首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A water deficit during stage III of fruit growth was established with the aim of determining if it is possible to achieve an improvement in tree water status by summer pruning and fruit thinning. The experiment was set up as a randomized block split-plot design across trials (irrigation) where pruning was assigned to the main plot and fruit thinning to the sub-plots. The irrigation treatments were (1) standard full irrigation (FI), and (2) suppression of irrigation during stage III of fruit growth until leaves visibly withered (LWI); the pruning treatments were (1) experimental summer pruning (EP), and (2) standard summer pruning (CP); and three fruit thinning intensities were applied to facilitate analysis of the effects of the treatments in relation to fruit load. Changes in amount of light intercepted and in tree stem water potential (Psi stem) were evaluated. The EP treatment reduced the amount of light intercepted by the tree. In the FI treatment, there was a significant reduction in fruit growth measured as both water accumulation and dry mass accumulation. Under FI conditions, reductions in fruit load as a result of EP were not accompanied by a significant improvement in Psi stem. In the LWI treatment, EP produced a significant improvement of 0.17 MPa in Psi stem, but there was no improvement in fruit growth compared with CP trees. A reduction in fruit load from 350 (commercial load) to 150 per tree significantly improved Psi stem by 0.3 MPa at the end of stage III of fruit growth. These results indicate that improvements in water status in response to pruning may be insufficient to promote fruit growth if the pruned trees are unable to provide an adequate supply of assimilates to the developing fruits.  相似文献   

2.
We studied the relief of water stress associated with fruit thinning in pear (Pyrus communis L.) trees during drought to determine what mechanisms, other than stomatal adjustment, were involved. Combinations of control irrigation (equal to crop water use less effective rainfall) and deficit irrigation (equal to 20% of control irrigation), fruit load (unthinned and thinned to 40 fruits per tree) and root pruning (pruned and unpruned) treatments were applied to pear (cv. 'Conference') trees during Stage II of fruit development. Daily patterns of midday stem water potential (Psi(stem)) and leaf conductance to water vapor (g(l)) of deficit-irrigated trees differed after fruit thinning. In response to fruit thinning, gl progressively declined with water stress until 30 days after fruit thinning and then leveled off, whereas the effects of decreased fruit load on Psi(stem) peaked 30-40 days after fruit thinning and then tended to decline. Soil water depletion was significantly correlated with fruit load during drought. Our results indicate that stomatal adjustment and the resulting soil water conservation were the factors determining the Psi(stem) response to fruit thinning. However, these factors could not explain differences in daily patterns between g(l) and Psi(stem) after fruit thinning. In all cases, effects of root pruning treatments on Psi(stem) in deficit-irrigated trees were transitory (Psi(stem) recovered from root pruning in less than 30 days), but the recovery of Psi(stem) after root pruning was faster in trees with low fruit loads. This behavior is compatible with the concept that the water balance (reflected by Psi(stem) values) was better in trees with low fruit loads compared with unthinned trees, perhaps because more carbon was available for root growth. Thus, a root growth component is hypothesized as a mechanism to explain the bimodal Psi(stem) response to fruit thinning during drought.  相似文献   

3.
Differences between rootstocks, 'Cleopatra' mandarin and 'Carrizo' citrange, in soil-plant water relations and the influence of these factors on vigor, crop yield, fruit quality and mineral nutrition were evaluated in field-grown Clemenules mandarin trees irrigated at 100% of potential seasonal evaporation (ET(c)) (control treatment), or irrigated at 100% ET(c), except during Phases I and III of fruit growth and post-harvest when no irrigation was applied (deficit irrigation (DI) treatment), for 3 years. Differences between rootstocks in plant-soil water relations were the primary cause of differences among trees in vegetative development and fruit yield. After 3 years of DI treatment, trees on 'Cleopatra' showed more efficient soil water extraction than trees on 'Carrizo', and maintained a higher plant water status, a higher gas exchange rate during periods of water stress and achieved faster recovery in gas exchange following irrigation after water stress. The DI treatment reduced vegetative development more in trees on 'Carrizo' than in trees on 'Cleopatra'. Cumulative fruit yield decreased more in DI trees on 'Carrizo' (40%) than on 'Cleopatra' (27%). The yield component most affected by DI in 'Cleopatra' was the number of fruit, whereas in 'Carrizo' it depended on the severity of water stress reached in each phase (severe water stress in Phase I affected mainly the number of fruit, whereas it affected fruit size the most in Phase III). In the third year of DI treatment, water-use efficiency decreased sharply in trees on 'Carrizo' (70%) compared to trees on 'Cleopatra' (30%). Thus, trees on 'Cleopatra' were able to tolerate moderate water stress, whereas trees on 'Carrizo' were more sensitive to changes in soil water content.  相似文献   

