispersions. 相似文献
12.
Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm 总被引:2,自引:0,他引:2
Kim MJ Hyun JN Kim JA Park JC Kim MY Kim JG Lee SJ Chun SC Chung IM 《Journal of agricultural and food chemistry》2007,55(12):4802-4809
Barley and its products are good sources of antioxidants. This experiment was conducted to examine the classification and concentration of phenolic compounds, proanthocyanidins, and anthocyanins in 127 lines of colored barley. Their relationship with 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity was also examined. Barley was placed into seven groups using the colorimeter: hulled (black 1, black 2, black 3, and purple) and unhulled (black, blue, and purple). The contents of phenolic compounds and anthocyanins were analyzed by using HPLC. The average content of phenolic compounds in unhulled barley groups (268.6 microg/g) was higher than that in hulled (207.0 microg/g) (P > 0.05). The proanthocyanidins content was determined by modified vanillin assay. The average content of proanthocyanidins was significantly higher in purple and blue barley groups compared with black (P < 0.05). The content of anthocyanins varied from 13.0 to 1037.8 microg/g. Purple and blue barley groups contained higher average contents of anthocyanins than black (P < 0.05). The most common anthocyanin in the purple barley groups was cyanidin 3-glucoside, whereas delphinidin 3-glucoside was the most abundant anthocyanin in the blue and black groups. In colored barley, DPPH radical scavenging activity had high positive correlation to the content of phenolic compounds and proanthocyanidins. 相似文献
13.
Lipid oxidation in corn oil-in-water emulsions stabilized by casein,whey protein isolate,and soy protein isolate 总被引:4,自引:0,他引:4
Proteins can be used to produce cationic oil-in-water emulsion droplets at pH 3.0 that have high oxidative stability. This research investigated differences in the physical properties and oxidative stability of corn oil-in-water emulsions stabilized by casein, whey protein isolate (WPI), or soy protein isolate (SPI) at pH 3.0. Emulsions were prepared with 5% corn oil and 0.2-1.5% protein. Physically stable, monomodal emulsions were prepared with 1.5% casein, 1.0 or 1.5% SPI, and > or =0.5% WPI. The oxidative stability of the different protein-stabilized emulsions was in the order of casein > WPI > SPI as determined by monitoring both lipid hydroperoxide and headspace hexanal formation. The degree of positive charge on the protein-stabilized emulsion droplets was not the only factor involved in the inhibition of lipid oxidation because the charge of the emulsion droplets (WPI > casein > or = SPI) did not parallel oxidative stability. Other potential reasons for differences in oxidative stability of the protein-stabilized emulsions include differences in interfacial film thickness, protein chelating properties, and differences in free radical scavenging amino acids. This research shows that differences can be seen in the oxidative stability of protein-stabilized emulsions; however, further research is needed to determine the mechanisms for these differences. 相似文献
14.
Jimenez-Alvarez D Giuffrida F Golay PA Cotting C Lardeau A Keely BJ 《Journal of agricultural and food chemistry》2008,56(16):7151-7159
The antioxidant activity of oregano, parsley, olive mill wastewaters (OMWW), Trolox, and ethylenediaminetetraacetic acid (EDTA) was evaluated in bulk oils and oil-in-water (o/w) emulsions enriched with 5% tuna oil by monitoring the formation of hydroperoxides, hexanal, and t-t-2,4-heptadienal in samples stored at 37 degrees C for 14 days. In bulk oil, the order of antioxidant activity was, in decreasing order (p < 0.05), OMWW > oregano > parsley > EDTA > Trolox. The antioxidant activity in o/w emulsion followed the same order except that EDTA was as efficient an antioxidant as OMWW. In addition, the total phenolic content, the radical scavenging properties, the reducing capacity, and the iron chelating activity of OMWW, parsley, and oregano extracts were determined by the Folin-Ciocalteau, oxygen radical absorbance capacity, ferric reducing antioxidant power, and iron(II) chelating activity assays, respectively. The antioxidant activity of OMWW, parsley, and oregano in food systems was related to their total phenolic content and radical scavenging capacity but not to their ability to chelate iron in vitro. OMWW was identified as a promising source of antioxidants to retard lipid oxidation in fish oil-enriched food products. 相似文献
15.