4.
Berman ME  DeJong TM 《Tree physiology》1996,16(10):859-864
Effects of water stress on fruit fresh and dry weights were investigated in peach trees, Prunus persica (L.) Batsch., with varying crop loads: light, moderate and heavy. In well-watered controls, tree water status was independent of crop load. In trees receiving reduced irrigation, the degree of water stress increased with increasing crop load. Water stress induced fruit fresh weight reductions at all crop loads. Fruit dry weight was not reduced by water stress in trees having light to moderate crop loads, indicating that the degree of water stress imposed did not affect the dry weight sink strength of fruit. Water-stressed trees with heavy crop loads had significantly reduced fruit dry weights, which were likely due to carbohydrate source limitations resulting from large crop carbon demands and water stress limitations on photosynthesis.  相似文献   

5.
选用尿素、施易乐、NAA+BA、TMN-6等4种制剂对富士苹果进行了疏花疏果试验,结果表明:以0.5 mg/L TMN-6制剂的处理效果最好,座果率为27.9%;在盛花期喷布TMN-6,不仅能显著提高疏花效果,且使侧花的结果率显著降低,提高了单果率和中心果率(89.22%和100%);同时TMN-6处理对叶、生长点以及果实生长和果实品质均无不利影响。  相似文献   

6.
Naor A  Naschitz S  Peres M  Gal Y 《Tree physiology》2008,28(8):1255-1261
The combined effects of irrigation rate and crop load on apple yield and fruit size were examined in two commercial apple orchards (cv. Golden Delicious) in a semi-arid zone. The irrigation rates applied were 1, 3 and 7 mm day(-1), and the two fruit thinning treatments involved adjusting crop load to 100 and 300 fruits per tree at Ortal and 50 and 150 fruits per tree at Matityahu. Unthinned trees served as the control. The fruit from each tree was picked separately, and fruit size distribution was determined with a commercial grading machine. Midday stem water potentials varied from -0.9 to -2.8 MPa, crop load varied from 80,000 to 1,900,000 fruit ha(-1) and crop yield varied from 10 to 144 Mg ha(-1). Midday stem water potential decreased with increasing crop load in all irrigation treatments at Matityahu, but only in the 1 mm day(-1) treatment at Ortal. The extent of the lowering of midday stem water potential by crop load decreased with increasing soil water availability. At both orchards, a similar response of total crop yield to crop load on a per hectare basis was observed. Mean fruit mass and relative yield of fruit > 70 mm in diameter increased with midday stem water potential, with the low crop loads having similar but steeper slopes than the high crop load. The responses of mean fruit mass and relative yield of fruit > 70 mm in diameter to midday stem water potential were similar at both orchards, perhaps indicating that thresholds for irrigation scheduling are transferable to other orchards within a region. Factors that may limit the transferability of these thresholds are discussed.  相似文献   

7.
Effects of irrigation deprivation during the harvest period on yield determinants in mature almond (Prunus dulcis (Mill.) D.A. Webb cv. Nonpareil) trees were investigated during a 3-year field experiment. Return bloom and fruit set were measured on 2185 individually tagged spurs. Water stress resulting from irrigation deprivation during the harvest period, which purportedly coincides with the time of flower initiation, had no effect on the percentage of spurs that flowered or set fruit during subsequent years. Although water stress had no apparent effect on spur mortality, 66% of the tagged spurs died within 3 years. In addition, many spurs were vegetative by the third year, indicating the importance of spur renewal for sustained fruit production. Reductions in nut yield were evident after two successive years of irrigation deprivation during the harvest period. Regression analysis indicated a loss in yield of 7.7 kg tree(-1) in response to each 1 MPa decrease in stem water potential below -1.2 MPa during the previous seasons. The number of fruiting positions per tree (estimated indirectly for whole trees based on weight of current-year shoots > 5 cm in length) was negatively associated with water stress. Yield reduction in response to water stress during harvest appears to be a compound, multiyear effect, associated with reduced annual growth and renewal of fruiting positions.  相似文献   

8.
To determine if flower nutrient composition can be used to predict fruit quality, a field experiment was conducted over three seasons (1996-1999) in a commercial orange orchard (Citrus sinensis (L.) Osbeck cv. 'Valencia Late', budded on Troyer citrange rootstock) established on a calcareous soil in southern Portugal. Flowers were collected from 20 trees during full bloom in April and their nutrient composition determined, and fruits were harvested the following March and their quality evaluated. Patterns of covariation in flower nutrient concentrations and in fruit quality variables were evaluated by principal component analysis. Regression models relating fruit quality variables to flower nutrient composition were developed by stepwise selection procedures. The predictive power of the regression models was evaluated with an independent data set. Nutrient composition of flowers at full bloom could be used to predict the fruit quality variables fresh fruit mass and maturation index in the following year. Magnesium, Ca and Zn concentrations measured in flowers were related to fruit fresh mass estimations and N, P, Mg and Fe concentrations were related to fruit maturation index. We also established reference values for the nutrient composition of flowers based on measurements made in trees that produced large (> 76 mm in diameter) fruit.  相似文献   

9.
The physiological basis of drought resistance in Ziziphus rotundifolia Lamk., which is an important, multipurpose fruit tree of the northwest Indian arid zone, was investigated in a greenhouse experiment. Three irrigation regimes were imposed over a 34-day period: an irrigation treatment, a gradual drought stress treatment (50% of water supplied in the irrigation treatment) and a rapid drought stress treatment (no irrigation). Changes in gas exchange, water relations, carbon isotope composition and solute concentrations of leaves, stems and roots were determined. The differential rate of stress development in the two drought treatments did not result in markedly different physiological responses, but merely affected the time at which they were expressed. The initial response to decreasing soil water content was reduced stomatal conductance, effectively maintaining predawn leaf water potential (Psi(leaf)), controlling water loss and increasing intrinsic water-use efficiency, while optimizing carbon gain during drought. Carbon isotope composition (delta13C) of leaf tissue sap provided a more sensitive indicator of changes in short-term water-use efficiency than delta13C of bulk leaf tissue. As drought developed, osmotic potential at full turgor decreased and total solute concentrations increased in leaves, indicating osmotic adjustment. Decreases in leaf starch concentrations and concomitant increases in hexose sugars and sucrose suggested a shift in carbon partitioning in favor of soluble carbohydrates. In severely drought-stressed leaves, high leaf nitrate reductase activities were paralleled by increases in proline concentration, suggesting an osmoprotective role for proline. As water deficit increased, carbon was remobilized from leaves and preferentially redistributed to stems and roots, and leaves were shed, resulting in reduced whole-plant transpiration and enforced dormancy. Thus, Z. rotundifolia showed a range of responses to different drought intensities indicating a high degree of plasticity in response to water deficits.  相似文献   