Silvestre MP Chaiyasit W Brannan RG McClements DJ Decker EA 《Journal of agricultural and food chemistry》2000,48(6):2057-2061
Oxidation of oil-in-water emulsion droplets is influenced by the properties of the interfacial membrane surrounding the lipid core. To evaluate how surfactant headgroup size influences lipid oxidation rates, emulsions were prepared with polyoxyethylene 10 stearyl ether (Brij 76) or polyoxyethylene 100 stearyl ether (Brij 700), which are structurally identical except for their hydrophilic headgroups, with Brij 700 containing 10 times more polyoxyethylene groups than Brij 76. Fe(2+)-promoted decomposition of cumene hydroperoxide was lower in Brij 700-stabilized than in Brij 76-stabilized hexadecane emulsions. Fe(2+)-promoted alpha-tocopherol oxidation rates were similar in hexadecane emulsion regardless of surfactant type. Brij 700 decreased production of hexanal from methyl linoleate and the formation of lipid peroxides and propanal from salmon oil compared to emulsions stabilized by Brij 76. These results indicate that emulsion droplet interfacial thickness could be an important determinant in the oxidative stability of food emulsions. 相似文献
16.
Chaiyasit W McClements DJ Decker EA 《Journal of agricultural and food chemistry》2005,53(12):4982-4988
Chain-breaking antioxidants differ in their effectiveness at inhibiting lipid oxidation because of their chemical properties and physical location within a food. Our objective was how the physicochemical properties of four structurally related lipid-soluble antioxidants were related to their antioxidant activity. Antioxidants differed in the number of methyl (alpha-tocopherol and delta-tocopherol) or hydroxyl (butylated hydroxytoluene (BHT) and 4-hydroxymethyl-2,6-ditertiarybutylphenol) groups. Surface activity of the antioxidants was in the order of delta-tocopherol > alpha-tocopherol approximately 4-hydroxymethyl-2,6-ditertiarybutylphenol > BHT. Free-radical scavenging activity was similar between alpha-tocopherol and delta-tocopherol as well as BHT and 4-hydroxymethyl-2,6-ditertiarybutylphenol. In bulk menhaden oil, BHT was a more effective antioxidant than 4-hydroxymethyl-2,6-ditertiarybutylphenol while alpha-tocopherol was more effective than delta-tocopherol. In menhaden oil-in-water emulsions, BHT was a more effective antioxidant than 4-hydroxymethyl-2,6-ditertiarybutylphenol while delta-tocopherol was more effective than alpha-tocopherol. These results indicate that the surface activity and polarity of lipid-soluble antioxidants were not the only determinants of their antioxidant effectiveness in food lipids. 相似文献
17.
pH与石灰性水稻土铁氧化还原过程的关系 总被引:2,自引:1,他引:2
光照和pH是调控土壤铁氧化物厌氧生物氧化还原的关键环境因素。本文采用恒温厌氧培养试验研究了黑暗、光照条件下土壤pH的变化及pH对铁氧化还原的影响,探索了pH与Fe(II)和水溶性无机碳的关系。结果表明,光照可改变土壤厌氧培养过程中pH的变化趋势,避光培养时土壤pH呈降低趋势,光照时呈先降低后增加趋势。pH介于4~9之间均可发生铁的还原反应,pH=7时还原量最大,128.5μmol g-1,pH调至4和9均可抑制避光条件下的铁还原。光照条件下pH 6~8时可发生Fe(II)的再氧化,控制初始pH为7时可使其再氧化量增加77.13%,达49.17μmol g-1。厌氧培养过程中Fe(II)与水溶性无机碳在避光时存在显著线性正相关关系,pH与Fe(II)和水溶性无机碳之间均存在显著线性负相关关系。 相似文献
18.