10.
夏秋季节水肥调控综合措施对油茶促花保果效果的影响   总被引:1,自引:0,他引:1  
为了提高盛果期油茶林的产量,针对当前成林油茶落花落果率高而保花保果率低的问题,就不同的保墒、根外追施微肥与植物生长调节剂及冬季修剪等水肥调控综合技术措施对油茶保花保果效果的影响情况进行了试验研究。结果表明:(1)采用覆草、根外追施0.1 g/L的尿素与100 mg/L的GA3的坐果率最高;修剪与保水措施对坐果率的影响较大。(2)对油茶成林4月与7月保果率的影响最大的分别为修剪强度与保水措施,追施0.1g/L的硼肥有利于提高油茶4月与7月的保果率。(3)滴灌、喷施0.10 g/L的硼肥与100 mg/L的GA3及轻度修剪后油茶花芽分化数量最高;植物生长调节剂对油茶7月花芽分化的影响最大。  相似文献   

11.
We investigated crop load and water stress effects on diurnal stem extension growth of field-grown peach (Prunus persica (L.) Batsch) trees. Neither the presence of fruit nor reduced irrigation significantly altered the timing of diurnal fluctuations in stem growth rate. Stems with subtending fruit had significantly reduced growth compared to stems with no subtending fruit. Crop load had no significant effect on relative stem extension rates and the majority of the reduction in absolute growth was the result of a smaller zone of elongation in fruit-bearing stems than in stems with no subtending fruit. Fruit removal did not increase growth rates within 24 h. When irrigation was reduced, the length of the stem elongation zone and total daily stem growth were significantly decreased relative to well-irrigated controls and the decreases were highly correlated with stem water potential. Compared with well-irrigated controls, relative stem extension rates of water-stressed trees were reduced at several times during the 24-h period, but the degree of reduction was not proportional to the difference in stem water potentials between the treatments.  相似文献   

12.
We studied the influence of branch autonomy on the growth of reproductive and vegetative organs by establishing different patterns of fruit distribution within and between large branch units (scaffolds) in mature peach trees (Prunus persica (L.) Batsch cv. 'Elegant Lady'). Different patterns of fruit distribution were established by defruiting either whole scaffolds (uneven fruit distribution between scaffolds; US) or several selected hangers (small fruiting branches) per tree (uneven fruit distribution between hangers; UH). The effects of these patterns were compared with the effects of an even fruit distribution treatment (EVEN) in which fruits were thinned to achieve maximum uniformity of fruit distribution within the canopy. The desired fruit loads were obtained by differentially thinning the remaining bearing parts. On a tree basis, the response of mean fruit mass to fruit load was strongly affected by fruit distribution. The steepest mean fruit mass to fruit load relationship was found in US trees, whereas the relationship in UH trees was intermediate between the US and EVEN trees. On a scaffold basis, differences in fruit size between EVEN and US trees with similar fruit loads, though statistically significant, were relatively small, indicating that scaffolds were almost totally autonomous with respect to dry matter partitioning to fruit during the final stage of peach fruit growth. Hangers also appeared to exhibit significant autonomy with respect to the distribution of dry matter during the final phase of fruit growth. Branch autonomy was evident in scaffold growth: defruited scaffolds in the US treatment grew more than fruited scaffolds, and fruit distribution treatments had little impact on scaffold cross-sectional area on a tree basis. On the other hand, as observed for fruit growth, branch autonomy did not appear to be complete because the fruited scaffolds grew more in US trees than in EVEN trees under heavy cropping conditions. However, the effect of fruit distribution occurred only over short distances, and was negligible on organs located farther away from the source of heterogeneity (fruits), such as the trunk and roots.  相似文献   

13.
Recovery of water status in water-stressed pistachio trees (Pistacia vera L. cv. Kerman) was investigated by subjecting trees to regulated deficit irrigation (RDI) (60% of crop evapotranspiration rate, ET(c)) during stages I and II of fruit development (FD) followed by full irrigation during FD stage III (kernel-filling). Trees irrigated at 100% ET(c) throughout FD stages I, II and III served as controls. Water-stress severity was characterized by changes in soil water content and midday stem water potential (Psi(md)). Midday leaf conductance (g(1)) and trunk diameter variation (TDV) were also measured. In RDI trees, the lowest Psi(md) value, -1.8 MPa, occurred at the end of the RDI period. The corresponding value for the control trees was around -1.1 MPa. Although the RDI treatment affected gas exchange later than Psi(md), the greatest reductions in gas exchange (60% of control values) also appeared at the end of the RDI period. There were significant differences in TDV between control and RDI trees at the end of the RDI period. Although plant water status recovered within 20 days of resuming irrigation, the TDV values indicated a longer period might be necessary for complete recovery. Recovery of g(1) was faster than that of Psi(md), although differences in TDV between control and RDI trees indicated that gas exchange recovered later than Psi(md). The slow recovery of pistachio trees during FD stage III from water stress imposed during FD stages I and II suggests that irrigation should exceed 100% ET(c) during FD stage III or that more extensive irrigation should commence before the end of FD stage II.  相似文献   

14.
Increasing fruit load (from no berries present to 25, 50 and 100% of the initial fruit load) significantly decreased branch growth on 5-year-old coffee (Coffea arabica L.) trees of the dwarf cultivar 'Costa Rica 95', during their third production cycle. Ring-barking the branches further reduced their growth. Berry dry mass at harvest was significantly reduced by increasing fruit load. Dry matter allocation to berries was four times that allocated to branch growth during the cycle. Branch dieback and berry drop were significantly higher at greater fruit loads. This illustrates the importance of berry sink strength and indicates that there is competition for carbohydrates between berries and shoots and also among berries. Leaf net photosynthesis (P(n)) increased with increasing fruit load. Furthermore, leaves of non-isolated branches bearing full fruit load achieved three times higher P(n) than leaves of isolated (ring-barked) branches without berries, indicating strong relief of leaf P(n) inhibition by carbohydrate demand from berries and other parts of the coffee tree when excess photoassimilates could be exported. Leaf P(n) was significantly higher in the morning than later during the day. This reduction in leaf P(n) is generally attributed to stomatal closure in response to high irradiance, temperature and vapor pressure deficit in the middle of the day; however, it could also be a feedback effect of reserves accumulating during the morning when climatic conditions for leaf P(n) were optimal, because increased leaf mass ratio was observed in leaves of ring-barked branches with low or no fruit loads. Rates of CO(2) emission by berries decreased and calculated photosynthetic rates of berries increased with increasing photosynthetic photon flux (PPF) especially at low PPFs (0 to 100 micromol m(-2) s(-1)). The photosynthetic contribution of berries at the bean-filling stage was estimated to be about 30% of their daily respiration costs and 12% of their total carbon requirements at PPF values commonly experienced in the field (200 to 500 micromol m(-2) s(-1)).  相似文献   

15.
Data on the seasonal patterns of fruit growth and dark respiration of two peach (Prunus persica (L.) Batsch) cultivars were combined with temperature data to calculate the carbohydrate requirements of an "average" peach fruit from bloom to harvest. The two peach cultivars used were June Lady (an early maturing (mid-June) cultivar) and O'Henry (a late maturing (early-August) cultivar). At harvest, the mean dry weight of the June Lady fruit was 17.8 g (139.7 g fresh weight) and of O'Henry fruits was 30.9 g (213.9 g fresh weight), and the times from full bloom to harvest were 107 and 154 days, respectively. The total calculated fruit respiration requirements were 132 and 300 mmol CO(2) fruit(-1) season(-1) for June Lady and O'Henry fruits, respectively. Total calculated carbohydrate requirements for fruit growth and respiration are 23.9 and 43.8 g CH(2)O fruit(-1) season(-1) for June Lady and O'Henry fruits, respectively. Fruit respiration accounted for 16.3% of the total carbohydrate requirements of June Lady fruits and 0.5% of the total carbohydrate requirements of O'Henry fruits.  相似文献   

16.
水分胁迫对早实核桃生长和结果的影响   总被引:6,自引:0,他引:6  
水分胁迫对早实核桃生长和结果的影响谷瑞升,郗荣庭,刘万生(河北农业大学园艺系保定071001)(辽宁经济林研究所大连116031)关键词早实核桃,水分胁迫,生长和结果核桃是重要的经济林树种,早实核桃品种具有很高的栽培价值。然而我国的核桃产区集中于干旱...  相似文献   