Tomás-Barberán FA Gil MI Cremin P Waterhouse AL Hess-Pierce B Kader AA 《Journal of agricultural and food chemistry》2001,49(10):4748-4760
The phenolic compounds of 25 peach, nectarine, and plum cultivars were studied and quantified by HPLC-DAD-ESIMS. Hydroxycinnamates, procyanidins, flavonols, and anthocyanins were detected and quantified. White and yellow flesh nectarines and peaches, and yellow and red plums, were analyzed at two different maturity stages with consideration of both peel and flesh tissues. HPLC-MS analyses allowed the identification of procyanidin dimers of the B- and A-types, as well as the presence of procyanidin trimers in plums. As a general rule, the peel tissues contained higher amounts of phenolics, and anthocyanins and flavonols were almost exclusively located in this tissue. No clear differences in the phenolic content of nectarines and peaches were detected or between white flesh and yellow flesh cultivars. There was no clear trend in phenolic content with ripening of the different cultivars. Some cultivars, however, had a very high phenolic content. For example, the white flesh nectarine cultivar Brite Pearl (350-460 mg/kg hydroxycinnamates and 430-550 mg/kg procyanidins in flesh) and the yellow flesh cv. Red Jim (180-190 mg/kg hydroxycinnamates and 210-330 mg/kg procyanidins in flesh), contained 10 times more phenolics than cultivars such as Fire Pearl (38-50 mg/kg hydroxycinnamates and 23-30 mg/kg procyanidins in flesh). Among white flesh peaches, cultivars Snow King (300-320 mg/kg hydroxycinnamates and 660-695 mg/kg procyanidins in flesh) and Snow Giant (125-130 mg/kg hydroxycinnamates and 520-540 mg/kg procyanidins in flesh) showed the highest content. The plum cultivars Black Beaut and Angeleno were especially rich in phenolics. 相似文献
19.
Napolitano A Morales F Sacchi R Fogliano V 《Journal of agricultural and food chemistry》2008,56(6):2034-2040
In this paper the relationship between virgin olive oil (VOO) phenol compounds and the formation of acrylamide in potato crisps was investigated. The phenol compositions of 20 VOO samples were screened by LC-MS, and 4 oils, characterized by different phenol compound patterns, were selected for frying experiments. Slices of potatoes were fried at 180 degrees C for 5, 10, and 15 min, and acrylamide content was determined by LC-MS. Results demonstrated that VOO phenolic compounds are not degraded during frying, and crisp color was not significantly different among the four VOOs. Acrylamide concentration in crisps increased during frying time, but the formation was faster in the oil having the lowest concentration of phenolic compounds. Moreover, the VOO having the highest concentration of ortho-diphenolic compounds is able to efficiently inhibit acrylamide formation in crisps from mild to moderate frying conditions. It was concluded that the use of ortho-diphenolic-rich VOOs can be proposed as a reliable mitigation strategy to reduce acrylamide formation in domestic deep-frying. 相似文献
20.
Djordjevic D Cercaci L Alamed J McClements DJ Decker EA 《Journal of agricultural and food chemistry》2007,55(9):3585-3591
Citral and limonene are the major flavor components of citrus oils. Both of these compounds can undergo chemical degradation leading to loss of flavor and the formation of undesirable off-flavors. Engineering the interface of emulsion droplets with emulsifiers that inhibit chemical reactions could provide a novel technique to stabilize citral and limonene. At present, emulsified flavor oils are usually stabilized by gum arabic (GA), which is a naturally occurring polysaccharide-protein complex. The objective of this study was to examine if citral and limonene were more stable in emulsions stabilized with a sodium dodecyl sulfate (SDS)-chitosan complex than GA. Citral degraded less in GA-stabilized than in SDS-chitosan-stabilized emulsions at pH 3.0. However, SDS-chitosan-stabilized emulsions were more effective at retarding the formation of the citral oxidation product, p-cymene, than GA-stabilized emulsions. Limonene degradation and the formation of limonene oxidation products, limonene oxide and carvone, were lower in the SDS-chitosan- than GA-stabilized emulsions at pH 3.0. The ability of an SDS-chitosan multilayer emulsifier system to inhibit the oxidative deterioration of citral and limonene could be due to the formation of a cationic and thick emulsion droplet interface that could repel prooxidative metals, thus decreasing prooxidant-lipid interactions. 相似文献