17.
To investigate the role of polyamines in pre- and post-harvest fruit development of 'Akatsuki' peach (Prunus persica (L.) Batsch.) we measured polyamine concentrations, activities of polyamine biosynthetic enzymes and expression of genes encoding these enzymes. Concentrations of the free polyamines, putrescine (Put), spermidine (Spd) and spermine (Spm) in pre-harvest fruit peaked 16 days after full bloom (DAF) and then progressively decreased until harvest with the exception of Put, which showed a second peak at 94 DAF, just before the onset of ethylene production. In post-harvest fruit, minor changes in concentrations of Spd and Spm were observed, whereas Put concentration peaked on the harvest day, followed by an abrupt decrease and a subsequent 2-fold increase, which was opposite to the fluctuating pattern of ethylene production. Activities of arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) peaked during the first stage of fruit development and then decreased until 80 DAF, after which the activities were below detection limits, suggesting that Put is synthesized during the early stage of fruit development. Activity of S-adenosylmethionine decarboxylase (SAMDC) decreased progressively until the end of S2. Expression levels of five putative polyamine biosynthetic genes, ADC, ODC, SAMDC, spermidine synthase (SPDS) and spermine synthase (SPMS), in pre-harvest and post-harvest fruit did not coincide precisely with the observed changes in enzymatic activities and polyamine concentrations. The possible role of polyamines during peach fruit development and the relationship between polyamines and ethylene biosynthesis are discussed.  相似文献   

18.
We applied a semi-mechanistic model of fresh matter accumulation to peach fruit during the stage of rapid mesocarp development. The model, which is based on simple hypotheses of fluid flows into and out of the fruit, assumes that solution flow into the fruit increases with fruit weight and transpiration per unit weight, and decreases with the maximum daily shrinkage of the trunk, which was used as an indicator of water stress. Fruit transpiration was assumed to increase with fruit size and with radiation. Fruit respiration was considered to be related to fruit growth and to temperature. The model simulates variability in growth among fruits according to climatic conditions, degree of water stress and weight of the fruit at the beginning of the simulation. We used data obtained from well-watered and water-stressed trees grown in containers to estimate model parameters and to test the model. There was close agreement between the simulated and measured values. A sensitivity analysis showed that initial fruit weight partly determined the variation in growth among fruits. The analysis also indicated that there was an optimal irradiance for fruit growth and that the effect of high global radiation on growth varied according to the stage of fruit development. Water stress, which was the most important factor influencing fruit growth, rapidly depressed growth, particularly when applied late in the season.  相似文献   

19.
Four-year-old apple (Malus x domestica Borkh.) trees cv. 'Braeburn' on M.26 rootstock were thinned at full bloom to establish six crop loads ranging from a heavy crop to a deflowered treatment. At harvest, mean yield per tree varied from 0 to 38 kg and mean fruit weight ranged from 225 g in the heaviest cropping treatment to 385 g in the lightest cropping treatment. Light cropping resulted in a significant advance in fruit maturity as indicated by background color, starch/iodine score and soluble solids. There were small differences in leaf photosynthetic rate among the treatments when shoot growth was active. However, in early January, coincident with cessation of shoot growth and maximum rate of accumulation of fruit weight, leaf assimilation rate was reduced by as much as 65% on the deflowered trees compared to the trees carrying the heaviest crop. Leaf assimilation rate showed a curvilinear response to crop load at this time, with little increase in leaf assimilation when crop load exceeded 12 fruit m(-2) leaf area.  相似文献   

20.
于宁乡县龙田镇月塘村选择生长健壮、结实正常的10年生香榧实生植株作为观测对象,对香榧果实生长发育规律进行观测,结果表明:香榧果实发育过程历时16个月,跨越2个年度,果实的生长变化曲线呈"S"形;当年6月初到12月末果实生长很缓慢,12月中旬到翌年2月末生长极其缓慢,至翌年3月果实开始膨大,从4月末到7月中旬进入快速生长...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号